Deconstructing Arousal Into Wakeful, Autonomic and Affective Varieties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Emotional Arousal 1 Running Head
Effect of Emotional Arousal 1 Running Head: THE EFFECT OF EMOTIONAL AROUSAL ON RECALL The Effect of Emotional Arousal and Valence on Memory Recall 500181765 Bangor University Group 14, Thursday Afternoon Effect of Emotional Arousal 2 Abstract This study examined the effect of emotion on memory when recalling positive, negative and neutral events. Four hundred and fourteen participants aged over 18 years were asked to read stories that differed in emotional arousal and valence, and then performed a spatial distraction task before they were asked to recall the details of the stories. Afterwards, participants rated the stories on how emotional they found them, from ‘Very Negative’ to ‘Very Positive’. It was found that the emotional stories were remembered significantly better than the neutral story; however there was no significant difference in recall when a negative mood was induced versus a positive mood. Therefore this research suggests that emotional valence does not affect recall but emotional arousal affects recall to a large extent. Effect of Emotional Arousal 3 Emotional arousal has often been found to influence an individual’s recall of past events. It has been documented that highly emotional autobiographical memories tend to be remembered in better detail than neutral events in a person’s life. Structures involved in memory and emotions, the hippocampus and amygdala respectively, are joined in the limbic system within the brain. Therefore, it would seem true that emotions and memory are linked. Many studies have investigated this topic, finding that emotional arousal increases recall. For instance, Kensinger and Corkin (2003) found that individuals remember emotionally arousing words (such as swear words) more than they remember neutral words. -
Scale-Free Dynamics of the Mouse Wakefulness and Sleep Electroencephalogram Quantified Using Wavelet-Leaders
Article Scale-Free Dynamics of the Mouse Wakefulness and Sleep Electroencephalogram Quantified Using Wavelet-Leaders Jean-Marc Lina 1,2,3, Emma Kate O’Callaghan 1,4 and Valérie Mongrain 1,4,* 1 Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd., Montreal, QC H4J 1C5, Canada 2 Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; [email protected] 3 École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada 4 Department of Neuroscience, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-514-338-2222 (ext. 3323) Received: 14 August 2018; Accepted: 11 October 2018; Published: 20 October 2018 Abstract: Scale-free analysis of brain activity reveals a complexity of synchronous neuronal firing which is different from that assessed using classic rhythmic quantifications such as spectral analysis of the electroencephalogram (EEG). In humans, scale-free activity of the EEG depends on the behavioral state and reflects cognitive processes. We aimed to verify if fractal patterns of the mouse EEG also show variations with behavioral states and topography, and to identify molecular determinants of brain scale-free activity using the ‘multifractal formalism’ (Wavelet-Leaders). We found that scale-free activity was more anti-persistent (i.e., more different between time scales) during wakefulness, less anti-persistent (i.e., less different between time scales) during non-rapid eye movement sleep, and generally intermediate during rapid eye movement sleep. -
An Electrophysiological Marker of Arousal Level in Humans
RESEARCH ARTICLE An electrophysiological marker of arousal level in humans Janna D Lendner1,2*, Randolph F Helfrich3,4, Bryce A Mander5, Luis Romundstad6, Jack J Lin7, Matthew P Walker1,8, Pal G Larsson9, Robert T Knight1,8 1Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States; 2Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tuebingen, Tuebingen, Germany; 3Hertie-Institute for Clinical Brain Research, Tuebingen, Germany; 4Department of Neurology and Epileptology, University Medical Center Tuebingen, Tuebingen, Germany; 5Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, United States; 6Department of Anesthesiology, University of Oslo Medical Center, Oslo, Norway; 7Department of Neurology, University of California, Irvine, Irvine, United States; 8Department of Psychology, University of California, Berkeley, Berkeley, United States; 9Department of Neurosurgery, University of Oslo Medical Center, Oslo, Norway Abstract Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, ‘wake-like’ EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol *For correspondence: anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from [email protected] REM sleep solely based on the neurophysiological brain state. -
Distribution of Neurotransmitters in the Sheep Brain
