Linking Climate Change to Ecosystem Assembly and Functioning

Total Page:16

File Type:pdf, Size:1020Kb

Linking Climate Change to Ecosystem Assembly and Functioning Ecology he Transantarctic Mountains and after the LGM. To do this, the team is inroads into this field of knowledge. For terrestrial environments unsuitable for extend 3,000 miles across using advanced surface dating techniques example, they have shown the importance most organisms. Antarctica and are among the and ‘omics’ tools to reveal the response of of liquid water and soil leaching resulting Linking climate largest mountain chains in the soil ecosystems to altering climates, and from glacial melt for maintaining suitable How invertebrates survived during various world. This expanse is home to discover how soils might have hosted life habitats for microscopic organisms such glacial events of the LGM is a prime question large outlet glaciers such as the Beardmore when nearly all of the currently ice-free as nematodes. raised by the research team. While they can Tand Shackleton Glaciers. Today, Antarctica’s areas of Antarctica were completely observe that nematodes generally survive change to ice sheets are known to be receding, as covered by ice. SURVIVORS IN THE SOIL by going into a state of dormancy – named an aftermath of the Last Glacial Maximum Soils are vital for the functioning of “anhydrobiosis” – during dry and cold (LGM) around 21,000 years ago. The LGM THE RESPONSE OF SOIL ECOSYSTEMS ecosystems, running processes such as extremes like the LGM, it is assumed that was the most recent period when the AFTER GLACIAL RECESSION greenhouse gas absorption and organic invertebrates must have found places of refuge ecosystem assembly Earth’s ice sheets were at their greatest The ice-free areas of Antarctica provide matter degradation. Soil ecosystems during the ice ages. Non-glaciated soil settings extension, occurring after a period of a patchwork of relatively simple, yet respond to climate-driven disturbances existed at high elevations in the Transantarctic cooling during the Pleistocene epoch. habitable soil ecosystems, which makes such as altering temperatures and Mountains during the LGM; the research it an ideal model for scientific study. The atmospheric compositions, which can occur team suspected that refuges may be present and functioning How endemic organisms survived during team has been investigating the little over thousands to millions of years. In in these high-elevation, ice-free regions. these glacial events has been a previously understood question of how ecosystems shorter time-scales they may be affected However, in a study of the ice free areas in the As part of a collaborative project, Professor Byron Adams neglected question. Even in this region’s in this area have changed in response by physical events such as being wetted, Beardmore Glacier region, they identified high (Brigham Young University) and colleagues Diana Wall (Colorado apparent desolation, there are networks of to glacial recession by considering the induced by glacial melt. As a result of concentrations of nitrate salts in the high- life unfolding within the soils. Antarctica’s biotic and abiotic factors at play. Climate, warming since the LGM, receding glaciers elevation soils. Despite these exposed regions State University), (University of Colorado), Noah Fierer Berry remote landscapes are of great interest species interactions and habitat suitability left behind varied patches of soils across being free of ice, the high salt content in the Lyons (The Ohio State University) in the USA, and Ian Hogg (Polar to scientists, with natural settings that are may drive the origins and structures Antarctica, holding unique geochemistry, soils would have been unsuitable habitats for Knowledge Canada) are investigating settings in the Transantarctic largely unspoiled by human activity. Now, of ecological communities, but little is and ecological communities. In addition invertebrates. The scientists are now curious Mountains to understand how land-based ecosystems have a multi-collaborative project, funded by known about how ecosystems respond to to the cold, the presence of salt and the as to whether appropriate habitats can be responded to climate change. The team is seeking to find out how the National Science Foundation (USA), is climate-driven environmental changes. It low carbon content of the soils adds to found in other high-altitude regions of the investigating the environmental factors that is supposed that glacial retreat after the the harshness of this setting. Soluble Antarctic or whether there are alternative communities of soil organisms changed and re-assembled as they have hosted life here, and how ecosystems LGM left behind new habitats for life forms salts have a weathering effect on soils, ways in which ecosystems functioned through emerged from the last ice age. reacted to glacial events before, during, to re-colonise and the team has made