Paleozoic Corals of Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Paleozoic Corals of Alaska Paleozoic Corals of Alaska Geologic and Paleogeographic Setting of Paleozoic Corals in Alaska Ordovician, Silurian, and Devonian Corals of Alaska Carboniferous Corals of Alaska A Preliminary Report Stratigraphic Distribution of Permian Corals in Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 823-A, B, C, D Paleozoic Corals of Alaska Geologic and Paleogeographic Setting of Paleozoic Corals in Alaska By MICHAEL CHURKIN, JR. Ordovician, Silurian, and Devonian Corals of Alaska By WILLIAM A. OLIVER, JR., CHARLES W. MERRIAM, and MICHAEL CHURKIN, JR. Carboniferous Corals of Alaska A Preliminary Report By AUGUSTUS K. ARMSTRONG Stratigraphic Distribution of Permian Corals in Alaska By CHARLES L. ROWETT GEOLOGICAL SURVEY PROFESSIONAL PAPER 823-A, B, C, D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1975 UNITED STATES DEPARTMENT OF THE INTERIOR STANLEY K. HATHAWAY, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Main entry under title: Paleozoic corals of Alaska. (Geological Survey professional paper ; 823) CONTENTS: Churkin, M. Jr. Geologic and paleogeographic setting of Paleozoic corals in Alaska. Oliver, W. A. Jr., Merriam, C. W. and Churkin, M., Jr. Ordovician, Silurian, and Devonian corals of Alaska, [etc.] Includes bibliographies and indexes. Supt. of Docs, no.: I 19.16:823-A,B,C,D 1. Corals, Fossil. 2. Paleontology Paleozoic. 3. Paleiontology Alaska. I. Churkin, Michael, 1932- II. Series: United States. Geological Survey. Professional paper ; 823. QE778.P34 563'.6'09798 75-619102 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02666-0 CONTENTS [The letters in parentheses preceding the titles are those used to designate the chapters] Page (A) Geologic and paleogeographic setting of Paleozoic corals in Alaska, by Michael Churkin, Jr. _______________________________ 1 (B) Ordovician, Silurian, and Devonian corals of Alaska, by William A. Oliver, Jr., Charles W. Merriam, and Michael Churkin, Jr. _____ 13 (C) Carboniferous corals of Alaska, a preliminary report, by Augustus K. Armstrong __________________________ 45 (D) Stratigraphic distribution of Permian corals in Alaska, by Charles L. Rowett ______________________________________ 59 III Geologic and Paleogeographic Setting of Paleozoic Corals in Alaska By MICHAEL CHURKIN, JR. PALEOZOIC CORALS OF ALASKA GEOLOGICAL SURVEY PROFESSIONAL PAPER 823-A Corals in geosynclinal and shelf strata of Alaska help correlate adjacent parts of Canada and Northeast U.S.S.R. and test paleogeographic reconstructions of the Arctic CONTENTS Page Abstract _______________________________, ___________ 1 History of Alaskan coral studies ___________________________ 1 Eegional geologic setting _________________________ 1 Eeef and reef-related deposits in volcanic rock-graywacke geosynclinal facies 3 Coral-rich deposits in carbonate-clastic rock shelf facies __ 6 Conclusions and future work ______________________________ 8 Eeferences cited ____________________________________ 10 ILLUSTRATIONS Page FIGURE 1. Map showing major tectonic features of the Arctic _ 2 2. Map showing early Paleozoic paleogeography _ 4 3-5. Columnar sections showing preliminary correlation of the Paleo­ zoic rocks: 3. Around the northern Pacific basin 5 4. Across the central parts of northeastern U.S.S.E. and Alaska ______________________ 7 5. Around the Canada basin _____________ 8 6. Map showing late Paleozoic paleogeography _________-__ 9 III PALEOZOIC CORALS OF ALASKA GEOLOGIC AND PALEOGEOGRAPHIC SETTING OF PALEOZOIC CORALS IN ALASKA By MICHAEL CHURKIN, JR. ABSTRACT the Devonian corals of east-central Alaska were pub­ Ordovician through Permian coral faunas in Alaska oc­ lished (Churkiri and Brabb, 1967). Since about 1950, cur in structurally complex limestone deposits in most of the geological provinces of the State. Coral-rich strata are a small group of specialists including A. K. Arm­ found in volcanic rock-graywacke geosynclinal