Halogens (E.G

Total Page:16

File Type:pdf, Size:1020Kb

Halogens (E.G Reactive halogen chemistry in volcanic plumes – an overview on our current understanding Nicole Bobrowski1,2 and Ulrich Platt1 , Peter Lübcke1 Jonas Gliss3, Santiago Arellano4, Leif Vogel1,8, Florian Dinger1, Bo Galle2, Gustavo Garzón5, Julian Peña7, Zoraida Chacon7, Mathiew Yalire6, Abel Minani6, Simon Warnach1 1 Institute of Environmental Physics (IUP), Heidelberg University, INF 229, D-69120 Heidelberg, Germany 2 Institut fuer Geowissenschaften, Universitaet Mainz, Germany 3 Norwegian Institute for Air Research (NILU), Kjeller, Norway 4 Department of Earth and Space Sciences, Chalmers University of Technology, Gothenburg, Sweden 5 FISQUIM Research Group, Laboratory Division, Colombian Geological Survey, Cali, Colombia 6 Observatoire Volcanologique de Goma , Goma, DR Congo 7 Colombian Geological Survey, Manizales, Colombia 8 now at Earth Observation Science Group, Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester, UK Motivation for volcanic halogen studies • Volcanic Activity Changes • Plume Chemistry, Atmospheric 2000 Chemistry, Radiation Budget,.. , • Environmental and Health Impact Robock Bobrowski et al., 2007Bobrowski Tropospheric chemistry could be influenced by volcanic halogen emission in various ways (Platt and Bobrowski 2015): 1) Bromine catalyses O3 destruction 2) Bromine inhibits the O3 production in the troposphere 3) RHS reactions interfere with the NOx reaction cycle. 4) RHS reactions enhance the OH/HO2 ratio 5) Hypohalous acids (HOBr, HOCl) contribute to the formation of sulphate in aqueous particles 6) RHS can induce secondary organic aerosol formation (shown in lab studies by Cai et al. 2008 for Cl atoms and Ofner et al. 2013 for Cl and Br) 7) Bromine can oxidize mercury, and therefore reduce its atmospheric lifetime …. There is reactive halogen chemistry in the volcanic plume: MAX-DOAS BrO and SO2 from Soufriere Hills Volcano on Montserrat, May 2002 N. Bobrowski, G. Hönninger, B. Galle, and U. Platt, (2003), Detection of bromine monoxide in a volcanic plume, Nature, 423, doi: 10.1038/nature01625 0 10 20 30 40 50 60 70 80 90 330 340 350 360 0 10 20 30 40 50 60 70 80 90 306 308 310 312 314 316 318 12.0 120 4 5 4 14.0 10 10 100 ] ] 1 2 2 4 10.0 5 SO BrO [%] Optical Density 9 12.0 9 80 5 3 8 2 8 8.0 60 [%] Optical Density 10.0 3 7 3 2 40 7 molec/cm molec/cm 17 14 6 8.0 6 1 6.0 6 20 5 6 5 0 0 6.0 4.0 4 2 7 4 2 -1 SCD[10 -20 2 4.0 7 3 2.0 -40 3 -2 SO * BrO SCD[10 BrO 1 8 1 9 2 -60 2.0 8 2 -3 10 9 0.0 10 1 -80 0.0 1 -4 0 10 20 30 40 50 60 70 80 90 306 308 310 312 314 316 318 0 10 20 30 40 50 60 70 80 90 330 340 350 360 elevation angle [°] elevation angle [°] BrO is nothing exceptional in a volcanic plume Klichuvskoi13 Eyjafjallajökull9,13 , Kizimen13 , Karymsky13 Kasatochi8,13 5 Mutnovsky Stromboli 12,18 Mt. Gorely 13,15 Redoubt Mt. Etna e.g.3,4,5,6 Sarychev13 1,5 