but in high concentrations can make the Pleistocene. The ice-free areas of Antarctica provide a patchwork of relatively simple, yet habitable soil ecosystems 66 Ecology Detail RESEARCH OBJECTIVES The team’s work focuses on the Is the use of DNA sequencing tools and mitigate the impact of rapid climate maps, aerial photographs and interaction between climate and a novel method for investigating soil change on natural and managed satellite imagery (provided by the ecosystems. In particular, they ecosystems in the Antarctic? ecosystems, such as in agriculture and Polar Geospatial Center), very few are interested in working out how DNA sequencing sees frequent use in forestry. people, if any, have actually been on phylogenetic history, functional diversity, Antarctic ecosystems to characterise the ground at the locations where and abiotic environmental components biodiversity. However, our work is What features and patterns are we need to work and so we’ll need influence ecosystem-level responses to novel in that we are also interested in you expecting to find at Shackleton to be really flexible in terms of how climate change. characterising specific genes that confer Glacier, and how may they differ to the and where we set up our sampling important ecological functions of the Beardmore Glacier? transects. FUNDING organisms that possess them. In order Due to logistic constraints our previous NSF to do this we are not only sequencing work at the Beardmore Glacier allowed only How do you think Antarctica’s environmental DNA so thoroughly that a few hours on the ground at three different environment and ecosystems will CONTACT we can reconstruct the entire genome features. This year the National Science alter in the near future? Byron Adams, PhD of every species in each sample, but by Foundation is providing us with helicopter Global and regional climate models 4102 Life Sciences Building sequencing the transcriptomes of each support to nine different areas in the predict amplified warming throughout Department of Biology organism in the sample we’ll get a very region, allowing us to collect and analyse a the Transantarctic Mountains. While Brigham Young University precise picture of the functional role each greater number of samples across a larger we predict increased warming to Provo, UT 84602 species plays in the ecosystem as well. spatial scale, and from areas for which result in increased glacial meltwater, USA we can obtain accurate surface exposure resulting in warmer, wetter soils Can your research insights and dates. Thus, we predict that we can recover and hospitable habitat, some of our E: [email protected] methods be applied to other regions consistent patterns of ecosystem assembly previous experimental work shows T: + 1 801 423 7889 of the world? and functioning along a spatial and that warmed soils can also become W: https://adamslab.byu.edu/ We hope that by figuring out how these temporal gradient since the LGM. drier, resulting in poorer habitat and relatively simple soil communities have decreased ecosystem functioning. It responded to gradual global warming What do you think will be the main will be important to monitor these Above: Map of the Shackleton Glacier; red stars indicate features to be studied. Below: Schematic representation since the Pleistocene, our work can challenges faced by your team at regions of Antarctica in the coming of present and LGM surface profiles of Shackleton Glacier. LGM reconstructions are based on modelled and inform predictive models and ongoing Shackleton Glacier? years. measured mean upper limits of the East Antarctic Ice Sheet. All features have terrestrial ecosystems that were most research that aims to better understand Although we have access to excellent likely exposed during the Pleistocene except for Mt. Nilsen, Cathedral Peaks, and the vast majority of Mt. Heekin. Adapted from "Central Transantarctic Mountains: McMurdo Dry Valleys to Wisconsin Range" by Brad Herried, Polar Geospatial Center, Reference ID: ANT REF-MS2006-001. THE NEXT STEP – AN EXCURSION TO help address their question of how living relationships among all the life forms in the SHACKLETON GLACIER organisms respond to glacial recession, and ecosystem. These genealogical histories are In an upcoming excursion to the Shackleton perhaps inform models of how they may represented as phylogenetic trees, much Glacier region of the Transantarctic do so in the future. One hypothesis is that like family trees. These data can then be Mountains, the team will be digging into complex interactions between organisms associated with features of the corresponding these questions on how climate-driven would have increased as the ice receded. By habitat, and compared with historic
Recommended publications
  • Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET NEW YORK, N.Y
    NovitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET NEW YORK, N.Y. 10024 U.S.A. NUMBER 2552 OCTOBER 15, 1974 EDWIN H. COLBERT AND JOHN W COSGRIFF Labyrinthodont Amphibians from Antarctica Labyrinthodont Amphibians from Antarctica EDWIN H. COLBERT Curator Emeritus, The Amer'wan Museum of Natural History Professor Emeritus, Columbia University Curator of Vertebrate Paleontology The Museum of Northern Arizona, Flagstaff JOHN W COSGRIFF Associate Professor of Biology Wayne State University, Michigan AMERICAN MUSEUM NOVITATES NUMBER 2552, pp. 1-30, figs. 1-20, table 1 ISSN 0003-0082 Issued October 15, 1974 Price $1.95 Copyright © The American Museum of Natural History 1974 ABSTRACT ian which, following further comparative studies, Labyrinthodont amphibians from the Lower is identified in the present paper as a brachyopid. Triassic Fremouw Formation of Antarctica are The discovery of this specimen-an accidental described. These consist of a fragment of a lower event tangential to Barrett's study of the geology jaw collected at Graphite Peak in the Transant- of the Transantarctic Mountains in the general arctic Mountains in December, 1967, and various region of the Beardmore Glacier-was the stimu- fossils from Coalsack Bluff (west of the lus for a program of vertebrate paleontological Beardmore Glacier and some 140 km., or about collecting in Antarctica. An expedition under the 88 miles, northwest of Graphite Peak) during the auspices of the Institute of Polar Studies of The austral summer of 1969-1970 and from near the Ohio State University and the National Science junction of the McGregor and Shackleton Gla- Foundation went to the Beardmore Glacier area ciers (about 100 km., or 60 miles, more or less, during the austral summer of 1969-1970 for the to the east and a little south of Graphite Peak) during the austral summer of 1970-1971.
    [Show full text]
  • The Antarctic Sun, December 28, 2003
    Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program December 28, 2003 Photo by Kristan Hutchison / The Antarctic Sun A helicopter lands behind the kitchen and communications tents at Beardmore Camp in mid-December. Back to Beardmore: By Kristan Hutchison Researchers explore the past from temporary camp Sun staff ike the mythical town of Brigadoon, a village of tents appears on a glacial arm 50 miles L from Beardmore Glacier about once a decade, then disappears. It, too, is a place lost in time. For most people, a visit to Beardmore Camp is a trip back in history, whether to the original camp structure from 19 years ago, now buried under snow, or to the sites of ancient forests and bones, now buried under rock. Ever since Robert Scott collected fos- sils on his way back down the Beardmore Glacier in February 1912, geologists and paleontologists have had an interest in the rocky outcrops lining the broad river of ice. This year’s Beardmore Camp was the third at the location on the Lennox-King Glacier and the researchers left, saying there Photo by Andy Sajor / Special to The Antarctic Sun Researchers cut dinosaur bones out of the exposed stone on Mt. Kirkpatrick in December. See Camp on page 7 Some of the bones are expected to be from a previously unknown type. INSIDE Quote of the Week Dinosaur hunters Fishing for fossils “The penguins are happier than Page 9 Page 11 Trackers clams.” Plant gatherers - Adelie penguin researcher summing Page 10 Page 12 up the attitude of a colony www.polar.org/antsun 2 • The Antarctic Sun December 28, 2003 Ross Island Chronicles By Chico That’s the way it is with time son.
    [Show full text]
  • 1 Compiled by Mike Wing New Zealand Antarctic Society (Inc
    ANTARCTIC 1 Compiled by Mike Wing US bulldozer, 1: 202, 340, 12: 54, New Zealand Antarctic Society (Inc) ACECRC, see Antarctic Climate & Ecosystems Cooperation Research Centre Volume 1-26: June 2009 Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Vessel names are shown viz: “Aconcagua” Ackroyd, Lieut. F: 1: 307, All book reviews are shown under ‘Book Reviews’ Ackroyd-Kelly, J. W., 10: 279, All Universities are shown under ‘Universities’ “Aconcagua”, 1: 261 Aircraft types appear under Aircraft. Acta Palaeontolegica Polonica, 25: 64, Obituaries & Tributes are shown under 'Obituaries', ACZP, see Antarctic Convergence Zone Project see also individual names. Adam, Dieter, 13: 6, 287, Adam, Dr James, 1: 227, 241, 280, Vol 20 page numbers 27-36 are shared by both Adams, Chris, 11: 198, 274, 12: 331, 396, double issues 1&2 and 3&4. Those in double issue Adams, Dieter, 12: 294, 3&4 are marked accordingly. Adams, Ian, 1: 71, 99, 167, 229, 263, 330, 2: 23, Adams, J.B., 26: 22, Adams, Lt. R.D., 2: 127, 159, 208, Adams, Sir Jameson Obituary, 3: 76, A Adams Cape, 1: 248, Adams Glacier, 2: 425, Adams Island, 4: 201, 302, “101 In Sung”, f/v, 21: 36, Adamson, R.G. 3: 474-45, 4: 6, 62, 116, 166, 224, ‘A’ Hut restorations, 12: 175, 220, 25: 16, 277, Aaron, Edwin, 11: 55, Adare, Cape - see Hallett Station Abbiss, Jane, 20: 8, Addison, Vicki, 24: 33, Aboa Station, (Finland) 12: 227, 13: 114, Adelaide Island (Base T), see Bases F.I.D.S. Abbott, Dr N.D.
