Chest Pain and Non-Respiratory Symptoms in Acute Asthma

Total Page:16

File Type:pdf, Size:1020Kb

Chest Pain and Non-Respiratory Symptoms in Acute Asthma Postgrad Med J 2000;76:413–414 413 Chest pain and non-respiratory symptoms in Postgrad Med J: first published as 10.1136/pmj.76.897.413 on 1 July 2000. Downloaded from acute asthma W M Edmondstone Abstract textbooks. Occasionally the combination of The frequency and characteristics of chest dyspnoea and chest pain results in diagnostic pain and non-respiratory symptoms were confusion. This study was prompted by the investigated in patients admitted with observation that a number of patients admitted acute asthma. One hundred patients with with asthmatic chest pain had been suspected a mean admission peak flow rate of 38% of having cardiac ischaemia, pleurisy, pericardi- normal or predicted were interviewed tis, or pulmonary embolism. It had also been using a questionnaire. Chest pain oc- observed that many patients admitted with curred in 76% and was characteristically a asthma complained of a range of non- dull ache or sharp, stabbing pain in the respiratory symptoms, something which has sternal/parasternal or subcostal areas, been noted previously in children1 and in adult worsened by coughing, deep inspiration, asthmatics in outpatients.2 The aim of this or movement and improved by sitting study was to examine the frequency and char- upright. It was rated at or greater than acteristics of chest pain and other symptoms in 5/10 in severity by 67% of the patients. A patients admitted with acute asthma. wide variety of upper respiratory and sys- temic symptoms were described both Patients and methods before and during the attack. One hundred patients (66 females, mean (SD) Non-respiratory symptoms occur com- age 45.0 (19.7) years) admitted with acute monly in the prodrome before asthma asthma were studied. Patients were included if attacks and become more frequent after a compatible history was supported by an onset of the attack. Chest pain is usual admission peak expiratory flow (PEF) of less during asthma attacks. Although it is than 50% predicted or previous best. Patients benign and self limiting it may cause diag- readmitted were not studied a second time. nostic confusion and patient distress. The patients were interviewed within two days (Postgrad Med J 2000;76:413–414) of admission using a questionnaire that asked about symptoms including the presence and Keywords: asthma; chest pain; non-respiratory symp- features of chest pain, and new non-respiratory toms symptoms during the attack and the 24 hours http://pmj.bmj.com/ The Royal Hospital, preceding its onset. Patients reporting chest Haslar, Gosport, Hants pain were interviewed again before discharge PO12 2AA, UK Characteristic symptoms of asthma are breath- lessness, chest tightness, wheeze, and cough. or by telephone soon after. Correspondence to: Although physicians may be familiar with the Dr Edmondstone chest pain described by some asthmatics Results The mean (SD) PEF on admission expressed Submitted 26 October 1999 during attacks the phenomenon has not been Accepted 20 December 1999 studied, nor does it merit a mention in most as % predicted or previous best was 37.9 (12.1)% and on discharge was 87.0 (13.7)%. on September 24, 2021 by guest. Protected copyright. Table 1 Chest symptoms described by 100 patients Seventy six patients reported chest pain during the attack of asthma. Details of the pain are in Breathlessness = 100% Wheezing = 94% table 1. Five patients had two diVerent pains Chest tightness = 91% such as retrosternal soreness due to tracheitis Cough = 88% and a second pain elsewhere in the chest or Chest pain = 76% Features of the chest pain (% patients aVected) back. Location: Quality: Typically the pain developed gradually over Sternal/parasternal 30 Dull ache 30 the first few hours of the attack, was located in Subcostal 26 Sharp and stabbing 28 Chest and back 26 Dull ache + sharp and stabbing 17 the sternal/parasternal area, and was dull and Sternal and subcostal 9 Others (burning, raw, abrasive, tight) 25 aching or sharp and stabbing in nature. In Back only 6 Others 3 some patients it was a dull ache that became Time started: Severity: (scale 1–10) sharp and stabbing on coughing, deep inspira- With onset of attack 37 9 5 tion, or change in position. These activities also Within 60 min of onset 25 8 17 1–6 hours 16 7 19 worsened the pain in 84%, 47%, and 43% of 6–24 hours 4 6 12 patients respectively. The pain was often >24 hours 18 <6 47 relieved by sitting upright. Of those who had Worsened by: Improved by: Coughing 84 Sitting upright 66 chest pain its severity was rated at or above Deep inspiration 47 Shallow breathing 22 7/10 in 41%, and although only 22% received Movement 43 Keeping still 18 analgesics, many more would have liked them. Lying supine 36 Holding chest 12 Lying on side 12 Lying on side 9 All the patients reported that their pain