Soufriere Hills Sakurajima2 Popocatépetl18 Pacaya11 Dallafilla, Nabro13 Masaya5 San Cristobal18 Nevado del Ruiz13 Galeras Tungurahua Ambrym7,13 Copahue 5 Villarica Nyamulagira Puyehue-Cordón Caulle17 Nyiragongo15 Mt Erebus10 >BrO detected on > 25 volcanoes -3 -6 BrO/SO2 between 10 – 10 Platt and Bobrowski, 2015 Nevado del Ruiz, Colombia BrO/SO2 time series Etna, Italy Bobrowski and Giuffrida, 2012 Giuffrida, and Bobrowski Lübcke et al., 2014 Global volcanic gas studies: NOVAC – the great opportunity Harestua Vulcano Eijafjallajökull, Stromboli Hekla Mount Etna Bárdarbunga Popocatépetl INSTRUMENT, NETWORKING, GLOBAL STUDIES Colima Santa Ana COORDINATOR: Chalmers U. (SE) Santiaguito San Miguel Heidelberg U. (DE) Fuego Institut Aerospatiale de Belgique (BE) Cambridge U. (UK) San Cristóbal IFM-GEOMAR (DE) Masaya MIT (US) Arenal Mayon Maryland U. (US) Turrialba Sierra Negra VOLCANO OBSERVATORIES Concepción Nyamuragira INGV-CT/PA (IT) Nevado del Ruiz Nyiragongo IPGP (FR) INETER (NI) Nevado del Huila Ubinas OVSICORI (CR) Galeras SGC (CO) Cotopaxi SNET (SV) Copahue OVG (CD) Tungurahua UNAM (MX) Sangay IGEPN (EC) Láscar INSIVUMEH (GT) IMO (IS) Llaima Piton de la Fournaise PHIVOLCS/EOS (PH) Villarica INGEMMET (PE) 80 stations in 31 volcanoes, 21 countries, 40 measurements per day 33 volcanoes, ~80 instruments, 21 volcanoes actively monitored today Global volcanic gas studies: NOVAC – the great opportunity BrO Harestua Vulcano Eijafjallajökull, Stromboli Hekla Mount Etna Bárdarbunga Popocatépetl INSTRUMENT, NETWORKING, GLOBAL STUDIES Colima Santa Ana COORDINATOR: Chalmers U. (SE) Santiaguito San Miguel Heidelberg U. (DE) Fuego Institut Aerospatiale de Belgique (BE) Cambridge U. (UK) San Cristóbal IFM-GEOMAR (DE) Masaya MIT (US) Arenal Mayon Maryland U. (US) Turrialba Sierra Negra VOLCANO OBSERVATORIES Concepción Nyamuragira INGV-CT/PA (IT) Nevado del Ruiz Nyiragongo IPGP (FR) INETER (NI) Nevado del Huila Ubinas OVSICORI (CR) Galeras SGC (CO) Cotopaxi SNET (SV) Copahue OVG (CD) Tungurahua UNAM (MX) Sangay IGEPN (EC) Láscar INSIVUMEH (GT) IMO (IS) Llaima Piton de la Fournaise PHIVOLCS/EOS (PH) Villarica INGEMMET (PE) 80 stations in 31 volcanoes, 21 countries, 40 measurements per day 33 volcanoes, ~80 instruments, 21 volcanoes actively monitored today Global volcanic gas studies: NOVAC – the great opportunity BrO NOVAC BrO Harestua Vulcano Eijafjallajökull, Stromboli Hekla Mount Etna Bárdarbunga Popocatépetl INSTRUMENT, NETWORKING, GLOBAL STUDIES Colima Santa Ana COORDINATOR: Chalmers U. (SE) Santiaguito San Miguel Heidelberg U. (DE) Fuego Institut Aerospatiale de Belgique (BE) Cambridge U. (UK) San Cristóbal IFM-GEOMAR (DE) Masaya MIT (US) Arenal Mayon Maryland U. (US) Turrialba Sierra Negra VOLCANO OBSERVATORIES Concepción Nyamuragira INGV-CT/PA (IT) Nevado del Ruiz Nyiragongo IPGP (FR) INETER (NI) Nevado del Huila Ubinas OVSICORI (CR) Galeras SGC (CO) Cotopaxi SNET (SV) Copahue