facies or in strong, C. W. Merriam, W. A. Oliver, Jr., and carbonate-clastic rocks of the shelf facies. In the early Charles Rowett have become interested in Alaska's Paleozoic the southern and northern margins of Alaska Paleozoic corals. In the last decade, the first mono­ were oceanic areas with geosynclines in which coral- and graphic descriptions of Paleozoic corals of Alaska stromatoporoid-rich limestone closely associated with volcanic rocks developed in reef and reef-related shallow-water were published (Rowett, 1969; Armstrong, 1970a, deposits around volcanic islands. Separating the two b). oceanic areas was a narrow continental shelf area that re­ This volume of professional-paper chapters, that ceived mainly carbonate sediments. Reef or reef-breccia de­ summarizes our knowledge of Alaskan Paleozoic posits are distributed around the margins of this shelf. In the Late Devonian the geosynclinal sediments in corals, is an outgrowth of similar but more general­ northern Alaska were deformed into a foldbelt and up­ ized papers prepared by us for the International lifted. During the Carboniferous and Permian, successor- Coral Symposium held in Novosibirsk, U.S.S.R., in basin deposits developed on a broad shelf that covered the August 1971. Besides summarizing the results of all roots of the middle Paleozoic foldbelt. Corals in these shelf the coral studies to date, much of the older work has deposits of arctic Alaska form biostromal carbonate rocks or occur as abraded fossils in clastic nearshore sedimentary been revised and updated to modern standards of rocks. In southern parts of Alaska during the late Paleozoic, taxonomy and classification. Particular emphasis is reef and reef-related deposits developed around volcanic on the distribution and stratigraphic occurrence of centers as in the early Paleozoic. the coral faunas. Preliminary correlations of coral- Preliminary correlations of coral-bearing strata between Alaska and neighboring parts of Canada and Northeast bearing strata with other formations, many contain­ U.S.S.R. together with resulting paleogeographic recon­ ing other types of fossils, are shown in a series of structions of the Arctic are offered as working hypotheses correlation diagrams adapted from Churkin (1970, to be tested by future paleontological studies. 1973). HISTORY OF ALASKAN CORAL STUDIES REGIONAL GEOLOGIC SETTING Corals of Paleozoic age have been collected in Paleozoic coral faunas of Alaska occur in struc­ Alaska since the earliest days of geological explora­ turally complex limestone deposits of Ordovician tion, but until recently, corals in shelly faunas were through Permian age that are scattered widely identified only in the broadest terms and then only to through most of the geologic provinces of the State. round out the lists of invertebrates. The pioneers in Paleozoic rocks in the Alaska Range and farther Alaskan paleontology who provided most of the fos­ south are geosynclinal deposits that form the north­ sil identification for the first geological publications ern end of the Cordilleran foldbelt that rims the are G. H. Girty, E. M. Kindle, Edwin Kirk, and eastern Pacific and continues westward to connect Charles Schuchert (Dutro, 1956). with similar rocks in the Koryak Mountains of The first corals described from Alaska were Northeast U.S.S.R. (fig. 1, loc. 2). Northern Alaska Devonian species from the Porcupine River (Meek, the northeastern Brooks Range (fig. 1, loc. 10) 1867). Much later, a few Mississippian lithostro- and the Arctic Coastal Plain (fig. 1, loc. 12) is tionid corals were described by Hayasaka (1936), a underlain by early Paleozoic geosynclinal rocks that new genus Sciophyllum was described by Harker discontinuously rim the margin of the Canada basin and McLaren (1950), and photographs of some of of the Arctic Ocean and probably connect with simi- PALEOZOIC CORALS OF ALASKA 70°N. 70°N. 180° EXPLANATION FOLDBELTS PLATFORMS Paleozoic and Precambrian Location of section shown Middle Paleozoic