eased PF manoeuvre 8 Lying supine 8 as the asthma attack settled, and 69 (91%) Sitting up without support 3 Stretching 7 patients were pain free when they were NB: Most patients reported several factors. discharged. Of the others, in five the pain was 414 Edmondstone Table 2 Non-respiratory symptoms associated with the Postgrad Med J: first published as 10.1136/pmj.76.897.413 on 1 July 2000. Downloaded from asthma attack (% patients) Learning points Before the During the x Most patients with acute asthma have Symptoms attack attack chest pain that may cause diagnostic Nose and throat symptoms 50 54 confusion and be severe enough to Tiredness/sleepiness 48 52 require analgesia, but which settles as the Dry mouth 43 66 asthma improves. Thirst 42 59 Sweating 32 61 x Many asthmatics develop prodromal Headache 32 43 symptoms before attacks and may be Depression 28 28 Skin flush 21 37 able to recognise impending attacks. Increased urinary frequency 21 30 Irritability 21 29 Palpitations 19 41 Skin itch 17 20 Limb pains 15 16 thoracic geometry may also result in painful Nausea 11 30 Dizziness 9 36 distortion of the costochondral joints. Faintness 9 23 Surprisingly, asthmatic chest pain has been Limb tingling 9 19 neglected in adults, although paediatricians are Abdominal colic 7 14 Weight change 7 — aware of its importance in the diVerential diag- nosis of exertional chest pain.3 Its significance should not be underestimated. Firstly, it can thought to be due to rib fracture or intercostal lead to diagnostic uncertainty, evidenced in muscle tear. In only one case did an area of this study by unnecessary radioisotope lung consolidation on the chest radiograph corres- scans in some patients. Secondly, many pa- pond to the site of the pain, and in no other tients are apprehensive about the pain and may case did the radiograph help to explain the need reassurance that it is a predictable and self pain. There were no diVerences in the severity limiting feature of acute asthma, and finally of the asthma attack between those who did, they may need analgesia. and those who did not have chest pain. Four of This study has also shown that non- the patients with chest pain had radioisotope respiratory symptoms frequently occur both lung scans. All were normal. Electrocardio- before and during attacks of asthma. Many of grams were done in 36% of those with chest the prodromal symptoms are explained by pain and were normal apart from showing coryzal upper respiratory inflammation, and sinus tachycardia. many of the symptoms during the attack are The commonest non-respiratory symptoms probably due to anxiety, lack of sleep, repeated during the 24 hours before the asthma attack coughing, side eVects of bronchodilators, and were irritation of the nose and throat, fre- mouth breathing due to nasal obstruction. quently coryzal in nature, but other common Hyperventilation may account for the limb tin- symptoms including excessive tiredness or gling, dizziness, and faintness. None the less, sleepiness, dry mouth, thirst, sweating, and http://pmj.bmj.com/ some patients reported prodromal symptoms headache also occurred (table 2). After the without having an upper respiratory infection, start of the attack the frequency of non- while others said that their asthma attacks were respiratory symptoms increased with the ex- predictably preceded by harbinger symptoms ception of depression. such as tingling, itching, or scratchy discomfort in the nose, mouth, and throat. Mood change, Discussion including inappropriate depression or irritabil- This study has demonstrated that chest pain is ity, itching of the skin around the nose or on September 24, 2021 by guest. Protected copyright. common in acute severe asthma. In some mouth, and urinary frequency were commonly patients tracheitis may precede or accompany reported, and some patients noted muscular the attack, while in others repeated violent aches and pains in the absence of other features coughing may provoke tears where the inter- of influenza. Whether these symptoms, in some costal muscles insert into the periosteum of the respects similar to the prodromal symptoms of rib, or even rib fracture. Occasionally the pain migraine, are due to release of inflammatory may be pleuritic due to pneumonia. In most mediators in advance of the asthma attack is cases in this study, however, features of the pain not known. Patients whose prodromal symp- suggest that it is musculoskeletal in origin: its toms follow a stereotypic pattern may be able temporal relationship to the asthma attack, its to avert acute attacks by increasing the dose of localisation around the costochondral joints their preventer medication when they recognise and lower ribs, and its relationship to position the characteristic features. and movement of the thorax. The chest hyper- inflates during severe asthma and ventilation occurs at lung volumes approaching total lung 1 Beer S, Laver J, Karpuch J, et al.