OVG (CD) Tungurahua UNAM (MX) Sangay IGEPN (EC) Láscar INSIVUMEH (GT) IMO (IS) Llaima Piton de la Fournaise PHIVOLCS/EOS (PH) Villarica INGEMMET (PE) 80 stations in 31 volcanoes, 21 countries, 40 measurements per day 33 volcanoes, ~80 instruments, 21 volcanoes actively monitored today BrO and SO2 at different distances down- wind from the crater of Etna Bobrowski et al., 2007 Oppenheimer et al., 2006 BrO and SO2 at different distances down- wind from the crater of Etna Evolution of a passive tracer (red) and a fictious reactive component (blue) with time in the volcanic plume. By taking a ratio, atmospherheric dilution effects and temporal variations of emitted amounts are elimitated Bobrowski et al., 2007 Oppenheimer et al., 2006 BrO/SO2 ratio dependence of the distance from the source 5 Etna 2004 Etna 2005 4 -4 3 2 BrO/SO2 10 BrO/SO2 1 0 Adapted from Adaptedfrom 2005 Bobrowski etal., 0 5 10 15 20 distance km Vogel, 2010 General agreement with model data possible SO2 and BrO- spatial distribution in a volcanic plume Louban et al., 2009 What do we know about BrO in volcanic plumes? BrO is a secondary gas a bit of attention is needed when using it as volcanic activity tracer Bromine explosion HOBr(gas)→ HOBr(aq) - + HBr(gas)→ Br (aq) + H (aq) − + HOBr(aq)+ Br (aq)+ H (aq)→Br2(gas)+H2O Br2 + hν→2Br Br + O →BrO + O Bobrowski et al. 2007 3 2 BrO + BrO→2Br + O2 e.g. Bobrowski et al. 2007 Glasow et al. 2009 BrO + BrO→Br2 + O2 BrO + HO2→HOBr + O2 Is this everything ? Ozone depletion Etna 2012 Smallest O3 mixing ratio measured 40 ppb Surl, et al., 2014 Models predict complete ozone depletion in plume [ Von Glasow ] Nyiragongo and Etna Nyirag ongo Nyiragongo 2004/2007) 3 Etna 9 May 2005 Etna 2004 Etna -4 2 -- Nyiragongo 10 2 BrO/SO 1 0 0 20 40 60 time [min] Bobrowski et al., 2015 Variation in initial plume composition lead to significant difference in BrO formation in an ageing plume, shown in measurements and model Simultaneous Br/S and BrO/SO2 data: 60 Masaya 50 Nyiragongo Measurements Stromboli Mt Etna 40 Gorely 30 20 BrO fraction[%] BrO Simultaneous measurements of Br/S 10 and BrO/SO2 ratios at 5 different volcanoes 0 0.0 2.0 4.0 6.0 8.0 10.0 molar Br/S 10-4 Model Recent Model studies of T. Roberts et al., 2014 CCVG - Chile Further Gases: Etna 5th August 2004 – OClO detection 4,0 2,0 ] 2 ] 2 3,0 1,5 molecules/cm 14 2,0 1,0 molecules/cm 10 [ 18 , [10 , 2 OClO , 1,0 0,5 SO BrO SCD SCD 0,0 0,0 -1,0 -0,5 0 20 40 60 80 100 120 viewing angle Bobrowski et al., 2007 Chlorine chemistry OClO formation in the plume of Mt Etna Gliss et al., 2014 General et al., 2014 scanning Airplane measurements DOAS Chlorine Chemistry Formation of OClO: BrO + ClO OClO + Br, k = 610-12cm3 molecule-1 s-1 other products OClO Destruction: OClO + h ClO + O Assuming a photo-stationary state: Sept. 11, 2012, 11:30 UTC d OClO BrO ClO k OClO J 0 11 Gliss et al., 2014 dt OClO J1 S OClO J1 ClO BrO