    [Show full text]
  • 2003-2004 Science Planning Summary
    2003-2004 USAP Field Season Table of Contents Project Indexes Project Websites Station Schedules Technical Events Environmental and Health & Safety Initiatives 2003-2004 USAP Field Season Table of Contents Project Indexes Project Websites Station Schedules Technical Events Environmental and Health & Safety Initiatives 2003-2004 USAP Field Season Project Indexes Project websites List of projects by principal investigator List of projects by USAP program List of projects by institution List of projects by station List of projects by event number digits List of deploying team members Teachers Experiencing Antarctica Scouting In Antarctica Technical Events Media Visitors 2003-2004 USAP Field Season USAP Station Schedules Click on the station name below to retrieve a list of projects supported by that station. Austral Summer Season Austral Estimated Population Openings Winter Season Station Operational Science Opening Summer Winter 20 August 01 September 890 (weekly 23 February 187 McMurdo 2003 2003 average) 2004 (winter total) (WinFly*) (mainbody) 2,900 (total) 232 (weekly South 24 October 30 October 15 February 72 average) Pole 2003 2003 2004 (winter total) 650 (total) 27- 34-44 (weekly 17 October 40 Palmer September- 8 April 2004 average) 2003 (winter total) 2003 75 (total) Year-round operations RV/IB NBP RV LMG Research 39 science & 32 science & staff Vessels Vessel schedules on the Internet: staff 25 crew http://www.polar.org/science/marine. 25 crew Field Camps Air Support * A limited number of science projects deploy at WinFly. 2003-2004 USAP Field Season Technical Events Every field season, the USAP sponsors a variety of technical events that are not scientific research projects but support one or more science projects.
    [Show full text]
  • The Transantarctic Mountains These Watercolor Paintings by Dee Molenaar Were Originally Published in 1985 with His Map of the Mcmurdo Sound Area of Antarctica
    The Transantarctic Mountains These watercolor paintings by Dee Molenaar were originally published in 1985 with his map of the McMurdo Sound area of Antarctica. We are pleased to republish these paintings with the permission of the artist who owns the copyright. Gunter Faure · Teresa M. Mensing The Transantarctic Mountains Rocks, Ice, Meteorites and Water Gunter Faure Teresa M. Mensing The Ohio State University The Ohio State University School of Earth Sciences School of Earth Sciences and Byrd Polar Research Center and Byrd Polar Research Center 275 Mendenhall Laboratory 1465 Mt. Vernon Ave. 125 South Oval Mall Marion, Ohio 43302 Columbus, Ohio 43210 USA USA [email protected] [email protected] ISBN 978-1-4020-8406-5 e-ISBN 978-90-481-9390-5 DOI 10.1007/978-90-481-9390-5 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010931610 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover illustration: A tent camp in the Mesa Range of northern Victoria Land at the foot of Mt. Masley. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) We dedicate this book to Lois M. Jones, Eileen McSaveny, Terry Tickhill, and Kay Lindsay who were the first team of women to conduct fieldwork in the Transantarctic Mountains during the 1969/1970 field season.
