Portland-Limestone Cements: History, Performance, and Specifications

Total Page:16

File Type:pdf, Size:1020Kb

Portland-Limestone Cements: History, Performance, and Specifications Portland-Limestone Cements: History, Performance, and Specifications Paul D. Tennis, Ph.D. Portland Cement Association Today’s Objectives What is a portland-limestone blended cement History Environmental performance Concrete performance Changes to the specifications Portland-Limestone Cement Why? Provides an option to implement proven technology to obtain desired performance and improve sustainability of concrete What is Portland-Limestone Cement? ASTM C595 and AASHTO M 240 Blended Cement Type IL or Type IT with limestone 5% to 15% limestone HISTORY History of Limestone in Cements 1965 Cement with 20% limestone in Germany for specialty applications 1979 French cement standards allows limestone additions. 1983 CSA A5 allows up to 5% limestone in portland cement 1990 15±5% limestone blended cements routinely used in Germany 1992 UK specs allows up to 20% in limestone cement 2000 EN 197-1 allows 5% MAC (typ. limestone) in all 27 common cements, History of Limestone in Cements 2000 EN 197-1 creates CEM II/A-L (6-20%) and CEM II/B-L (21-35%) 2004 ASTM C150 allows 5% in Types I-V 2006 CSA A3001 allows 5% in other Types than GU 2007 AASHTO M85 allows 5% in Types I-V 2008 CSA A3001 includes PLC containing 5%-15% limestone European Cement Use 100 1.7 2.1 1.8 2.1 2.2 1.5 1.9 6.1 3.4 2.9 1.8 Others 5 3.2 5.0 5.7 9.5 5.4 CEM V - Composite Cement 90 4.0 6.5 5.5 5.1 5.6 CEM IV - Pozzolanic 5.6 4.8 CEM III - Blast furnace slag 80 14.5 12.5 16.8 9.6 14.3 CEM II - Portland-composite 16.8 CEM II - Portland-limestone 70 CEM II - Portland-fly ash CEM II - Portland-pozzolana 24.0 60 18.9 24.6 15.0 24.5 31.4 CEM II - Portland-slag CEM I - Portland 50 5.4 6.2 7.0 5.7 3.7 2.9 6.9 40 2.1 2.7 4.8 5.4 1.2 7.4 4.2 6.8 5.9 1.4 30 4.5 Cement Types (%) in Europe Types Cement 20 35.4 34.2 33.7 32.1 31.6 27.5 10 0 1999 2000 2001 2002 2003 2004 Cembureau data ENVIRONMENTAL BENEFITS Barcelo, Kline and Walenta, 2012 from Ashby (2009) Energy to Produce Cement Environmental Benefits 10% 15% Energy Reduction* Fuel (million BTU) 443,000 664,000 Electricity (kWh) 6,970,000 10,440,000 Emissions Reduction* SO2 (lb) 581,000 870,000 NOX (lb) 580,000 870,000 CO (lb) 104,000 155,000 CO2 (ton) 189,000 283,000 Total hydrocarbon, THC (lb) 14,300 21,400 * Per million tons cement Environmental Benefits Portland cement 1.0 Portland-limestone cement 0.8 0.6 /kg cement 2 0.4 kg CO 0.2 0.0 Plant 1 Plant 2 Plant 3 Why 15%? How Limestone Works Particle packing Improved particle size distribution Nucleation Surfaces for precipitation Chemical reactions Only a small amount, but… How Limestone Works Particle packing Improved particle size distribution Nucleation Surfaces for precipitation Chemical reactions Only a small amount, but… How Limestone Works Particle packing Improved particle size distribution Nucleation Surfaces for precipitation Chemical reactions Only a small amount, but… ASTM AND AASHTO UPDATES Process JAAHTG reviewed concept January 2010 Technical information from Europe and Canada considered Presented concept to AASHTO TS3a and ASTM C01.10 summer 2010 TS3a ballot in 2011; SOM ballot December 2011. C01.10 ballot April 2011; C01 ballot October 2011 Ballot items passed; 2012 AASHTO M240 and ASTM C595 published AASHTO M240 & ASTM C595 Requirements Type IL—Portland-limestone blended cement Example: Type