k S BrO k 1 1 From ClO we can calculate also the amount of Cl atoms -> Reduction of CH4 lifetime 2 orders of magnitude – however even assuming only 1 pbb O3 would lead to a CH4 lifetime of the order of half a day (CH4 mean lifetime in the atmosphere 10 years) Summary • Reactive halogens (e.g. BrO, OClO) abundant in volcanic plumes • Measured mixing ratios can be roughly explained by known chemistry, however in detail model and measurements are in disagreement • Influence on tropospheric chemistry poorly studied • How much of emitted bromine is transformed into BrO • Is the transformation factor constant ? (how to measure total bromine?) • Sensitivity to environmental and volcanic factors ? • What about iodine? • … Merci ! Danke – Grazie - Gracias - Aksanti – Thanks Questions??? Mercury in volcanic plumes Major emitted species GEM (Hg0) – chemical inert, low water solubility Bagnato,et al., 2011 Adapted from Pacyna et al., 2006 An advantage of ratios: radiative transfer can be a smaller issue => The ratio of two gases is less influenced by radiative transfer than the absolute column density Lübcke, 2014 Preliminary results – Copahue, Argentina 5,0 R2=0.54 BrO/SO - 1.6x106 4,0 2 2 3,0 2,0 molecules/cm 13 1,0 BrO 10 BrO 0,0 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 SO 1018 molecules/cm2 2 Global volcanic gas studies: NOVAC – the great opportunity BrO NOVAC BrO Harestua Vulcano Eijafjallajökull, Stromboli Hekla Mount Etna Bárdarbunga Popocatépetl INSTRUMENT, NETWORKING, GLOBAL STUDIES Colima Santa Ana COORDINATOR: Chalmers U.
Recommended publications
  • Muon Tomography Sites for Colombian Volcanoes
    Muon Tomography sites for Colombian volcanoes A. Vesga-Ramírez Centro Internacional para Estudios de la Tierra, Comisión Nacional de Energía Atómica Buenos Aires-Argentina. D. Sierra-Porta1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Centro de Modelado Científico, Universidad del Zulia, Maracaibo-Venezuela, J. Peña-Rodríguez, J.D. Sanabria-Gómez, M. Valencia-Otero Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia. C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. , M. Suárez-Durán Departamento de Física y Geología, Universidad de Pamplona, Pamplona-Colombia H. Asorey Laboratorio Detección de Partículas y Radiación, Instituto Balseiro Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Bariloche-Argentina; Universidad Nacional de Río Negro, 8400, Bariloche-Argentina and Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. L. A. Núñez Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Departamento de Física, Universidad de Los Andes, Mérida-Venezuela. December 30, 2019 arXiv:1705.09884v2 [physics.geo-ph] 27 Dec 2019 1Corresponding author Abstract By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo- magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is mod- eled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production.