Journal of Reproduction and Fertility Supplement 49, 199-220 Distribution of neurotransmitters in the sheep brain Y. Tillet Laborcttoirede NeuroendocrinologieSexuelle, Station de Physiologiede la Reproductiondes Mammiferes Domestiques, INRA, 37380 Nouzilly, France Although the general organization of the sheep brain is similar to that of other mammals, there are species differences in the fine architecture and neurotransmitter distribution. In sheep, perikarya are generally scattered, unlike the situation in rodents where they are clustered. The same organization is observed in cows and primates. The density of neurones immunoreactive for tyrosine hydroxylase in the dorsorostral diencephalon of sheep is lower than in rodents; A14 and A15 dopaminergic cell groups do not present a dorsal part. Only one adrenergic group, C2, is observed in the dorsomedial medulla oblongata. GnRH-immunoreactive neurones are mainly found in the anterior hypothalamic—preoptic areas, a few being present in the mediobasal hypothalamus. The density of several neurones contain- ing neuropeptides (for example vasoactive intestinal polypeptide, cholecystokinin and somatostatin) in the caudal brain of sheep is lower than in other species and in the forebrain of sheep. These differences contribute to different patterns of innervation of brain areas compared with other species. For example, the supra- chiasmatic nucleus does not present a dense network of fibres immunoreactive for 5-hydroxytryptamine and neuropeptide Y as observed in rats. These morphological studies constitute information necessary for further physiological investigations. Introduction In sheep, as in other species, neurotransmitters in the brain are involved in the control of physiological cues through endocrine and autonomic regulation. Among the species used to study endocrine regulation, sheep present interesting and specific physiological characteristics. -
How Multidimensional Is Emotional Intelligence? Bifactor Modeling of Global and Broad Emotional Abilities of the Geneva Emotional Competence Test
Journal of Intelligence Article How Multidimensional Is Emotional Intelligence? Bifactor Modeling of Global and Broad Emotional Abilities of the Geneva Emotional Competence Test Daniel V. Simonet 1,*, Katherine E. Miller 2 , Kevin L. Askew 1, Kenneth E. Sumner 1, Marcello Mortillaro 3 and Katja Schlegel 4 1 Department of Psychology, Montclair State University, Montclair, NJ 07043, USA; [email protected] (K.L.A.); [email protected] (K.E.S.) 2 Mental Illness Research, Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA; [email protected] 3 Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland; [email protected] 4 Institute of Psychology, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Drawing upon multidimensional theories of intelligence, the current paper evaluates if the Geneva Emotional Competence Test (GECo) fits within a higher-order intelligence space and if emotional intelligence (EI) branches predict distinct criteria related to adjustment and motivation. Using a combination of classical and S-1 bifactor models, we find that (a) a first-order oblique and bifactor model provide excellent and comparably fitting representation of an EI structure with self-regulatory skills operating independent of general ability, (b) residualized EI abilities uniquely Citation: Simonet, Daniel V., predict criteria over general cognitive ability as referenced by fluid intelligence, and (c) emotion Katherine E. Miller, Kevin L. Askew, recognition and regulation incrementally predict grade point average (GPA) and affective engagement Kenneth E. Sumner, Marcello Mortillaro, and Katja Schlegel. 2021. in opposing directions, after controlling for fluid general ability and the Big Five personality traits. -
Curiosity and the Pleasures of Learning: Wanting and Liking New Information
COGNITION AND EMOTION 2005, 19 "6), 793±814 Curiosity and the pleasures of learning: Wanting and liking new information Jordan A. Litman University of South Florida, Tampa, FL, USA This paper proposes a new theoretical model of curiosity that incorporates the neuroscience of ``wanting'' and ``liking'', which are two systems hypothesised to underlie motivation and affective experience for a broad class of appetites. In developing the new model, the paper discusses empirical and theoretical limita- tions inherent to drive and optimal arousal theories of curiosity, and evaluates these models in relation to Litman and Jimerson's "2004) recently developed interest- deprivation "I/D) theory of curiosity. A detailed discussion of the I/D model and its relationship to the neuroscience of wanting and liking is provided, and an inte- grative I/D/wanting-liking model is proposed, with the aim of clarifying the complex nature of curiosity as an emotional-motivational state, and to shed light on the different ways in which acquiring knowledge can be pleasurable. Curiosity is a gift, a capacity of pleasure in knowing. "Ruskin, 1819) The gratification of curiosity rather frees us from uneasiness than confers pleasure; we are more pained by ignorance than delighted by instruction. "Johnson, 1751) Curiosity may be defined as a desire to know, to see, or to experience that motivates exploratory behaviour directed towards the acquisition of new information "Berlyne, 1949, 1960; Collins, Litman, & Spielberger, 2004; Litman & Jimerson, 2004; Litman & Spielberger, 2003; Loewenstein, 1994). Like other appetitive desires "e.g., for food or sex), curiosity is associated with approach behaviour and experiences of reward "Berlyne, 1960, 1966; Loewenstein, 1994). -