in figures 3, 4, and 5 FIGURE 1. Major tectonic features of the Arctic. GEOLOGIC AND PALEOGEOGRAPHIC SETTING lar geosynclinal deposits in the Innuitian foldbelt of REEF AND REEF-RELATED DEPOSITS IN the Canadian Arctic Islands (fig. 1, loc. 8). East- VOLCANIC ROCK-GRAYWACKE central Alaska (fig. 1, loc. 3) and Seward Peninsula GEOSYNCLINAL FACIES (fig. 1, loc. 4) have thinner, mainly carbonate rock In the Cordilleran geosyncline of southern Alaska, sections that represent western extensions of the deposition of graywacke, conglomerate, and argil­ Yukon shelf that separates the circumarctic geosyn­ laceous rocks interbedded with pillow basalts, brec­ clinal trend from the circumpacific geosynclinal cias, and tuffs prevailed throughout most of the trend (Churkin, 1969). Paleozoic (fig. 2), Massive limestones composed In the Late Devonian and Early Mississippian the mainly of shelly fossils are interbedded with the circumarctic geosyncline was deformed, intruded by volcanic rocks. Very rapid facies changes reflect rug­ granite, and uplifted to produce wedges of coarse ged bottom relief, largely controlled by volcanic ac­ clastic sediments that spread southward onto ad­ tivity. Many of the coral- and stromatoporoid-rich joining areas of Alaska, Canada, and Northeast limestones closely associated with volcanic rocks U.S.S.R. (Churkin, 1969). During the Mississippian indicate reef and shallow-water shell bank deposits through the Triassic, successor basins (Brooks and around volcanic islands (Eberlein and Churkin, Sverdrup
Recommended publications
  • Geology by Turgut H. Cetinoy
    The geology of the eastern end of the Canelo Hills, Santa Cruz County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Cetinay, Huseyin Turgut, 1932- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 20:33:25 Link to Item http://hdl.handle.net/10150/554041 THE GEOLOGY OF THE EASTERN END OF THE CANELO HILLS, SANTA CRUZ COUNTY, ARIZONA by Huseyin Turgut Cetinay A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 6 ? STATEMENT BY AUTHOR This thesis has been submitted in partial fulfilment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable with out special permission, provided that accurate acknowledg­ ment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the inter­ ests of scholarship. In all other instances, however, per­ mission must be obtained from the author.
    [Show full text]
  • A Trip to Alaska's Brooks Range Is the Trip of a Lifetime. You’Ll See Herds of Caribou Migrating Like They Have for Thousands of Years
    Hunt ID: AK-GBearMooseCaribou-Rifle-Kotzebue-AKO-Wayne A trip to Alaska's Brooks Range is the trip of a lifetime. You’ll see herds of caribou migrating like they have for thousands of years. If you feel comfortable you can take an outfitted semi-guided Caribou Hunt for the largest member of the caribou family, the barren ground caribou. Grizzly bear are often seen splashing after salmon in the river or foraging for berries on the tundra. Moose and other wildlife, including black bears, wolverine, and wolves are seen not far from camp often. He has been hunting in this area for over 40 years and guiding for over 20 years. His son’s adult sons assist with running the camp and guiding. They have both grown up hunting in the area and pride themselves with providing you a hunt of a life time. The enormous size of the big game animals has much to do with their location so far north they must have hung bulk to withstand the long cold winter. The camp is located above the Arctic Circle, in the Squirrel River Valley of the western Brooks Range. Clients fly into the Inupiaq village of Kotzebue where they board small bush planes for the 80 mile trip to the hunting area. Base camps consist of comfortable free standing Hansen Weatherport tents with cots and heaters, including a shower tent. The main tent is a cooking area and gathering point for discussing the days hunt. Cooking is provided by the staff using a modern 4 burner gas stove with oven.