    [Show full text]
  • Magmatic Evolution of the Nevado Del Ruiz Volcano, Central Cordillera, Colombia Minera1 Chemistry and Geochemistry
    Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia Minera1 chemistry and geochemistry N. VATIN-PÉRIGNON “‘, P. GOEMANS “‘, R.A. OLIVER ‘*’ L. BRIQUEU 13),J.C. THOURET 14J,R. SALINAS E. 151,A. MURCIA L. ” Abstract : The Nevado del RU~‘, located 120 km west of Bogota. is one of the currently active andesitic volcanoes that lies north of the Central Cordillera of Colombia at the intersection of two dominant fault systems originating in the Palaeozoïc basement. The pre-volcanic basement is formed by Palaeozoïc gneisses intruded by pre-Cretaceous and Tertiarygranitic batholiths. They are covered by lavas and volcaniclastic rocks from an eroded volcanic chain dissected during the late Pliocene. The geologic history of the Nevado del Ruiz records two periods of building of the compound volcano. The stratigraphie relations and the K-Ar dating indicate that effusive and explosive volcanism began approximately 1 Ma ago with eruption of differentiated andesitic lava andpyroclastic flows and andesitic domes along a regional structural trend. Cataclysmic eruptions opened the second phase of activity. The Upper sequences consist of block-lavas and lava domes ranging from two pyroxene-andesites to rhyodacites. Holocene to recent volcanic eruptions, controled by the intense tectonic activity at the intersection of the Palestina fawlt with the regional fault system, are similar in eruptive style and magma composition to eruptions of the earlier stages of building of the volcano. The youngest volcanic activity is marked by lateral phreatomagmatic eruptions, voluminous debris avalanches. ash flow tuffs and pumice falls related to catastrophic collapse during the historic eruptions including the disastrous eruption of 1985.
    [Show full text]
  • Review and Reassessment of Hazards Owing to Volcano–Glacier Interactions in Colombia
    128 Annals of Glaciology 45 2007 Review and reassessment of hazards owing to volcano–glacier interactions in Colombia Christian HUGGEL,1 Jorge Luis CEBALLOS,2 Bernardo PULGARI´N,3 Jair RAMI´REZ,3 Jean-Claude THOURET4 1Glaciology and Geomorphodynamics Group, Department of Geography, University of Zurich, 8057 Zurich, Switzerland E-mail: [email protected] 2Instituto de Meteorologı´a, Hidrologı´a y Estudios Ambientales, Bogota´, Colombia 3Instituto Colombiano de Geologı´a y Minerı´a, Bogota´, Colombia 4Laboratoire Magmas et Volcans UMR 6524 CNRS, Universite´ Blaise-Pascal, Clermont-Ferrand, France ABSTRACT. The Cordillera Central in Colombia hosts four important glacier-clad volcanoes, namely Nevado del Ruiz, Nevado de Santa Isabel, Nevado del Tolima and Nevado del Huila. Public and scientific attention has been focused on volcano–glacier hazards in Colombia and worldwide by the 1985 Nevado del Ruiz/Armero catastrophe, the world’s largest volcano–glacier disaster. Important volcanological and glaciological studies were undertaken after 1985. However, recent decades have brought strong changes in ice mass extent, volume and structure as a result of atmospheric warming. Population has grown and with it the sizes of numerous communities located around the volcanoes. This study reviews and reassesses the current conditions of and changes in the glaciers, the interaction processes between ice and volcanic activity and the resulting hazards. Results show a considerable hazard potential from Nevados del Ruiz, Tolima and Huila. Explosive activity within environments of snow and ice as well as non-eruption-related mass movements induced by unstable slopes, or steep and fractured glaciers, can produce avalanches that are likely to be transformed into highly mobile debris flows.
    [Show full text]
  • Eruptive Activity of Planchón-Peteroa Volcano for Period 2010-2011, Southern Andean Volcanic Zone, Chile
    Andean Geology 43 (1): 20-46. January, 2016 Andean Geology doi: 10.5027/andgeoV43n1-a02 www.andeangeology.cl Eruptive activity of Planchón-Peteroa volcano for period 2010-2011, Southern Andean Volcanic Zone, Chile *Felipe Aguilera1, 2, Óscar Benavente3, Francisco Gutiérrez3, Jorge Romero4, Ornella Saltori5, Rodrigo González6, Mariano Agusto7, Alberto Caselli8, Marcela Pizarro5 1 Servicio Nacional de Geología y Minería, Avda. Santa María 0104, Santiago, Chile. 2 Present address: Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 3 Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected] 4 Centro de Investigación y Difusión de Volcanes de Chile, Proyecto Archivo Nacional de Volcanes, Santiago, Chile. [email protected] 5 Programa de Doctorado en Ciencias mención Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected] 6 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 7 Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428EHA, Buenos Aires, Argentina. [email protected] 8 Laboratorio de Estudio y Seguimiento de Volcanes Activos (LESVA), Universidad Nacional de Río Negro, Roca 1242, (8332) Roca, Argentina. [email protected] * Corresponding author: [email protected] ABSTRACT. Planchón-Peteroa volcano started a renewed eruptive period between January 2010 and July 2011. This eruptive period was characterized by the occurrence of 4 explosive eruptive phases, dominated by low-intensity phreatic activity, which produced almost permanent gas/steam columns (200-800 m height over the active crater).