IL(10) = 10% limestone Type IT—Ternary blended cement with limestone Example 1: Type IT(L12)(P10) = 12% limestone and 10% pozzolan Example 2: Type IT(S15)(L10) = 15% slag and 10% limestone Limestone content 5% to 15% AASHTO M240 & ASTM C595 Requirements Same physical requirement as existing C595/M240 cement types Chemical requirements – sulfate content, LOI Sulfate resistance – no MS or HS in initial specifications Limestone characteristics– CaCO3, MBI, TOC IP IS (<70) IP(LH), IL IL(LH), IS (< 70) (MS), IS (< 70) (HS), IT(P≥S) IT(P≥S)(LH) IT(P<S<70)(MS) IT(P<S<70)(HS) IS(≥70), IT(P>L) IT(L<S<70)(LH) IP(MS), IP (HS), IT(S≥70) IT(L≥S) IT(P>L)(LH) IT(P≥S)(MS) IT(P≥S)(HS) IT(L≥P) IT(L≥S)(LH) IT(L<S<70) IT(L≥P)(LH) IT(P<S<70) Fineness C C C C C Autoclave 0.80 0.80 0.80 0.80 0.80 exp, max, % Autoclave contr, max 0.20 0.20 0.20 0.20 0.20 % Vicat test: minutes, not 45 45 45 45 45 less than hours, not 7 7 7 7 7 more than Air content of mortar, 12 12 12 12 12 volume % IP IS (<70) IP(LH), IL IL(LH), IS (< 70) (MS), IS (< 70) (HS), IT(P≥S) IT(P≥S)(LH) IT(P<S<70)(MS) IT(P<S<70)(HS) IS(≥70), IT(P>L) IT(L<S<70)(LH), IP(MS), IP (HS), IT(S≥70) IT(L≥S) IT(P≥S)(MS) IT(P≥S)(HS) IT(P>L)(LH) IT(L≥P) IT(L≥S)(LH) IT(L<S<70) IT(L≥P)(LH) IT(P<S<70) Compressive strength, min., MPa (psi): 3 days 13.0 11.0 11.0 ... ... (1890) (1600) (1600) ... ... 7 days 20.0 18.0 18.0 5.0 11.0 (2900) (2610) (2610) (720) (1600) 28 days 25.0 25.0 25.0 11.0 21.0 (3620) (3620) (3620) (1600) (3050) Heat of Hydration, max., kJ/kg (cal/g): 7 days 290 290 290 ... 250 (70) (70) (70) ... (60) 28 days 330 330 330 ... 290 (80) (80) (80) ... (70) IP IP(LH), IS (<70) IL(LH), IL IS (< 70) (MS), IS (< 70) (HS), IT(P≥S)(LH) IT(P≥S) IT(P<S<70)(MS) IT(P<S<70)(HS) IS(≥70), IT(L<S<70)(L IT(P>L) IP(MS), IP (HS), IT(S≥70) H), IT(L≥S) IT(P≥S)(MS) IT(P≥S)(HS) IT(P>L)(LH) IT(L≥P) IT(L≥S)(LH) IT(L<S<70) IT(L≥P)(LH) IT(P<S<70) Water req. ... ... ... ... 64 max % Drying shrinkage, ... ... ... ... 0.15 max, % Mortar expansion, max, %: 14 days 0.020 0.020 0.020 0.020 0.020 8 weeks 0.060 0.060 0.060 0.060 0.060 Sulfate resistance, expansion, max, %: at 180 d 0.10 0.05 at 1 year 0.10 Chemical Requirements for Blended Cements IS(< 70), I P, IL IS(≥70), Cement Type IT(P<S<70), IT(P≥S), IT(L≥S), IT(S≥70) IT(L<S<70) IT(P>L) IT(L≥P) MgO, max, % . 6.0 . SO3, max, % 3.0 4.0 4.0 3.0 S2-, max, % 2.0 2.0 ... Insol. res. max, %C 1.0 1.0 ... LOI, max, % 3.0D 4.0D 5.0D 10.0 C Insol res max does not apply to ternary blended cements. D For ternary blended cements with limestone LOI max = 10%. Requirements for Limestone for Use in Blended Cements Test Method Limit CaCO3 content C114/T105 Min. 70% Methylene blue index See Annex A2 Max. 1.2 g/100g Total organic carbon See Annex A3 Max. 0.5% Limestone Testing Summary Portland-limestone blended cements 5% to 15% limestone History of use: Europe, Canada, US Mechanisms An option to make greener concrete Additional information [email protected] Portland Limestone Blended Cement in ASTMThank C595 you! and AASHTO M240 Presented to ASTM C01.10 December 2010 North American PLC Pavements Field Applications in Canada, Utah and Colorado Todd Laker, Holcim (US) Inc. Brooke Smartz, Holcim (US) Inc. 1 Portland-Limestone Cement Paving Projects . +125 miles of concrete paving in Colorado and Utah Performance and Environmental Benefit 2 CDOT and UDOT Specifications . Allow portland-limestone cements that meet ASTM C1157 performance specification for GU (General Use), MS (Moderate Sulfate Resistance) and