    [Show full text]
  • G. D. Eberlein, Michael Churkin, Jr., Claire Carter, H. C. Berg, and A. T. Ovenshine
    DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GEOLOGY OF THE CRAIG QUADRANGLE, ALASKA By G. D. Eberlein, Michael Churkin, Jr., Claire Carter, H. C. Berg, and A. T. Ovenshine Open-File Report 83-91 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and strati graphic nomenclature Menlo Park, California 1983 Geology of the Craig Quadrangle, Alaska By G. D. Eberlein, Michael Churkin, Jr., Claire Carter, H. C. Berg, and A. T. Ovenshine Introduction This report consists of the following: 1) Geologic map (1:250,000) (Fig. 1); includes Figs. 2-4, index maps 2) Description of map units 3) Map showing key fossil and geochronology localities (Fig. 5) 4) Table listing key fossil collections 5) Correlation diagram showing Silurian and Lower Devonian facies changes in the northwestern part of the quadrangle (Fig. 6) 6) Sequence of Paleozoic restored cross sections within the Alexander terrane showing a history of upward shoaling volcanic-arc activity (Fig. 7). The Craig quadrangle contains parts of three northwest-trending tectonostratigraphic terranes (Berg and others, 1972, 1978). From southwest to northeast they are the Alexander terrane, the Gravina-Nutzotin belt, and the Taku terrane. The Alexander terrane of Paleozoic sedimentary and volcanic rocks, and Paleozoic and Mesozoic plutonic rocks, underlies the Prince of Wales Island region southwest of Clarence Strait. Supracrustal rocks of the Alexander terrane range in age from Early Ordovician into the Pennsylvanian, are unmetamorphosed and richly fossiliferous, and aopear to stratigraphically overlie pre-Middle Ordovician metamorphic rocks of the Wales Group (Eberlein and Churkin, 1970).
    [Show full text]
  • Silurian Rugose Corals of the Central and Southwest Great Basin
    Silurian Rugose Corals of the Central and Southwest Great Basin GEOLOGICAL SURVEY PROFESSIONAL PAPER 777 Silurian Rugose Corals of the Central and Southwest Great Basin By CHARLES W. MERRIAM GEOLOGICAL SURVEY PROFESSIONAL PAPER 777 A stratigraphic-paleontologic investigation of rugose corals as aids in age detern2ination and correlation of Silurian rocks of the Great Basin with those of other regions UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600082 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price $2.15 (paper cover) Stock Number 2401-00363 CONTENTS Page Page Abstract--------------------------------------------------------------------------- 1 Systematic and descriptive palaeontology-Continued Introduction -------------------------------------------------------------------- 1 Family Streptelasmatidae-Continued Purpose and scope of investigation-------------------------------­ 1 Dalmanophyllum ------------------------------------------------- 32 History of investigation ----------------------------------------------­ 1 Family Stauriidae ------------------------------------------------------- 32 Methods of study-------------------------------------------------------­ 2 Cyathoph y llo ides-------------------------------------------------- 32 Acknowledgments------------------------------------------------------- 4 Palaeophyllum
    [Show full text]
  • New Late Carboniferous Heritschioidinae (Rugosa) from the Kuiu Island Area and Brooks Range, Alaska