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • A Structural and Geochronological Study of Tromen Volcano
    Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuqu`enprovince, Argentina) Olivier Galland, Erwan Hallot, Peter Cobbold, Gilles Ruffet, Jean De Bremond d'Ars To cite this version: Olivier Galland, Erwan Hallot, Peter Cobbold, Gilles Ruffet, Jean De Bremond d'Ars. Vol- canism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuqu`enprovince, Argentina). Tectonics, American Geophysical Union (AGU), 2007, 26 (4), pp.TC4010. <10.1029/2006TC002011>. <insu-00180007> HAL Id: insu-00180007 https://hal-insu.archives-ouvertes.fr/insu-00180007 Submitted on 29 Jun 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. TECTONICS, VOL. 26, TC4010, doi:10.1029/2006TC002011, 2007 Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuque´n province, Argentina) Olivier Galland,1,2 Erwan Hallot,1 Peter R. Cobbold,1 Gilles Ruffet,1 and Jean de Bremond d’Ars1 Received 28 June 2006; revised 6 February 2007; accepted 16 March 2007; published 2 August 2007. [1] We document evidence for growth of an active [3] In contrast, a context of crustal thickening, where the volcano in a compressional Andean setting.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions.
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • The Central Cordillera of Colombia Evelio Echevarria 49
    DE TAL EMERGENCIES I THE MO NTAINS Scarr, J. 1966. FOllr lIIiles bigb. Gollancz. Sreele, P. R. 1971. Tbe Lancet, 11, 33. Sreele, P. R. 1972. Doctor 011 Hverest. Ifodder and Sroughron. Wall, D. 1965. Hondoy. Murray. The Central Cordillera of Colombia Evelio Echevarria Perhaps the only counterpart that could be found in our world for the ndes of Central Colombia is the high volcanoes of Africa. Judging from pictures, Kilimanjaro has a number of duplications in Colombian peaks like Ruiz and Tolima, and the Virunga, in the Purace group. The wildlife habitat of Mount Elgon is imitated by some Colombian volcanoes around Tuqucrres. The strik­ ing plants of E Africa, like groundsels and lobelias, have also close equivalents in these parts of the Andes. And to round out the similarities, it is not unusual in the Colombian highlands to meet at times a hillman with undoubted e­ groid features - the legacy of the slave trade, handed down from colonial times. The Central Cordillera of Colombia is born in the heart of the country and heads along the continental divide of S merica in a SSW direction, until reach­ ing the international border with Ecuador. It is not a continuous range but rather it is composed of several isolated high massifs, separated by wide para­ mos, or rolling moorland, rising above deep tropical valleys that drain E and W. In spite of much recent aerophotogrammerry undertaken in the last few years by the Colombian air force, the range still lacks an accurate survey. De­ tail on existing maps is good for the inhabited country, but poor for the high­ er areas.