Recommended publications
  • Bacterial Tracheitis and the Child with Inspiratory Stridor
    Bacterial Tracheitis and the Child With Inspiratory Stridor Thomas Jevon, MD, and Robert L. Blake, Jr, MD Columbia, Missouri Traditionally the presence of inspiratory stridor The child was admitted to the hospital with a and upper respiratory tract disease in a child has presumptive diagnosis of croup and was treated led the primary care physician to consider croup, with mist, hydration, and racemic epinephrine. epiglottitis, and foreign body aspiration in the Initially he improved slightly, but approximately differential diagnosis. The following case demon­ eight hours after admission he was in marked res­ strates the importance of considering another piratory distress and had a fever of 39.4° C. At this condition, bacterial tracheitis, in the child with time he had a brief seizure. After this episode his upper airway distress. arterial blood gases on room air were P02 3 8 mmHg and PC02 45 mm Hg, and pH 7.38. Direct laryngos­ copy was performed, revealing copious purulent Case Report secretions below the chords. This material was A 30-month-old boy with a history of atopic removed by suction, and an endotracheal tube was dermatitis and recurrent otitis media, currently re­ placed. He was treated with oxygen, frequent suc­ ceiving trimethoprim-sulfamethoxazole, presented tioning, and intravenous nafcillin and chloramphen­ to the emergency room late at night with a one-day icol. Culture of the purulent tracheal secretions history of low-grade fever and cough and a three- subsequently grew alpha and gamma streptococci hour history of inspiratory stridor. He was in mod­ and Hemophilus influenzae resistant to ampicillin. erate to severe respiratory distress with a respira­ Blood cultures were negative.
    [Show full text]
  • Guidelines for Prevention of Healthcare Associated Lower
    State of Kuwait Ministry of Health Infection Control Directorate Guidelines for Prevention of Healt Care Associated LRTI Aug. 2006 1 I- Introduction Respiratory tract infections are extremely common health-care associated infections. Lower respiratory tract infection incorporates a spectrum of disease from acute bronchitis to pneumonia. Several factors (age, underlying disease, environment) influence mortality, morbidity and also microbial aetiology especially with the most frequently identified antibiotic resistance of respiratory pathogens. Of the lower respiratory tract infections, pneumonia remains the most common infection seen among hospitalized patients. It is defined as a lower respiratory tract infection occurring > 48 hrs of admission to a hospital or nursing home in a patient who was not incubating the infection on admission. It is the second most common health-care associated infection worldwide after urinary tract infection accounting for 13-18% of all health-care associated infections. Health-care associated pneumonia tends to be more serious because defense mechanisms against infection are often impaired , and the kind of infecting organisms are more dangerous than those generally encountered in the community. It is commonly caused by pathogens that need aggressive diagnostic approach with prompt recognition and urgent treatment to reduce morbidity and mortality; often the strains causing health-care associated pneumonia are multiple. It is complicate up to 1% of all hospitalizations. Critically ill patients who require mechanical ventilation are especially vulnerable to develop ventilator associated pneumonia (VAP). Because of its tremendous risk in the last two decades, most of the research on hospital associated pneumonia has been focused on VAP. As treatment, prognosis and outcome of VAP may differ significantly from other forms of hospital acquired pneumonia, it will be discussed extensively.