    Geologica Acta, Vol.12, Nº 1, March 2014, 29-52 DOI: 10.1344/105.000002074 New Late Carboniferous Heritschioidinae (Rugosa) from the Kuiu Island area and Brooks Range, Alaska J. FEDOROWSKI1 C.H. STEVENS2 E. KATVALA3 1Institute of Geology, Adam Mickiewicz University Makow Polnych 16, PL-61-606, Poznan, Poland. E-mail: [email protected] 2Department of Geology, San Jose Unversity San Jose, California 95192, USA. E-mail: [email protected] 3Department of Geology, University of Calgary Calgary, Canada. E-mail: [email protected] ABS TRACT Three new species of the genus Heritschioides, i.e., H. alaskensis sp. nov., H. kuiuensis sp. nov., and H. splendidus sp. nov., and Kekuphyllum sandoense gen. et sp. nov. from the northeastern Kuiu Island area and nearby islets, part of Alexander terrane in southeastern Alaska, and Heritschioides separatus sp. nov. from the Brooks Range, Alaska, are described and illustrated. The three new fasciculate colonial coral species from the Kuiu Island area, collected from the Moscovian Saginaw Bay Formation, are phylogenetically related to those of probable Bashkirian age in the Brooks Range in northern Alaska as shown by the presence of morphologically similar species of Heritschioides. These corals from both areas also are related to one species in the Quesnel terrane in western Canada. Kekuphyllum sandoense from the Saginaw Bay Formation of the Kuiu Island area is the only cerioid-aphroid species within the Subfamily Heritschioidinae described so far. The complete early ontogeny of a protocorallite is for the first time described here on a basis of H. kuiuensis sp. nov. and compared to the hystero-ontogeny in order to show similarities and differences in those processes.
    [Show full text]
  • Michigan Geologic Time Line List Michigan Rocks: Student No
    Michigan Geologic Time Line List Michigan Rocks: www.educ.msu.edu/michiganrocks Student No. Event Age Geologic Time Name Division 1. Modern Humans .01 (10,000 Holocene years) 2. Ice Age Begins; Glaciers 2 million years Pleistocene cover all of Michigan; Great ago Lakes carved out by Glaciers 3. First Humans 4.5 million Pliocene years ago 4. First Horses 40 million years Eocene ago 5. Last Dinosaurs 65 million years Cretaceous/Tertiary ago Boundary 6. First Flowering Plants 100 million Cretaceous years ago 7. First Birds 150 million Jurassic years ago 8. Redbeds (reddish 145 million Jurassic sandstones and shales) years ago deposited at the end of the Michigan Basin 9. First Mammals 215 million Triassic years ago 10. First Conifer Trees 230 million Triassic years ago 11. First Dinosaurs 240 million Triassic years ago 12. Last Trilobites 250 million Permian/Triassic years ago Boundary 13. Swampland in Lower 290 million Pennsylvanian Peninsula and eastern years ago Upper Peninsula, Michigan Basin. Peat deposits. Also oil and gas deposits 14. First Reptiles 300 million Pennsylvanian years ago 15. Gypsum and Limestone 320 million Mississippian deposited in shallow seas in years ago Lower Peninsula and eastern Upper Peninsula – Michigan Basin 16. First Sharks 350 million Devonian years ago Student No. Event Age Geologic Name Time Division 17. Hexagonaria coral deposits 360 million years Devonian (becomes MI state fossil aka ago Petosky Stone) in Michigan Basin 18. First Amphibians 370 million years Devonian ago 19. First Insects 400 million years Devonian ago 20. First Land Plants 420 million years Ordovician ago 21.