HS (High Sulfate Resistance) . Supplementary cementitious materials required for applications that require resistance for sulfate attack and/or alkali silica reactivity for both ASTM C150 and ASTM C1157 cements 3 Verifying Portland Limestone Cement Durability . Holcim ASTM C595 (Type IL) or ASTM C1157 cements are tested for durability performance. Tests generally include: Fresh & Hardened concrete properties - Requirements are met through concrete mix design – ASTM Sulfate Resistance - ASTM C1012 Alkali-Silica Reactivity - ASTM C1260/1567 Freeze Thaw & Deicer Scaling Resistance - ASTM C666 & C672 Shrinkage – ASTM C157 Chloride Ion Penetration – ASTM C1202 4 How do Portland-Limestone Cements compare? ASTM Designation PLC vs C150 PLC vs C150 PLC vs C150 PLC vs C150 PLC vs C150 Strength 28D (C39) Equal Better Better Better Equal Sulfate (C1012) Equal Equal Equal Equal Equal ASR (C1260/C1567) Better Equal Equal Equal Equal Freeze-Thaw (C666) Equal Equal Equal Equal Equal Deicer Scaling Equal Equal Equal Equal Equal (C672) Shrinkage (C157) Equal Equal Equal Equal Equal Permeability Slightly Better Equal Equal Equal Equal (C1202) 5 How do Portland-Limestone cements perform in the field? . Equal or improved to C150 cements Strength Set time Water demand Compatibility with fly ash Compatibility with admixtures . Improved finishability . Lower environmental impact 6 Devil’s Slide, Utah Cements . Type V clinker C3A <5% . ASTM C150 Type II/V High sulfate resistance - C3A <5% <5% limestone per ASTM C150 Naeq <0.60% .
Recommended publications
  • Application of WST-Method for Fracture Testing of Fibre-Reinforced Cement Based Composites
    NORDTEST project No. 1672-04 Application of WST-method for fracture testing of fibre-reinforced cement based composites Swedish National Testing and Research Institute Application of WST-method for fracture testing of fibre-reinforced concrete INGEMAR LÖFGREN, JOHN FORBES OLESEN AND MATHIAS FLANSBJER Department of Structural Engineering and Mechanics Report 04:13 Concrete Structures CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2004 REPORT 04:13 Application of WST-method for fracture testing of fibre-reinforced concrete INGEMAR LÖFGREN, JOHN FORBES OLESEN AND MATHIAS FLANSBJER Department of Structural Engineering and Mechanics Concrete Structures CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2004 Application of WST-method for fracture testing of fibre-reinforced concrete INGEMAR LÖFGREN I, JOHN FORBES OLESEN II AND MATHIAS FLANSBJER III IDepartment of Structural Engineering and Mechanics, Chalmers University of Technology. II DTU – Technical University of Denmark, Department of Civil Engineering. III SP – Swedish National Testing and Research Institute. © Ingemar Löfgren, John Forbes Olesen and Mathias Flansbjer, 2004 ISSN 1651-9035 Report 04:13 Archive no. 35 Department of Structural Engineering and Mechanics Concrete Structures Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: Cover shows the funding agent, the participating labs, and a schematic showing the principle of the wedge-splitting test method.. Department of Structural Engineering and Mechanics Göteborg, Sweden 2004 Application of WST-method for fracture testing of fibre-reinforced concrete Ingemar Löfgren I, John Forbes Olesen II and Mathias Flansbjer III IDepartment of Structural Engineering and Mechanics, Chalmers University of Technology. II DTU – Technical University of Denmark, Department of Civil Engineering, BYG.DTU.
