Cross-Linked Enzyme Aggregates (CLEA) in Enzyme Improvement – a Review

Total Page:16

File Type:pdf, Size:1020Kb

Cross-Linked Enzyme Aggregates (CLEA) in Enzyme Improvement – a Review Biocatalysis 2015; 1: 166–177 Review Open Access Susana Velasco-Lozano*, Fernando López-Gallego, Juan C. Mateos-Díaz, Ernesto Favela-Torres Cross-linked enzyme aggregates (CLEA) in enzyme improvement – a review DOI 10.1515/boca-2015-0012 industries [1-3]. However, to be profitable at the industrial Received September 17, 2015; Accepted November 25, 2015 level, industrial enzymes must allow easy handling Abstract: Structural and functional catalytic and operation procedures, stability and reuse. For this characteristics of cross-linked enzyme aggregates purpose, enzyme immobilization has emerged as a tool (CLEA) are reviewed. Firstly, advantages of enzyme to produce robust industrial biocatalysts; and it has been immobilization and existing types of immobilization employed over the last forty years for the successful are described. Then, a wide description of the factors utilization of enzymes in industrial processes [4]. that modify CLEA activity, selectivity and stability is Immobilization is defined as the confinement of presented. Nowadays CLEA offers an economic, simple enzymes in a defined space, retaining their catalytic and easy tool to reuse biocatalysts, improving their activity and allowing their repeated and continuous catalytic properties and stability. This immobilization use [5]. Furthermore, immobilization of enzymes must methodology has been widely and satisfactorily tested meet other criteria to obtain robust biocatalysts. Any with a great variety of enzymes and has demonstrated immobilized enzyme should comprise non-catalytic its potential as a future tool to optimize biocatalytic requirements (shape, size, thickness, length, etc.) processes. designed to aid separation and reuse; as well as, catalytic requirements (activity, selectivity, stability, pH and Keywords: cross-linking, enzyme, immobilization, temperature optimum, etc.) designed to convert the target stabilization compounds [6]. The immobilization of enzymes affects their conformation, rigidity and aggregation state, modifying their reactivity [7]. Thus, enzyme immobilization has 1 Introduction been also utilized to modulate enzyme selectivity [8-10]. The immobilization of enzymes offers the following Enzymes play an important role in relevant advantages: 1) The possibility of reuse, 2) The increase in biotechnological processes in energy, food and chemical stability, such as resistance to high temperatures, extreme pHs, high substrate concentration, polar solvents, mechanical shear, among others, 3) Increased volumetric *Corresponding author: Susana Velasco-Lozano, Heterogeneous activity, and 4) Increase and modulation of selectivity, Biocatalysis group, CIC Biomagune, Parque Tecnológico de San Sebastián, Edificio Empresarial “C”, Paseo Miramón 182, 20009, such as regio-, acyl-, chemo- and enantioselectivity [11-14]. Donostia-San Sebastián Guipúzcoa, Spain, E-mail: svelasco@ Methods with physical or chemical interactions are cicbiomagune.es used for enzyme immobilization. When physical methods Susana Velasco-Lozano, Ernesto Favela-Torres, Departamento de are used, the enzyme does not undergo structural changes Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa. Av. as it is physically attached or trapped by the support San Rafael Atlixco #186, Col. Vicentina 09340, D.F. México Fernando López-Gallego, Heterogeneous Biocatalysis group, CIC structure. The main advantage being that the immobilized Biomagune, Parque Tecnológico de San Sebastián, Edificio Empre- enzyme, trapped or encapsulated, nearly maintains its sarial “C”, Paseo Miramón 182, 20009, Donostia-San Sebastián native state; allowing its reuse and, in most cases, an Guipúzcoa, Spain improvement in the enzyme stability [15-17]. However, the Fernando López-Gallego, Ikerbasque, Basque Foundation for Sci- main disadvantage is that the union between the support ence, 48011, Bilbao, Spain and the enzyme is very weak; causing enzyme leakage Juan C. Mateos-Díaz, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Biotec- while the biocatalyst is operating in aqueous medium. nología Industrial, Guadalajara, México Adsorption, entrapment, and encapsulation are the © 2016 Susana Velasco-Lozano et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Cross-linked enzyme aggregates (CLEA) in enzyme improvement – a review 167 more representative types of physical immobilization. In successfully used through the last fifteen years over a contrast, chemical immobilization may alter the protein wide range of enzymes, and has proved to be an easy, fast, structure because enzymes are attached on the surface efficient and suitable approach in enzyme optimization; and/or inside the support by chemical bonds which may therefore, in this mini-review we summarize a battery of modify its shape, rigidity and aggregation state [18]. examples where enzymes properties has been improved Covalent bonding to substrates and self-immobilization by this technology. are within these types of immobilization. Immobilization of enzymes by covalent attachment to a support is a method in which proteins are irreversibly 2 Carrier-free immobilization types, linked. To achieve immobilization, the reactive amino advantages and disadvantages. groups of amino acids such as lysine, typically present in the surface of proteins, are mainly used. With these amino The carrier-free immobilized enzymes do not