    [Show full text]
  • Archaeological Investigations at the Atigun Site, Central Brooks Range, Alaska
    ARCHAEOLOGICAL INVESTIGATIONS AT THE ATIGUN SITE, CENTRAL BROOKS RANGE, ALASKA IAN ROBERT WILSON B.A. University of British Columbia 1968 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in the Department of Archaeology @ IAN ROBERT WILSON, 1977 SIMON FRASER UNIVERSITY April, 1977 All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Ian Robert Wilson Degree: Master of Arts (Archaeology) Title of Thesis: Archaeological Investigations at the Atigun Site, Central Brooks Range, Alaska. Examining Committee Chairman: Philip M. Hobler Herbert L. Alexander, Jr. Senior Supervisor Knut R. Fladmark '~enryS. Sharp Assistant Professor External Examiner Department of Sociology and Anthropology Simon Fraser University Date Approved April 12, 1977 PARTIAL COPY RIGHT LICENSE I hereby grant to Simon Fraser University the right to lend my thesis or dissertation (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or sing1 e copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for mu1 tiple copying of this thesis for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this thesis for financial gain shall not be allowed wi thout my wri tten permi ssi on, Title of Thesis/Dissertation : Archaeological Investigations at the Atigun Site, Central Brooks Range, Alaska.
    [Show full text]
  • Kyana Events -- Members Only! Rhabdosomes Including the Sicula and Spinose Thecae
    http://www.amfed.org/sfms/index.html The KYANA Geological Society video produced by member Dave Shuffett can also be found on KET EncyloMedia internet site: http://www.ket.org/itvvideos/offering/science/ksroc.htm Electronic Edition of "LODESTAR" http://www.amfed.org/sfms/pdf/lodestar_may-june09.pdf MEETING TIME: 3rd Tuesday of each month - Social/Swap at 7:00 p.m. Meeting Starts at 7:30. Go To: http://www.kyanageo.org LOCATION: The Louisville Nature Center 3745 Illinois Avenue, Louisville, KY 40213 handicap accessible facility - visitors welcome http://www.louisvillenaturecenter.org DIRECTIONS: From the Watterson Expressway (I-264) -Take Exit 14 to Poplar Level Road North. Take Poplar Level Road to Trevilian Way (1.0 mi). Turn Right on to Trevilian Way. Take Trevilian Way to Illinois Avenue (0.2 mile) (to your left, Illinois Avenue is the first intersecting KYANA’s mission is to provide educational, road just before the Zoo entrance). recreational and social opportunities to those Turn left on to Illinois Avenue. interested in geological sciences and lapidary arts. Take Illinois Avenue to the Louisville Nature Center parking lot on your right (0.2 mile). Except for items specifically copyrighted by authors, other non-profit societies may use material in this newsletter. KYANA GEOLOGICAL SOCIETY Indiana and Kentucky / Volume 44, Number 9 THE GEMSCOOP c/o Sherry Lindle 6004 Highplace Dr Louisville, KY 40291 Revised July 7, 1999 at the AFMS Annual Meeting KYANA GEOLOGICAL SOCIETY Member of the The Southeast Federation of Mineralogical Societies, Inc. and American Federation of Mineralogical Societies “Code of Ethics” I will respect both private and public property and will do no collecting I will cause no willful damage to collecting materials and will take home only on privately owned land without the owner’s permission.
    [Show full text]
  • University of Michigan University Library
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL.23, NO.5, p. 81-91, (4 pls.) JUNE 19, 1970 CORALS OF THE TRAVERSE GROUP OF MICHIGAN PART 13, HEXAGONARIA ERWIN C. STUMM MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: ROBERTV. KESLING The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48104. VOLS.2-22. Parts of volumes may be obtained if available. Price lists available upon inquiry. 1. The rodents from the Hagerman local fauna, Upper Pliocene of Idaho, by Richard J. Zakrzewski. Pages 1-36, with 13 text-figures. 2. A new brittle-star from the Middle Devonian Arkona Shale of Ontario, by Robert V. Kesling. Pages 37-51, with 6 plates and 2 text-figures. 3. Phyllocarid crustaceans from the Middle Devonian Silica Shale of northwestern Ohio and southeastern Michigan, by Erwin C. Stumm and Ruth B. Chilman. Pages 53-71, with 7 plates and 4 text-figures. 4. Drepanaster wrighti, a new species of brittle-star from the Middle Devonian Arkona Shale of Ontario, by Robert V. Kesling. Pages 73-79, with 2 plates.