    [Show full text]
  • Dirección De Preparación Cepig
    DIRECCIÓN DE PREPARACIÓN CEPIG INFORME DE POBLACIÓN EXPUESTA ANTE CAÍDA DE CENIZAS Y GASES, PRODUCTO DE LA ACTIVIDAD DEL VOLCÁN UBINAS PARA ADOPTAR MEDIDAS DE PREPARACIÓN Fuente: La República ABRIL, 2015 1 INSTITUTO NACIONAL DE DEFENSA CIVIL (INDECI) CEPIG Informe de población expuesta ante caída de cenizas y gases, producto de la actividad del volcán Ubinas para adoptar medidas de preparación. Instituto Nacional de Defensa Civil. Lima: INDECI. Dirección de Preparación, 2015. Calle Dr. Ricardo Angulo Ramírez Nº 694 Urb. Corpac, San Isidro Lima-Perú, San Isidro, Lima Perú. Teléfono: (511) 2243600 Sitio web: www.indeci.gob.pe Gral. E.P (r) Oscar Iparraguirre Basauri Director de Preparación del INDECI Ing. Juber Ruiz Pahuacho Coordinador del CEPIG - INDECI Equipo Técnico CEPIG: Lic. Silvia Passuni Pineda Lic. Beneff Zuñiga Cruz Colaboradores: Pierre Ancajima Estudiante de Ing. Geológica 2 I. JUSTIFICACIÓN En el territorio nacional existen alrededor de 400 volcanes, la mayoría de ellos no presentan actividad. Los volcanes activos se encuentran hacia el sur del país en las regiones de Arequipa, Moquegua y Tacna, en parte de la zona volcánica de los Andes (ZVA), estos son: Coropuna, Valle de Andagua, Hualca Hualca, Sabancaya, Ampato, Misti en la Región Arequipa; Ubinas, Ticsani y Huaynaputina en la región Moquegua, y el Yucamani y Casiri en la región Tacna. El Volcán Ubinas es considerado el volcán más activo que tiene el Perú. Desde el año 1550, se han registrado 24 erupciones aprox. (Rivera, 2010). Estos eventos se presentan como emisiones intensas de gases y ceniza precedidos, en algunas oportunidades, de fuertes explosiones. Los registros históricos señalan que el Volcán Ubinas ha presentado un Índice máximo de Explosividad Volcánica (IEV) (Newhall & Self, 1982) de 3, considerado como moderado a grande.
    [Show full text]
  • "-R- .4019 ~ -48.21 Ll .~62J 16.0:;2 1241 .U 8.30 :;
    medición, presentan una tendencia ascendente y son del orden de 10 Y 16 microradianes, valores que son bajos y pueden estar influenciados por factores como la sensibilidad de los equipos y las condiciones atmosféricas que siempre están acompañadas de vientos fuertes. En 1999, se instaló en el flanco N del volcán Puracé, un inclinómetro electrónico 'Guañiarita", a una distancia horizontal de 1.5 km del cráter a:tivo. La estación GUQ/liarita ha tenido 2 periodos de funcionamiento, el primero entre febrero de 1999 y enero de 2000, y el segundo entre junio de 2000 y enero de 2002. En el primer periodo se observó un comportamiento muy estable en las componentes radial y tangencial con diferencias de 8 microradianes, cambios que se relacionaron con el proceso de estabilización del equipo. En el segundo periodo se registró un comportamiento variable, algunos incrementos en los niveles de defonnación coincidieron con variaciones en temperatura, sin embargo a partir de febrero de 2001, la tendencia de la componente tangencial fue ascendente y la radial, descendente, acumulando deformaciones del orden de 16 microradianes (Figura 7). Las variaciones de deformación reportadas por las estaciones de defonnación en el volcán Puracé, permiten establecer niveles de deformación inferiores a 20 microradianes, que al ser comparados con las deformaciones presentadas por volcanes activos como el Nevado del Ruiz y Galeras se consideran como bajas. 3136 23.96 H5.94 Componente Radi.1 - e 7.92 ----------------..... .0.03 ii """""'_,_'''''' ~-'-'' ''~., i .611 Componente hngef'l(:i81 - . .16,13 rl'('~'" r -- t<'''A ~ 1 'i\ I ,r-¡'J",_''''''''''''A'''.'''>''- '-'' " ~ .241~ ~, ~.,--.
    [Show full text]