MWT Review Paper.Qxp 12/30/2004 8:46 AM Page 123
MWT review paper.qxp 12/30/2004 8:46 AM Page 123 REVIEW PAPER The Clinical Use of the MSLT and MWT Donna Arand, Ph.D1, Michael Bonnet, Ph.D2, Thomas Hurwitz, M.D3, Merrill Mitler, Ph.D4, Roger Rosa, Ph.D5 and R. Bart Sangal, M.D6 1 Kettering Medical Center, Dayton, OH, 2Dayton Veteran’s Affairs Medical Center and Wright State University, Dayton, OH, 3Minneapolis Veteran’s Affairs Medical Center and University of Minnesota, Minneapolis, MN, 4National Institute of Neurological Disorders & Stroke Neuroscience Center, Bethesda, MD, 5National Institute for Occupational Safety and Health, Washington, DC, 6Sleep Disorders Institute, Troy, MI Citation: Review by the MSLT and MWT Task Force of the Standards of Practice Committee of the American Academy of Sleep Medicine. SLEEP 2005;28(1):123-144. 1.0 INTRODUCTION ness and to assess the database of evidence for the clinical use of the MSLT and MWT. EXCESSIVE SLEEPINESS IS DEFINED AS SLEEPINESS OCCURRING IN A SITUATION WHEN AN INDIVIDUAL 2.0 BACKGROUND WOULD BE EXPECTED TO BE AWAKE AND ALERT. It is a chronic problem for about 5% of the general population,1, 2 and it 2.1 History of the Development of MSLT and MWT is the most common complaint evaluated by sleep disorder cen- Initially, definitions involving sleep onset were based on ters.1, 3 The most common causes of sleepiness include partial sleep deprivation, fragmented sleep and medication effects. behavioral observations that often depended on features such as Sleepiness is also associated with sleep disorders such as sleep lack of movement, unresponsiveness, snoring, etc. -
Physiology & Behavior
Physiology & Behavior 123 (2014) 93–99 Contents lists available at ScienceDirect Physiology & Behavior journal homepage: www.elsevier.com/locate/phb Behavioural and physiological expression of arousal during decision-making in laying hens A.C. Davies a,⁎,A.N.Radfordb,C.J.Nicola a Animal Welfare and Behaviour Group, School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK b School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK HIGHLIGHTS • Anticipatory arousal was detectable around the time of decision-making in chickens. • Increased heart-rate and head movements were measured prior to preferred goal access. • More head movements were measured when two preferred goals were available. • Fewer head movements were measured preceding decisions not to access a goal. • Provides an important foundation for exploring arousal during animal decision-making. article info abstract Article history: Human studies suggest that prior emotional responses are stored within the brain as associations called somatic Received 11 January 2013 markers and are recalled to inform rapid decision-making. Consequently, behavioural and physiological Received in revised form 1 October 2013 indicators of arousal are detectable in humans when making decisions, and influence decision outcomes. Here Accepted 18 October 2013 we provide the first evidence of anticipatory arousal around the time of decision-making in non-human animals. Available online 24 October 2013 Chickens were subjected to five experimental conditions, which varied in the number (one versus two), type (mealworms or empty bowl) and choice (same or different) of T-maze goals. As indicators of arousal, heart- Keywords: Chicken rate and head movements were measured when goals were visible but not accessible; latency to reach the Choice goal indicated motivation. -
Pharmacological Management of Disrupted Sleep Due to Methamphetamine Use: a Literature Review
Journal of Psychology and Clinical Psychiatry Literature Review Open Access Pharmacological management of disrupted sleep due to Methamphetamine use: a literature review Abstract Volume 11 Issue 5 - 2020 Objective: To review the literature on pharmacological management of disrupted sleeping Jagdeep Kaur,1 Kawish Garg2 patterns due to Methamphetamine use. 1Clinical Director of MAT Services, Keystone Behavioral Health Data sources: A PubMed search of human studies published in English through July 2020 Services, USA 2 was conducted using the broad search terms “Methamphetamine” and “Sleep”. Medical Director of Sleep Medicine, Geisinger Holy Spirit, USA Study selection: 105 articles were identified and reviewed; 2 studies met the inclusion Correspondence: Kawish Garg, Medical Director of Sleep criteria. Medicine, Geisinger Holy Spirit, 550 North 12th St Lemoyne, PA 17043, USA, Tel 717-975-8585, Email Data extraction: Study design, sample size, medications dose and duration, and sleep related outcomes were reviewed. Received: September 10, 2020 | Published: September 23, 2020 Data synthesis: This is some evidence for Modafinil and Mirtazapine for disrupted sleep due to Methamphetamine use, however it is limited by small sample size of the studies. Conclusion: Treatment of disrupted sleep due to Methamphetamine use, remains challenging. Modafinil and mirtazapine appear to show promise, but further research is warranted before making any evidence-based recommendations. Keywords: methamphetamine, sleep Abbreviations: NSDUH, national survey on -
9.18.19 Didactic