    [Show full text]
  • Thrinaxodon from Graphite Peak, Central Transantarctic Mountains
    Thrinaxodon from Graphite Peak, Kenyon in the Cumulus Hills near the Shackleton Glacier, while the other two were from Graphite Peak. central Transantarctic Mountains, The Thrinaxodon maxilla (AMNH number 26101) from Antarctica Graphite Peak under consideration here is a negative impres- sion in very well cemented, siliceous siltstone. A positive latex peel was made for study purposes. The specimen shows the four right incisors typical of galesaurids plus one from the left WILLIAM R. HAMMER side. The right canine and five postcanine teeth are also pre- served. The postcanines show the typical tricuspid pattern of Department of Geology Thrinaxodon liorhinus, with a large central cusp flanked by an- Augtistana College terior and posterior cingulum cusps. The tooth bearing portion Rock Island, Illinois 61201 of the maxilla measures 4 centimeters in length. Posterior to this section the specimen consists of a poorly exposed thin edge of bone that extends for another 3 centimeters. Only the During the 1985-1986 austral summer, vertebrate specimens ventral edge of the right mandible is exposed, because its dor- were collected from both the late Early to early Middle Triassic sal portion is overlapped by the maxilla. upper Fremouw Formation (Hammer 1990; Hammer, Collin- Overall the specimen shows no features that would make it son, and Ryan 1990) and the Early Scythian (earliest Triassic) a new species of Thrinaxodon. It is, however, very fragmentary, lower Fremouw Formation (Hammer et al. 1986; Hammer 1989) and hence, it is only questionably referred to Thrinaxodon lior- in the Beardmore Glacier region. The primary vertebrate lo- hinus. calities in the lower member of the formation in this area were This research was supported by National Science Founda- Coalsack Bluff and Graphite Peak (see Hammer 1989; Hammer tion grants DPP 85-11334, DPP 86-14140, and DPP 84-18428 to 1990).
    [Show full text]
  • Dr. John L. Isbell Department of Geosciences, University of Wisconsin-Milwaukee P.O
    Dr. John L. Isbell Department of Geosciences, University of Wisconsin-Milwaukee P.O. Box 413, Milwaukee, WI 53201 Phone: (414) 229-2877 e-mail: [email protected] http://www.uwm.edu/People/jisbell/index.html EDUCATION 1990 Ph.D., Geology. THE OHIO STATE UNIVERSITY, Columbus, Ohio. Dissertation Topic: Fluvial sedimentology and basin analysis of the Permian Fairchild and Buckley Formations, Beardmore Glacier Region, and the Weller Coal Measures, southern Victoria Land, Antarctica. Dissertation Advisor: Dr. James W. Collinson. 1985 M.S., Geology. NORTHERN ILLINOIS UNIVERSITY, DeKalb, Illinois. Thesis topic: Palynology and sedimentology of Pennsylvanian strata in the northwestern portion of the Illinois Basin. Thesis advisors: Dr. Ross D. Powell and Dr. Hsin Yi Ling. 1981 B.A., Geology. AUGUSTANA COLLEGE, Rock Island, Illinois. Advisors: Dr. Richard Anderson and Dr. Fred H. Behnken. POSITIONS HELD 9/04-Present Professor: Department of Geosciences, The University of Wisconsin-Milwaukee. Clastic sedimentologist. 9/09-8/12 Department Chair: Department of Geosciences, The University of Wisconsin- Milwaukee. 9/98-9/04 Associate Professor: Department of Geosciences, The University of Wisconsin- Milwaukee. Clastic sedimentologist. 9/92-8/98 Assistant Professor: Department of Geosciences, The University of Wisconsin- Milwaukee. Clastic sedimentologist. 5/95-97 Project Contributor: Geological Evolution and Hydrocarbon Plays of the Southern South Atlantic. A joint international project utilizing the specialties of geologists from the Cambridge Arctic Shelf Programme, Cambridge, U.K.; Centro de Investigaciones Geologicas, La Plata, Argentina; University of Aberdeen, Scotland; Institute of Geophysics at the University of Texas-Austin; University of Cambridge, U.K.; and the Department of Geosciences at the University of Wisconsin-Milwaukee.