    [Show full text]
  • Upper and Lower Respiratory Tract Infections Dr
    Upper and Lower Respiratory Tract Infections Dr. Shannon MacPhee IWK Emergency Department April 4, 2014 Declaration of Disclosure • I have no actual or potential conflict of interest in relation to this program. • I also assume responsibility for ensuring the scientific validity, objectivity, and completeness of the content of my presentation. Objectives Stridor Community acquired pneumonia Pathogenesis Clinical presentation and medical workup Treatment Complications: Pleural effusion Bronchiolitis Croup • 15% of all pediatric emergency visits in North America • Abrupt onset • Night • 8% admission rate Croup Laryngotracheobronchitis 6 months to 6 years Parainfluenza (75%) Hoarse voice, Inspiratory stridor, Barky cough Croup radiograph Biennial variation in croup Croup scores No matter which system is used, the presence of retractions and stridor at rest are the two most critical clinical features. Croup treatment Humidified air (not mist!) Dexamethasone Dose and population Budesonide not recommended $$$ Inhaled epinephrine Discharge after 1.5‐3 hours of observation in ER if completely stable Mild croup RCT O.6 mg/kg Follow up on Days 1,2,3,7,21 Detailed analysis of costs for the “payer” (ED visit, Physician billing, med cost) Cost for family (parking, lost work, ambulance service, lost productivity) Average societal cost of $92 versus $72 (Dex versus placeb0) Return visits reduced by more than 50% with dexamethasone arm Dex initial effects within 30 minutes Croup Disposition 1.5‐3 hours post epinephrine Disposition should
    [Show full text]
  • Studies on Influenza in the Pandemic of 1957-1958. Ii. Pulmonary Complications of Influenza
    STUDIES ON INFLUENZA IN THE PANDEMIC OF 1957-1958. II. PULMONARY COMPLICATIONS OF INFLUENZA Donald B. Louria, … , Edwin D. Kilbourne, David E. Rogers J Clin Invest. 1959;38(1):213-265. https://doi.org/10.1172/JCI103791. Research Article Find the latest version: https://jci.me/103791/pdf STUDIES ON INFLUENZA IN THE PANDEMIC OF 1957-1958. II. PULMONARY COMPLICATIONS OF INFLUENZA * t By DONALD B. LOURIAt HERBERT L. BLUMENFELDt JOHN T. ELLIS, EDWIN D. KILBOURNE, AND DAVID E. ROGERS (From the Departments of Medicine, Pathology, and Public Health and Preventive Medicine, The New York Hospital-Cornell Medical Center, New York, N. Y.) (Submitted for publication July 10, 1958; accepted August 7, 1958) Influenza presents a paradox. To the clinician edge of influenza derived from modern virologic practicing medicine in 1918, influenza was a fear- studies of the epidemic (interpandemic) disease some disease attended by frequent and often fatal must be applied with caution to the 1918-19 pan- pulmonary complications. To the student of in- demic. In the new pandemic in 1957, certain old terpandemic influenza in the last quarter century, questions remained unanswered: the disease is an acute, temporarily incapacitating 1. What is the etiologic agent of pandemic in- infection of the upper respiratory tract which is fluenza? benign except on the rare occasion when bacterial 2. Is the pandemic disease more severe than the pneumonia supervenes. This contrast in the mani- interpandemic form or only more widespread? festations of influenza has led to speculation that 3. Is bacterial pneumonia the major cause of the disease of 1918 was either a different disease fatalities in pandemic influenza; if so, may fatali- entity or caused by an agent of greater virulence ties be prevented by modem antimicrobials? than influenza viruses now encountered.