    [Show full text]
  • Catenipora Heintzi from Ringerike, Oslo Region
    Computer-aided study of growth pattems in tabulate corals, exemplified by Catenipora heintzi from Ringerike, Oslo Region ØYVIND HAMMER Hammer, Ø. Computer-aided study of growth pattems in tabulate corals, exemplified by Catenipora heintzi from Ringerike, Oslo Region. Norsk Geologisk Tidsskrift, Vol. 79, pp. 219-226. Oslo 1999. ISSN 0029-196X. A detailed study of a fragment of a colony of tbe halysitid tabulate coral Catenipora heintzi from tbe Norwegian Wenlock is . presented. The specimen was collected from tbe Braksøya Formation near Nes, Ringerike. Closely spaced (O.l mm) senal sectlons . document astogenetical events and trends, including lateral and interstitial increase, branching, damage and regeneratlon, and lateral growth of individual corallites. Among tbese events, two previously undescribed phenom�na are observed: conn�tlon to � . neigbbouring rank as a result of interstitial increase, and competition between polyps leadmg to atroph�. The studted spectmen ts discussed in tbe light of tbe tbeories for halysitid astogeny. This indicates tbe existence of rank branching, tbe prefe�ence for increase from tbe youngest corallite in a rank, an exclusive ability of new corallites to fuse witb otber ranks,regulation of lacuna size, occasional sediment smotbering and possibly an annua! periodicity in frequency of increase. Øyvind Hammer, Paleontological Museum, University of Oslo, Sars gt. l, 0562, Oslo, Norway Introduction of authors (Buehler 1955; Hamada 1959; Stasinska 1967, 1980; Lee & Noble 1990; Lee & Elias 1991; Hubmann The Ordovician and Silurian halysitids belong to the 1996; Hammer 1998). A new colony is firstinitiated by the tabulate corals. The alternative hypothesis of sponge settlement of a planula larva on the substrate.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Some Reflections on the Beginning of the Oldest Corals Rugosa
    Latypov Y, Archiv Zool Stud 2019, 2: 008 DOI: 10.24966/AZS-7779/100008 HSOA Archives of Zoological Studies Original Article form a calcareous skeleton could occur at the beginning of the Early Some Reflections on the Cambrian (skeletal evolution during the Cambrian explosion). And from that moment it began a rapid development rugosa and wide- Beginning of the Oldest spread dissemination. In the early Caradoc already known genera of 5-6 separate taxonomically and morphologically groups – streptelas- Corals Rugosa ma tin, Cystiphyllum and columnar in. On average, Caradoc number genera doubled and by the end of the Ordovician have risen to 30 with Yuri Latypov* the dominance of single forms [3-5]. National Scientific Center of Marine Biology, Vladivostok, Russia First rugosa had only simple septa and full bottom with single additional plates, but by the beginning of the Late Ordovician plate tabulae acquire the ability to very wide variation, and by the end of Abstract the Late Ordovician kaliko blastes basal surface polyp’s single rugosa acquired the ability to secrete peripheral convex skeletal elements - Provides a conceptual theory of origin Rugosa. Discusses the septum (Paliphyllum). By the beginning of the Late Ordovician all possibility of the oldest single corals from the Cambrian forebears. With specific examples showing ways of their development and types of microstructures - lamellar, fibrous, monakant, golokant, rab- transmission of hereditary traits. Discusses the validity of the terms dakant, dimorfakant participated in the construction of the tabulae, “Tetracorallia” and “Rugosa” and their bilaterally. septa, plate and akanthin septa. The ability to secrete lamellar scleren- chyma vertical and horizontal skeletal elements like thickening until Keywords: Cambrian; Development; Origin; Rugosa their mutual fusion, was developed from the beginning rugosa stories and observed in many genera, or lesser greater extent until the end of their existence.
    [Show full text]