    [Show full text]
  • View 2017–18 (PDF)
    Here, There, The Burke is on the move. This April, we started As we look ahead to closing the current museum transporting millions of objects from the current at the end of this year, I’m grateful that our facility to the New Burke. While the distance from research, education outreach and community here to there is short (just 480 feet), the effort is partnerships take us everywhere. This year’s report monumental. But our crew of staff and volunteers features dispatches from our curators’ work in the is undaunted, bringing dedication, ingenuity and field, highlighting how your support helps the good humor to the process. Burke expand its reach, from the Northwest to the South Pole, mountain peaks to the deep sea. With gratitude, Julie K. Stein, Executive Director IT’S ALWAYS SUNNY IN FRONT: COLLECTING TROPICAL PEPPER PLANTS LA SELVA BIOLOGICAL STATION BIOLOGICAL LA SELVA PHOTO: ADA KALISZEWSKA Surf’s Up In ROATAN FRONT: SCUBA DIVING IN ROATAN CORREOS DE ISLA DE ROATAN, ISLAS DE BAJA, REP. DE HONDURAS, C.A. HONDURAS L.10.65 Año 2018 AEREO PHOTO: KATHERINE MASLENIKOV/BURKE MUSEUM GREETINGS FROM NOOKSACK VALLEY FRONT: GEORGE SWANASET SR., NOOKSACK MASTER CARVER FOREVER USA NOOKSACK VALLEY, WASHINGTON VALLEY, NOOKSACK PHOTO: SVEN HAAKANSON/BURKE MUSEUM the forayHAPPINESS IS FRONT: CALOCHORTUS EURYCARPUS (BIG-POD MARIPOSA LILY) 35¢ Mountain Goat PHOTO: MARK EGGER FOREST NATIONAL WALLOWA-WHITMAN We’veTHE NEWMoved BURKE FRONT: MOVING THE ORNITHOLOGY COLLECTION FOREVER USA FOREVER FOREVER USA UWBM ORNITHOLOGY DEPARTMENT UWBM ORNITHOLOGY PHOTO: CATHY MORRIS/BURKE MUSEUM PHOTO: ©2015, DAN ZAK/THE WASHINGTON POST ZAK/THE ©2015,DAN WASHINGTON PHOTO: TOOL AREANANCIENTWAVE-PILOTING STICKCHARTS FRONT: WAAN AELÕÑ IN MAJEL (CANOES OF THE MARSHALL ISLANDS ) MaRsHall IsLands 22 c A BLAST FROM THE PAST AT THE FRONT: SCHOOLCHILDREN AT THE BURKE, CA.
    [Show full text]
  • Holocene Thinning of Darwin and Hatherton Glaciers, Antarctica, and Implications for Grounding-Line Retreat in the Ross Sea
    The Cryosphere, 15, 3329–3354, 2021 https://doi.org/10.5194/tc-15-3329-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea Trevor R. Hillebrand1,a, John O. Stone1, Michelle Koutnik1, Courtney King2, Howard Conway1, Brenda Hall2, Keir Nichols3, Brent Goehring3, and Mette K. Gillespie4 1Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA 2School of Earth and Climate Science and Climate Change Institute, University of Maine, Orono, ME 04469, USA 3Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118, USA 4Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, 6856, Norway anow at: Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Correspondence: Trevor R. Hillebrand ([email protected]) Received: 8 December 2020 – Discussion started: 15 December 2020 Revised: 4 May 2021 – Accepted: 27 May 2021 – Published: 20 July 2021 Abstract. Chronologies of glacier deposits in the available records from the mouths of other outlet glaciers Transantarctic Mountains provide important constraints in the Transantarctic Mountains, many of which thinned by on grounding-line retreat during the last deglaciation in hundreds of meters over roughly a 1000-year period in the the Ross Sea. However, between Beardmore Glacier and Early Holocene. The deglaciation histories of Darwin and Ross Island – a distance of some 600 km – the existing Hatherton glaciers are best matched by a steady decrease in chronologies are generally sparse and far from the modern catchment area through the Holocene, suggesting that Byrd grounding line, leaving the past dynamics of this vast region and/or Mulock glaciers may have captured roughly half of largely unconstrained.