    [Show full text]
  • Management of Wheeze and Cough in Infants and Pre-Schoo L Children In
    nPersonal opinio lManagement of wheeze and cough in infants and pre-schoo echildren in primary car Pauln Stephenso nIntroductio is, well established in adults 2thoughs there remain somer controversy about its diagnosis in children eve Managementa of wheeze and cough in children is sinceh Spelman's uncontrolled study of children wit commonm problem in primary care. In this paper I ai nchronic cough successfully treated according to a tod provide a few useful management tools with regar .asthma protocol 3gWithout the ability to perform lun toe diagnosis, the role of a trial of treatment, and th functione tests in pre-school children, care must b rationalee for referral. For an in-depth review see th takent to exclude other diagnoses. A persisten article. in this journal two years ago by Bush 1 eproductiv coughc may be due solely to chroni catarrhe with postnasal drip, but early referral may b sPresentation of Symptom needed. A persistent dry cough,n worse at night and o exercise,s and without evidence of other diagnose Ity is always worth asking parents what they mean b warrants. a trial of asthma treatment thed term 'wheeze' or 'cough'. The high-pitche musicaln noise of a wheeze usually on expiratio Thef younger the child, the longer the list o shouldy not be confused with the sound of inspirator differentialo diagnoses and the more one has t sstridor. The sound of airflow through secretions i econsider possibilities other than 'asthma'. Thes ddifferent again, and parents may describe their chil linclude upper airways disease, congenital structura 'vomiting'g when, in fact, the child has been coughin diseasel of the bronchi, bronchial or trachea severely and bringing up phlegm or mucus.
    [Show full text]
  • A Case of Pseudomembranous Tracheitis Caused by Mycoplasma Pneumoniae in an Immunocompetent Patient
    205 Case Report Page 1 of 7 A case of pseudomembranous tracheitis caused by Mycoplasma pneumoniae in an immunocompetent patient Yong Hoon Lee, Hyewon Seo, Seung Ick Cha, Chang Ho Kim, Jaehee Lee Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea Correspondence to: Jaehee Lee. Department of Internal Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, 700-842, Daegu, Republic of Korea. Email: [email protected]. Abstract: Pseudomembranous tracheitis (PMT) is a rare condition characterized by pseudomembrane formation in the tracheobronchial tree that may be associated with infectious and noninfectious processes. However, PMT attributed to Mycoplasma pneumoniae (M. pneumoniae), a common atypical respiratory infectious pathogen, has not been reported till date. Here, we report about a 29-year-old woman with complaints of severe persistent cough and radiographic deterioration despite antibiotics administration for pneumonia at an outside facility. She was finally diagnosed as having PMT with bilateral diffuse bronchiolitis caused by M. pneumoniae infection. The diagnosis was made based on a bronchoscopic finding of a pseudomembrane that partially covered the membranous portion of the upper and middle trachea, a positive polymerase chain reaction (PCR) test with bronchial aspirate, and a positive serological test for M. pneumoniae without detection of any other causative pathogen through an extensive workup. Her symptoms and radiographic findings improved in response to moxifloxacin and corticosteroid treatment. This case is a rare presentation of M. pneumoniae infection complicating PMT in a young adult without any known risk factors. Keywords: Tracheitis; bronchiolitis; Mycoplasma pneumoniae (M. pneumoniae) Submitted Dec 12, 2018.
    [Show full text]
  • Hoarseness in Children 1Mary Worthen, 2Swapna Chandran
    IJHNS Mary Worthen, Swapna Chandran 10.5005/jp-journals-10001-1278 REVIEW ARTICLE Hoarseness in Children 1Mary Worthen, 2Swapna Chandran ABSTRACT thinking in vocal fold pathology leading to hoarseness and recent advances in diagnosis and management. Background: The prevalence of pediatric dysphonia ranges from 6-23%. Chronic dysphonia can negatively affect the lives of children physically, socially, and emotionally. The body of ASSESSMENT OF DYSPHONIA literature continues to grow regarding the pathophysiology and Perceptual analysis is a key component of voice evaluation management of dysphonic children. in children, and several tools are currently available for Methods: This article presents a relevant literature review of assessing these qualities.3 Perceptual analysis of voice by vocal fold pathology leading to hoarseness and recent advances in diagnosis and management. Articles were retrieved using the patient, the parent, the clinician and speech language a selective search in PubMed employing the terms such as pathologist is important in the comprehensive assessment “hoarseness in children,” “pediatric dysphonia.” of pediatric hoarseness. Parental questionnaires such as Results: 42 articles from the past decade were reviewed that the Pediatric Voice outcome Survey, the Pediatric Voice- include information regarding the etiology, assessment, and Related Quality of Life questionnaire, and the Pediatric treatment of children with dysphonia. Voice Handicap Index are available. In these surveys, the Conclusion: The care of a child with a voice disorder can be child’s self-evaluation is not considered. Verduyckt et al complex and requires a multi-disciplinary approach. Current developed a questionnaire to analyze the discriminatory technological, pharmaceutical, and therapeutic advances have capacity of 5- to 13-year-old dysphonic children.