    [Show full text]
  • Experimental Investigation on Nano Concrete with Nano Silica and M-Sand
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 EXPERIMENTAL INVESTIGATION ON NANO CONCRETE WITH NANO SILICA AND M-SAND Mohan Raj.B1, Sugila Devi.G2 1PG Student, Nadar Saraswathi College of Engineering and Technology, Theni, Tamilnadu, India. 2Assistant Professor, Nadar Saraswathi College of Engineering and Technology, Theni, Tamilnadu, India. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The influence of Nano-Silica on various material is Nano Silica (NS). The advancement made by the properties of concrete is obtained by replacing the cement study of concrete at Nano scale has proved the Nano silica is with various percentages of Nano-Silica. Nano-Silica is used as much better than silica fume used in conventional concrete. a partial replacement for cement in the range of 3%, 3.5%, Now, the researchers are capitalizing on nanotechnology to and 10% for M20 mix. Specimens are casted using Nano-Silica innovate a new generation of concrete materials that concrete. Laboratory tests conducted to determine the overcome the above drawbacks and trying to achieve the compressive strength, split tensile and flexural strength of sustainable concrete structures. Evolution of materials is Nano-Silica concrete at the age of 7, 14 and 28 days. Results need of the day for improved or better performance for indicate that the concrete, by using Nano-Silica powder, was special engineering applications and modifying the bulk able to increase its compressive strength. However, the density state of materials in terms of composition or microstructure is reduce compared to standard mix of concrete.
    [Show full text]
  • Manuscript Details
    Manuscript Details Manuscript number MATERIALSCHAR_2019_439_R1 Title THE EFFECTS OF MgO, Na2O AND SO3 ON INDUSTRIAL CLINKERING PROCESS: PHASE COMPOSITION, POLYMORPHISM, MICROSTRUCTURE AND HYDRATION, USING A MULTIDISCIPLINARY APPROACH. Article type Research Paper Abstract The present investigation deals with how minor elements (their oxides: MgO, Na2O and SO3) in industrial kiln feeds affect (i) chemical reactions upon clinkering, (ii) resulting phase composition and microstructure of clinker, (iii) hydration process during cement production. Our results show that all these points are remarkably sensitive to the combination and interference effects between the minor chemical species mentioned above. Upon clinkering, all the industrial raw meals here used exhibit the same formation temperature and amount of liquid phase. Minor elements are preferentially hosted by secondary phases, such as periclase. Conversely, the growth rate of the main clinker phases (alite and belite) is significantly affected by the nature and combination of minor oxides. MgO and Na2O give a very fast C3S formation rate at T > 1450 K, whereas Na2O and SO3 boost C2S. After heating, if SO3 occurs in combination with MgO and/or Na2O, it does not inihibit the C3S crystallisation as expected. Rather, it promotes the stabilisation of M1-C3S, thus indirectly influencing the aluminate content, too. MgO increseases the C3S amount and promotes the stabilisation of M3-C3S, when it is in combination with Na2O. Na2O seems to be mainly hosted by calcium aluminate structure, but it does not induce the stabilisation of the orhtorhombic polymorph, as supposed to occur. Such features play a key role in predicting the physical-mechanical performance of a final cement (i.e.
    [Show full text]
  • Cement Data Sheet
    42 CEMENT (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2019, U.S. portland cement production increased by 2.5% to 86 million tons, and masonry cement production continued to remain steady at 2.4 million tons. Cement was produced at 96 plants in 34 States, and at 2 plants in Puerto Rico. U.S. cement production continued to be limited by closed or idle plants, underutilized capacity at others, production disruptions from plant upgrades, and relatively inexpensive imports. In 2019, sales of cement increased slightly and were valued at $12.5 billion. Most cement sales were to make concrete, worth at least $65 billion. In 2019, it was estimated that 70% to 75% of sales were to ready-mixed concrete producers, 10% to concrete product manufactures, 8% to 10% to contractors, and 5% to 12% to other customer types. Texas, California, Missouri, Florida, Alabama, Michigan, and Pennsylvania were, in descending order of production, the seven leading cement-producing States and accounted for nearly 60% of U.S. production. Salient Statistics—United States:1 2015 2016 2017 2018 2019e Production: Portland and masonry cement2 84,405 84,695 86,356 86,368 88,500 Clinker 76,043 75,633 76,678 77,112 78,000 Shipments to final customers, includes exports 93,543 95,397 97,935 99,406 100,000 Imports of hydraulic cement for consumption 10,376 11,742 12,288 13,764 15,000 Imports of clinker for consumption 879 1,496 1,209 967 1,100 Exports of hydraulic cement and clinker 1,543 1,097 1,035 940 1,000 Consumption, apparent3 92,150 95,150 97,160 98,480 102,000 Price, average mill value, dollars per ton 106.50 111.00 117.00 121.00 123.50 Stocks, cement, yearend 7,230 7,420 7,870 8,580 8,850 Employment, mine and mill, numbere 12,300 12,700 12,500 12,300 12,500 Net import reliance4 as a percentage of apparent consumption 11 13 13 14 15 Recycling: Cement is not recycled, but significant quantities of concrete are recycled for use as a construction aggregate.