STIMULANTS- PART I Michael H. Baumann, Ph.D. Designer Drug Research Unit (DDRU), Intramural Research Program, NIDA, NIH Baltimore, MD 21224 Chronology of Stimulant Misuse 1. 1980s: Cocaine 2. 1990s: Ecstasy 3. Summary 2 Topics Covered for Each Substance Chemistry Formulations and Methods of Use Pharmacokinetics and Metabolism Desired and Adverse Effects Chronic and Withdrawal Effects Neurobiology Treatments 1980s: Cocaine Cocaine, a Plant-Based Alkaloid Andean Cocaine is Trafficked Globally UNODC World Drug Report, 2012 Formulations and Methods of Use Cocaine Free Base (i.e., Crack) Smoking of free base “rock” using pipes Cocaine HCl Intravenous injection of solutions using needle and syringe Intranasal snorting of powder Pharmacokinetics and Metabolism Pharmacokinetics Smoked drug reaches brain within seconds Intravenous drug reaches brain within seconds Intranasal drug reaches brain within minutes Metabolism Ester hydrolysis to benzoylecgonine Ecgonine methyl ester Cone, 1995 Rate Hypothesis of Drug Reward Smoked and Intravenous Routes Faster rate of drug entry into the brain Enhanced subjective and rewarding effects Intranasal and Oral Routes Slower rate of drug entry into the brain Reduced subjective and rewarding effects Desired Effects Enhanced Mood and Euphoria Increased Attention and Alertness Decreased Need for Sleep Appetite Suppression Sexual Arousal Adverse Effects Psychosis Tachycardia, Arrhythmias, Heart Attack Hypertension, Stroke Hyperthermia, Rhabdomyolysis Multisystem Organ Failure Tolerance- -
Potential Brain Neuronal Targets for Amphetamine-, Methylphenidate
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 14128–14133, November 1996 Neurobiology Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat (immediate-early geneyprotooncogeneyanterior hypothalamic nucleusystriatumydopaminergic system) JIANG-SHENG LIN*, YIPING HOU, AND MICHEL JOUVET De´partementde Me´decineExpe´rimentale, Institut National de la Sante´et de la Recherche Me´dicaleUnite´52, Centre National de la Recherche Scientifique ERS 5645, Faculte´deMe´decine, Universite´Claude Bernard, 8 avenue Rockefeller, 69373 Lyon, France Communicated by Jean-Pierre Changeux, Institut Pasteur, Paris, France, August 29, 1996 (received for review July 29, 1996) ABSTRACT Much experimental and clinical data suggest expression of IEGs occurs in the brain, c-fos is strongly expressed that the pharmacological profile of modafinil, a newly dis- in various specific cerebral areas following different stimuli, such covered waking substance, differs from those of amphetamine as electrical or pharmacological stimulation, stress, or sleep and methylphenidate, two classical psychostimulants. The deprivation (8–15). Thus, visualization of c-fos could serve as a brain targets on which modafinil acts to induce wakefulness, sensitive indicator of gene activation in individual target neurons however, remain unknown. A double-blind study using the activated following a given stimulus. protooncogene c-fos as experimental marker in the cat was, We have, therefore, developed Fos immunocytochemical pro- therefore, carried out to identify the potential target neurons cedures in both the rat and cat to visualize the potential targets of modafinil and compare them with those for amphetamine of modafinil and amphetamine in the central nervous system. -
The Role of the Parabrachial/Kolliker Fuse Respiratory Complex in the Control of Respiration
THE ROLE OF THE PARABRACHIAL/KOLLIKER FUSE RESPIRATORY COMPLEX IN THE CONTROL OF RESPIRATION by JOYCE A. BOON B.Sc. Honors The University of Alberta, 1967 M.Sc. The University of British Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES ZOOLOGY THE UNIVERSITY OF BRITISH COLUMBIA DECEMBER 2004 ©Joyce A. Boon, 2004 Abstract: My goal was to explore the role of the parabrachial/Kolliker Fuse region (PBrKF) of the pons in the production of "state-related" changes in breathing in rats. I hypothesized that the effects of changes in cortical activation state on breathing and respiratory sensitivity are relayed from the pontine reticular formation to the respiratory centres of the medulla via the PBrKF. I found that urethane anaesthetized Sprague Dawley rats spontaneously cycled between a cortically desynchronized state (State I) and a cortically synchronized state (State III), which were very similar to awake and slow wave sleep (SWS) states in unanaesthetized animals, based on EEG criteria. Urethane produced no significant respiratory depression or reduction in sensitivity to hypoxia or hypercapnia. However, breathing frequency (TR), tidal volume (VT) and total ventilation (V TOT) all increased on cortical activation, and changes in the relative sensitivity to hypoxia and hypercapnia with changes in state were similar to those seen in unanaesthetized rats. This indicated that the urethane model of sleep and wakefulness could be used to investigate the effects of cortical activation state on respiration. Since NMDA-type glutamate receptor mediated processes in the PBrKF are known to be important in respiratory control, I examined the role of the PBrKF as a relay site for state effects on respiration by blocking neurons with NMDA-type glutamate receptors with MK-801.