    [Show full text]
  • Gas Exchange and Respiratory Function
    LWBK330-4183G-c21_p484-516.qxd 23/07/2009 02:09 PM Page 484 Aptara Gas Exchange and 5 Respiratory Function Applying Concepts From NANDA, NIC, • Case Study and NOC A Patient With Impaired Cough Reflex Mrs. Lewis, age 77 years, is admitted to the hospital for left lower lobe pneumonia. Her vital signs are: Temp 100.6°F; HR 90 and regular; B/P: 142/74; Resp. 28. She has a weak cough, diminished breath sounds over the lower left lung field, and coarse rhonchi over the midtracheal area. She can expectorate some sputum, which is thick and grayish green. She has a history of stroke. Secondary to the stroke she has impaired gag and cough reflexes and mild weakness of her left side. She is allowed food and fluids because she can swallow safely if she uses the chin-tuck maneuver. Visit thePoint to view a concept map that illustrates the relationships that exist between the nursing diagnoses, interventions, and outcomes for the patient’s clinical problems. LWBK330-4183G-c21_p484-516.qxd 23/07/2009 02:09 PM Page 485 Aptara Nursing Classifications and Languages NANDA NIC NOC NURSING DIAGNOSES NURSING INTERVENTIONS NURSING OUTCOMES INEFFECTIVE AIRWAY CLEARANCE— RESPIRATORY MONITORING— Return to functional baseline sta- Inability to clear secretions or ob- Collection and analysis of patient tus, stabilization of, or structions from the respiratory data to ensure airway patency improvement in: tract to maintain a clear airway and adequate gas exchange RESPIRATORY STATUS: AIRWAY PATENCY—Extent to which the tracheobronchial passages remain open IMPAIRED GAS
    [Show full text]
  • Chief Compaint/HPI History
    PULMONOLOGY ASSOCIATES OF TEXAS 6860 North Dallas Pkwy, Ste 200, Plano, TX 75024 Tel: 469-305-7171 Fax: 469-212-1548 Patient Name: Thomas Cromwell Patient DOB: 02-09-1960 Patient Sex: Male Visit Date: 03-06-2016 Chief Compaint/HPI Chief Complaint: Shortness of Breath History of Present Illness: he patient is an 56-year-old male. From the last few days, he is not feeling well. Complains of fatigue, tiredness, weakness, nausea, no vomiting, no hematemesis or melena. The patient relates to have some low-grade fever. The patient came to the emergency room. Initially showed atrial fibrillation with rapid ventricular response. It appears that the patient has chronic atrial fibrillation. As per the medications, they are not very clear. He denies any specific chest pain. Her main complaint is shortness of breath and symptoms as above Pulmonary symptoms: cough, sputum, no hemoptysis, dyspnea and wheezing. History Past Medical History: Pulmonary history includes pneumonia and sleep apnea. Cardiac history includes atrial fibrillation and congestive heart failure. Remainder of PMH is non-significant. Surgical History: appendectomy in 2007. Medications: Pulmonary medications are albuterol and Spiriva; Cardiac medications include: atenolol and digoxin; Family History: Father is deceased at age 80. Father PMH remarkable for CHF, hypertension and MI; Mother is alive. Mother PMH remarkable for alzheimers, diabetes and hypertension; Cancer history in family: No Lung disease in the family: No Social History: Current every day smoker - 1 pack / day Alcohol consumption: social Marital status: lives alone Exposure History: Occupation: farmer. Asbestos exposure: None. No exposure to Ground Zero. Immunization History: Patient has an immunization history of flu shot, H1N1shot and pneumococcal shot.