    [Show full text]
  • 96 Quality Control of Clinker Products by SEM and XRF Analysis Ziad Abu
    ACXRI '96 Quality Control of Clinker Products By SEM and XRF Analysis Ziad Abu Kaddourah and Khairun Azizi MY9700786 School of Materials and Mineral Resources Eng., Universiti Sains Malaysia 31750 Tronoh, Perak, Malaysia. ABSTRACT The microstructure and chemical properties of industrial Portland cement clinkers have been examined by SEM and XRF methods to establish the nature of the clinkers and how variations in the clinker characteristics can be used to control the clinker quality. The clinker nodules were found to show differences in the chemical composition and microstructure between the inner and outer parts of the clinker nodules. Microstructure studies of industrial Portland cement clinker have shown that the outer part of the nodules are enriched in silicate more than the inner part. There is better crystallization and larger alite crystal 9ize in the outer part than in the inner part. The alite crystal size varied between 16.2-46.12um. The clinker chemical composition was found to affect the residual >45um, where a higher belite content causes an increase in the residual >45um in the cement product and will cause a decrease in the concrete strength of the cement product. The aluminate and ferrite crystals and the microcracks within the alite crystal are clear in some clinker only. The quality of the raw material preparation, burning and cooling stages can be controlled using the microstructure of the clinker product. INTRODUCTION Examination of manufactured industrial clinkers using the Scanning Electron Microscope (SEM) is usually conducted to study problems that can't be defined by the normal quality control procedures. Such a study can be used to give better information and knowledge about clinkers characteristics and how variations in the clinker characteristics are affected by variations in the various stages during the manufacturing process.
    [Show full text]
  • Thermodynamics of Portland Cement Clinkering
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive Thermodynamics of Portland Cement Clinkering Theodore Hanein1, Fredrik P. Glasser2, Marcus Bannerman1* 1. School of Engineering, University of Aberdeen, AB24 3UE, United Kingdom 2. Department of Chemistry, University of Aberdeen, AB24 3UE, United Kingdom Abstract The useful properties of cement arise from the assemblage of solid phases present within the cement clinker. The phase proportions produced from a given feedstock are often predicted using well-established stoichiometric relations, such as the Bogue equations. These approaches are based on a single estimation of the stable phases produced under standard processing conditions and so they are limited in their general application. This work presents a thermodynamic database and simple equilibrium model which is capable of predicting cement phase stability across the full range of kiln temperatures, including the effect of atmospheric conditions. This is termed a “reaction path” and benchmarks the kinetics of processes occurring in the kiln. Phase stability is calculated using stoichiometric phase data and Gibbs free energy minimization under the constraints of an elemental balance. Predictions of stable phases and standard phase diagrams are reproduced for the manufacture of ordinary Portland cement and validated against results in the literature. The stability of low-temperature phases, which may be important in kiln operation, is explored. Finally, an outlook on future applications of the database in optimizing cement plant operation and development of new cement formulations is provided. Originality This report details corrections to reference thermodynamic data which are relevant for cement thermodynamic calculations.