    [Show full text]
  • Antarctic Glacial Chronology: New Constraints from Surface Exposure Dating
    Antarctic Glacial Chronology: New constraints from surface exposure dating by Robert P. Ackert Jr. B.A., University ofMaine, 1979 M.S., University ofMaine, 1990 Submitted in partial fulfillment ofthe requirements for the degree of DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION JUNE 2000 © 2000 Robert P. Ackert Jr. all rights reserved The author hereby grants to MIT and WHOI pennission to reproduce paper and electronic copies ofthis thesis in whole or in part, and to distribute them publicly. Signature ofAuthor__~~~~_L...-----L(""""'_.~('r-=:::;;£....JI./(;.....::,::racy~::......-----&~ _ Joint Program in Oceanography Massachusetts Institute ofTechnology And Woods Hole Oceanographic Institution May 5, 2000 Certified Dr. Mark D. Kurz Thesis Supervisor Accepted by --=-- ...L-, _ Dr. Timohty L. Grove Chaihnan, Joint Committee for Marine Geology and Geophysics Massachusetts Institute ofTechnology / Woods Hole Oceanographic Institution Antarctic Glacial Chronology: New constraints from surface exposure dating by Robert P. Ackert Jr. Submitted to the Massachusetts Institute ofTechnology ­ Woods Hole Oceanographic Institution Joint Program in Oceanography on May 5, 2000, in partial fulfillment ofthe requirements for the degree of Doctor ofPhilosophy Abstract Surface exposure dating, using the concentration ofcosmogenic nuclides c'He, 21 Ne, and 36Cl) in moraine boulders, combined with mapping ofglacial moraines from three key locations, is used to provide new constraints to Antarctic glacial chronology. The results are used to reconstruct past West Antarctic Ice Sheet (WAIS) geometry and test models ofWAIS behavior. Mount Waesche is a volcanic nunatak near the dome ofthe WAIS in Marie Byrd Land. The Dominion Range is at the head ofthe Beardmore Glacier, an outlet glacier of the East Antarctic Ice Sheet in the Transantarctic Mountains.
    [Show full text]
  • Stable Isotopes of Nitrate, Sulfate, and Carbonate in Soils from the Transantarctic Mountains, Antarctica: a Record of Atmospheric Deposition and Chemical Weathering
    feart-08-00341 August 25, 2020 Time: 17:46 # 1 ORIGINAL RESEARCH published: 27 August 2020 doi: 10.3389/feart.2020.00341 Stable Isotopes of Nitrate, Sulfate, and Carbonate in Soils From the Transantarctic Mountains, Antarctica: A Record of Atmospheric Deposition and Chemical Weathering Melisa A. Diaz1,2*, Jianghanyang Li3, Greg Michalski3,4, Thomas H. Darrah1,5, Byron J. Adams6, Diana H. Wall7, Ian D. Hogg8,9, Noah Fierer10, Susan A. Welch1,2, Christopher B. Gardner1,2 and W. Berry Lyons1,2 1 School of Earth Sciences, The Ohio State University, Columbus, OH, United States, 2 Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States, 3 Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, United States, 4 Department of Chemistry, Purdue University, West Lafayette, IN, United States, 5 Global Water Institute, The Ohio State University, Columbus, OH, United States, 6 Department of Biology, Evolutionary Ecology Laboratories and Monte L. Bean Museum, Brigham Young University, Provo, UT, Edited by: United States, 7 Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Melissa Jean Murphy, Collins, CO, United States, 8 Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, University College London, Canada, 9 School of Science, University of Waikato, Hamilton, New Zealand, 10 Department of Ecology and Evolutionary United Kingdom Biology and Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO, United States Reviewed by: Ruth Hindshaw, University of Cambridge, Soils in ice-free areas in Antarctica are recognized for their high salt concentrations United Kingdom Peter Michael Wynn, and persistent arid conditions.
    [Show full text]
  • US Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and Their Postal Cachets: US Navy (1946–48, 1954–60), International
    Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and their Postal Cachets: U.S. Navy (1946–48, 1954–60), International Geophysical Year (1957–58), and USGS (1960–2006) By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors Open-File Report 2006–1116 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Cover: 2006 postal cachet commemorating sixty years of USGS scientific innovation in Antarctica (designed by Kenneth W. Murphy and Tony K. Meunier, art work by Kenneth W. Murphy). ii Table of Contents Introduction......................................................................................................................................................................1 Selected.References.........................................................................................................................................................2
    [Show full text]