    [Show full text]
  • Managing Complications of Percutaneous Tracheostomy and Gastrostomy
    5330 Review Article on Interventional Pulmonology in the Intensive Care Unit Managing complications of percutaneous tracheostomy and gastrostomy Aline N. Zouk, Hitesh Batra Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA Contributions: (I) Conception and design: Both authors; (II) Administrative support: Both authors; (III) Provision of study materials or patients: Both authors; (IV) Collection and assembly of data: Both authors; (V) Data analysis and interpretation: Both authors; (VI) Manuscript writing: Both authors; (VII) Final approval of manuscript: Both authors. Correspondence to: Aline N. Zouk, MD. Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, 1900 University Blvd, THT 422, Birmingham, AL 35294, USA. Email: [email protected]. Abstract: Percutaneous tracheostomy and gastrostomy are some of the most commonly performed procedures at bedside in the intensive care unit. While they are generally considered safe, they can be associated with numerous short and long-term complications, many of which can occur long after their placement and cause significant morbidity. Performers of these procedures should possess a comprehensive understanding of procedural indications and contraindications, and know how to recognize and manage complications that may arise. In this review, we highlight complications of percutaneous tracheostomy and describe strategies for their prevention and management, with a special focus on post-tracheostomy
    [Show full text]
  • Approach to Type 2 Respiratory Failure Changing Nature of NIV
    Approach to type 2 Respiratory Failure Changing Nature of NIV • Not longer just the traditional COPD patients • Increasingly – Obesity – Neuromuscular – Pneumonias • 3 fold increase in patients with Ph 7.25 and below Impact • Changing guidelines • Increased complexity • Increased number of patients • Decreased threshold for initiation • Lower capacity for ITU to help • Higher demands on nursing staff Resp Failure • Type 1 Failure of Oxygenation • Type 2 Failure of Ventilation • Hypoventilation • Po2 <8 • Pco2 >6 • PH low or bicarbonate high Ventilation • Adequate Ventilation – Breathe in deeply enough to hit a certain volume – Breathe out leaving a reasonable residual volume – Breath quick enough – Tidal volume and minute ventilation Response to demand • Increase depth of respiration • Use Reserve volume • Increase rate of breathing • General increase in minute ventilation • More gas exchange Failure to match demand • Hypoventilation • Multifactorial • Can't breathe to a high enough volume • Can't breath quick enough • Pco2 rises • Po2 falls Those at risk • COPD • Thoracic restriction • Central • Neuromuscular • Acute aspects – Over oxygenation – Pulmonary oedema Exhaustion • Complicates all forms of resp failure • Type one will become type two • Needs urgent action • Excessive demand • Unable to keep up • Resp muscle hypoxia Exhaustion • Muscles weaken • Depth of inspiration drops • Residual volume drops • Work to breath becomes harder • Spiral of exhaustion • Pco2 rises, Po2 drops Type 2 Respiratory Failure Management Identifying Those
    [Show full text]
  • Respiratory System Diseases & Disorders
    Respiratory System Diseases & Disorders HS1, DHO8, 7.10, pg 206 Objectives Discuss the diseases and disorders of the respiratory system and related signs, symptoms, and treatment methods Identify diseases and disorders that affect the respiratory system, including the following: asthma, pleurisy, bronchitis, pneumonia, COPD, rhinitis, emphysema, sinusitis, epistaxis, sleep apnea, influenza, TB, laryngitis, URI, and lung cancer Day 1 Respiratory Diseases and Disorders Upper Respiratory Tract The major passages and structures of the upper respiratory tract include the nose, nasal cavity, pharynx, and larynx. Asthma Bronchospasms with increase in mucous, and edema in mucosal lining Caused by sensitivity to allergen such as dust, pollen, animal, medications, or food Stress, overexertion, and infection can cause asthma attack Prevent asthma attacks by eliminating or desensitizing to allergens Symptoms: dyspnea, wheezing, coughing, and chest tightness Treatment: bronchodilators, anti-inflammatory med, epinephrine, and O2 therapy Test Your Knowledge Barbara has asthma and uses an inhaler when she starts to wheeze. The purpose of the device is to: a) Dissolve mucus b) Contract blood vessels c) Liquify secretions in the lungs d) Enlarge the bronchioles Correct answer: D Acute Bronchitis Chronic Bronchitis ◦ Caused by infection ◦ Caused by frequent attacks of ◦ S/S: productive cough, acute bronchitis or long-term exposure to smoking dyspnea, rales (bubbly breath sounds), chest ◦ Has chronic inflammation, pain, and fever damaged cilia, &
    [Show full text]