    [Show full text]
  • Vermiculite Concrete Introduction Vermiculite Concrete Is a Low Density Non-Structural Construction Product
    Vermiculite Concrete Introduction Vermiculite concrete is a low density non-structural construction product. It is insulating (both thermally and acoustically) and intrinsically fire resistant. It is normally made simply by mixing exfoliated vermiculite as the aggregate, with cement and water, plus additives such as plasticisers if required. The ratio of exfoliated vermiculite aggregate to cement and the vermiculite grade can be varied to the properties such as strength and insulation as required for the concrete. The applications for vermiculite concrete are however, all non-structural. Vermiculite concretes can also be produced containing other lightweight aggregates, such as expanded perlite, to give differing physical properties. Normally the type of cement used in these mixes is Ordinary Portland Cement (O.P.C), although a higher initial strength may be obtained using Rapid Hardening Portland Cement (R.H.P.C). For high temperature refractory applications, high alumina (luminate in the USA) cements may be used with great success to manufacture lightweight in-situ cast insulation mixes and back up insulation products. However, these applications are beyond the scope of this specific application note. Applications for Vermiculite Concrete The principal applications for vermiculite concrete are for in-situ site mixed applications such as: • Floor and roof screeds • Void filling insulation mixes around chimneys, back boilers and fire backs • Blocks and slabs • Swimming pool bases [see separate application note for this application] Vermiculite concrete can be easily cut, sawed, nailed or screwed. The lower density vermiculite concrete screeds are usually covered with a denser topping mix of 4:1 or 5:1 sand to cement mix to a minimum depth of 25mm (1 inch); the screed and denser more load distributing topping should ideally be laid monolithically to prevent dis-bonding and shear fracturing between the screed and the topping.
    [Show full text]
  • Alkali-Silica Reactivity: an Overview of Research
    SHRP-C-342 Alkali-Silica Reactivity: An Overview of Research Richard Helmuth Construction Technology Laboratories, Inc. With contributions by: David Stark Construction Technology Laboratories, Inc. Sidney Diamond Purdue University Micheline Moranville-Regourd Ecole Normale Superieure de Cachan Strategic Highway Research Program National Research Council Washington, DC 1993 Publication No. SHRP-C-342 ISBN 0-30cL05602-0 Contract C-202 Product No. 2010 Program Manager: Don M. Harriott Project Maxtager: Inam Jawed Program AIea Secretary: Carina Hreib Copyeditor: Katharyn L. Bine Brosseau May 1993 key words: additives aggregate alkali-silica reaction cracking expansion portland cement concrete standards Strategic Highway Research Program 2101 Consti!ution Avenue N.W. Washington, DC 20418 (202) 334-3774 The publicat:Lon of this report does not necessarily indicate approval or endorsement by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein. ©1993 National Academy of Sciences 1.5M/NAP/593 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. This document has been written as a product of Strategic Highway Research Program (SHRP) Contract SHRP-87-C-202, "Eliminating or Minimizing Alkali-Silica Reactivity." The prime contractor for this project is Construction Technology Laboratories, with Purdue University, and Ecole Normale Superieure de Cachan, as subcontractors. Fundamental studies were initiated in Task A.
    [Show full text]
  • The Effects of Alkali-Silica Reaction on the Mechanical Properties of Concretes with Three Different Types of Reactive Aggregate
    Technical Paper Okpin Na* DOI: 10.1002/suco.201400062 Yunping Xi Edward Ou Victor E. Saouma The effects of alkali-silica reaction on the mechanical properties of concretes with three different types of reactive aggregate This paper investigates the degradation of the mechanical prop- environment, the product of ASR is expansive, which is erties of concretes made with three types of aggregate affected detrimental to concrete structures [1, 2]. by alkali-silica reaction (ASR). Three standard testing methods ASR is a chemical reaction between the reactive – ASTM C289, JASS 5N T-603 and ASTM C1260 – were used to silica in the aggregate and the alkalis (Na2O and K2O) in identify the reactivity of ASR of the three aggregates selected. Portland cement. This chemical reaction produces alkali- The test results show that all three aggregates are potentially silica gel swelling with the absorption of the moisture deleterious. A new acceleration method based on JASS 5N T-603 from the surrounding cement paste. The expansive gel and ASTM C1260 was proposed for concrete specimens. In the can cause cracking in the concrete. Therefore, the neces- acceleration method, cylindrical concrete specimens were used, sary conditions for the expansive ASR gel to form in the additional alkali material was added to the concrete mixture and concrete are a sufficiently high alkali concentration in the the specimens were stored under conditions similar to ASTM cement, high moisture content in the concrete and reac- C1260. The preconditioned concrete specimens were then used tive aggregates. for evaluating the mechanical properties of the ASR-affected In order to control or prevent the occurrence of concrete in terms of strength and stiffness.
    [Show full text]
  • Portland Cement Clinker
    Conforms to HazCom 2012/United States Safety Data Sheet Portland Cement Clinker Section 1. Identification GHS product identifier: Portland Cement Clinker Chemical name: Calcium compounds, calcium silicate compounds, and other calcium compounds containing iron and aluminum make up the majority of this product. Other means of identification: Clinker, Cement Clinker Relevant identified uses of the substance or mixture and uses advised against: Raw material for cement manufacturing. Supplier’s details: 300 E. John Carpenter Freeway, Suite 1645 Irving, TX 75062 (972) 653-5500 Emergency telephone number (24 hours): CHEMTREC: (800) 424-9300 Section 2. Hazards Identification Overexposure to portland cement clinker can cause serious, potentially irreversible skin or eye damage in the form of chemical (caustic) burns, including third degree burns. The same serious injury can occur if wet or moist skin has prolonged contact exposure to dry portland cement clinker. OSHA/HCS status: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the SKIN CORROSION/IRRITATION – Category 1 substance or mixture: SERIOUS EYE DAMAGE/EYE IRRITATION – Category 1 SKIN SENSITIZATION – Category 1 CARCINOGENICITY/INHALATION – Category 1A SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) [Respiratory tract irritation] – Category 3 GHS label elements Hazard pictograms: Signal word: Danger Hazard statements: Causes severe skin burns and eye damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer. Precautionary statements: Prevention: Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Avoid breathing dust. Use outdoors in a well ventilated area. Wash any exposed body parts thouroughly after handling.
    [Show full text]
  • Portland Cement Concrete
    B Highway Materials Engineering Course PARTICIPANT WORKBOOK Portland Cement Concrete MODULE G Ti Table of Contents About This Workbook .................................................................................................................. 2 Course Overview .......................................................................................................................... 3 Introduction ................................................................................................................................. 3 Module G Overview ..................................................................................................................... 4 Module Goals ............................................................................................................................... 5 Learning Outcomes ...................................................................................................................... 5 ILT Instruction Icons ..................................................................................................................... 9 Module G Lesson 8 Review ..................................................................................................... G8-1 Module G Lesson 9 Basic Mix Design and Proportioning ....................................................... G9-1 Module G Lesson 10 Reinforcing and Corrosion ..................................................................G10-1 Module G Lesson 11 Hot Topics ...........................................................................................G11-1
    [Show full text]
  • Tech Brief: Field Control of Concrete Paving Mixtures
    Tech Brief NOVEMBER 2019 FHWA-HIF-18-013 FIELD CONTROL OF CONCRETE PAVING MIXTURES INTRODUCTION The variability of a concrete paving mixture can have a significant impact on the performance of the concrete pavement and impact its overall service life. Mixture variability can lead to inconsistent workability, poor consolidation, built-in roughness, and areas of weaker, less durable concrete, all of which can negatively affect pavement performance (Fick et al. 2012). Well-defined and implemented field control of concrete paving mixtures is extremely important to produce, deliver, and place a consistent concrete pavement mixture that meets design criteria and increases the chance of achieving durability goals. This Tech Brief summarizes guidance on the concrete-making process from batching through placement on grade. It draws from key reference documents on field control of concrete mixtures including: • Integrated Materials and Construction Practices for Concrete Pavement: A State-of-the-Practice Manual (Taylor et al. 2006). • Concrete Pavement Field Reference, Pre-Paving (ACPA 2008). • Concrete Pavement Field Reference, Paving (ACPA 2010). • Field Reference Manual for Quality Concrete Pavements (Fick et al. 2012). • Effective Quality Assurance for Concrete Paving Operations (Taylor 2016). • Design and Control of Concrete Mixtures (Kosmatka and Wilson 2016). ACPA (2008) provides a pre-paving checklist covering key items to consider and inspect during pre-paving operations, including some attributes of the concrete mixture and ACPA (2010) provides an additional checklist that focuses on all elements of the concrete paving operation itself. Together, these references serve as a good starting point to establish necessary controls to produce, transport, and place quality paving concrete.
    [Show full text]