need acids, the covalent attachment of enzymes to a reactive an extra inactive mass, the support. They are usually group of the support leads to a highly stable covalent produced by direct cross-linking of dissolved enzymes bond. Epoxides are commonly used as reactive groups (CLE), crystallized enzymes (CLEC), and aggregated on supports to react with the amino groups of lysine enzymes (CLEA). within the enzyme [19]. Covalent attachment usually The first report of such structures was described by provides the strongest bond between the enzyme and Quiocho and Richards [25], who found that insoluble the support compared to other types of immobilization, proteins linkage could be obtained by using bifunctional being able to minimize the leakage of enzyme from the cross-linking chemical groups, such as glutarladehyde. support [18]. Besides allowing its reuse, the majority of These linked proteins known as cross-linked enzymes supports provide the enzyme with a protective barrier (CLE) retained their catalytic activity. When the link is [14]. Nonetheless, in many cases, the supports used have based on purified enzymes, linked proteins are known as high prices raising the cost of production of the thereby cross-linked enzyme crystals (CLEC) [26]. However, at the immobilized biocatalysts [20]; on the other hand, carrier- time the work of Quiocho and Richards was published, the free immobilization or self-immobilization is possible efforts in immobilization research were focused towards since it achieves linking of two enzyme molecules through immobilization by adsorption, entrapment and chemical bifunctional cross- linking agents or simply cross-linkers bonding to supports, due to the low activity and stability without the use of a support. The bifunctional compound retention that CLE exhibited. These structures began to be most commonly used for this purpose is glutaraldehyde studied more intensively in the 1990’s [11,27]. (GA) [21], which is a small dialdehyde molecule. Some The CLE are formed with proteins in solution that are advantages of self-immobilization are greater volumetric linked together by a cross-linking agent having sizes from activity per biocatalyst mass, increased specific activity, 1 to 100 μm. Compared to the native enzymes, this type of easier production, reduced production costs, higher biocatalyst improves their thermal stability, but requires purity, less interferences and/or contaminations by the the care of various factors such as pH, the amount of cross- support and lower mass transfer limitations [6,22]. Carrier- linking agent, ionic strength and temperature. However, free immobilized enzymes are advantageous catalysts in CLE present disadvantages such as low native activity processes requiring high yields and productivities, where retention (usually less than 50%), poor reproducibility, enzymes cannot be stabilized through the conventional and low mechanical stability [6]. These inconveniences solid supports [23]. have been partially overcome by entrapping CLE in a gel Although there are many immobilization strategies, matrix or membranes [28-30]. none of them overcome all enzymes’ limitations in all Along with CLE, studies were directed to the production kinds of processes. The selection of specific strategies of CLEC, that are suitable for biotransformations in non- of immobilization will depend on many factors such aqueous media, due to its high stability under harsh as limitations inherent to the enzyme and the process conditions [25,31]. CLEC are crystalline proteins, bonded in which it will be used [24]. Thus, the selection of the together with a cross-linking agent. They achieved best enzyme immobilization technique will depend on improved mechanical strength and high stability against its application demands as well as the balance between temperature, pH, organic solvents and proteolysis cost-production and the potential uses of the immobilized [22,32,33]. For instance, lipase-CLEC have been developed biocatalyst on its direct application. In this context, cross- in
Recommended publications
  • Improved Catalytic Performance of Carrier-Free Immobilized Lipase by Advanced Cross-Linked Enzyme Aggregates Technology
    Improved Catalytic Performance of Carrier-Free Immobilized Lipase by Advanced Cross-Linked Enzyme Aggregates Technology Xia Jiaojiao Jiangsu University of Science and Technology: Jiangsu University Yan Yan Jiangsu University Bin Zou ( [email protected] ) Jiangsu University https://orcid.org/0000-0003-3816-8776 Adesanya Idowu Onyinye Jiangsu University Research Article Keywords: lipase, carrier-free, immobilization, ionic liquid, stability Posted Date: May 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-505612/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract The cross-linked enzyme aggregates (CLEAs) are one of the technologies that quickly immobilize the enzyme without a carrier. This carrier-free immobilization method has the advantages of simple operation, high reusability and low cost. In this study, ionic liquid with amino group (1-aminopropyl-3- methylimidazole bromideIL) was used as the novel functional surface molecule to modify industrialized lipase (Candida rugosa lipase, CRL). The enzymatic properties of the prepared CRL-FIL-CLEAs were investigated. The activity of CRL-FIL-CLEAs (5.51 U/mg protein) was 1.9 times higher than that of CRL- CLEAs without surface modication (2.86 U/mg protein). After incubation at 60℃ for 50 min, CRL-FIL- CLEAs still maintained 61% of its initial activity, while the value for CRL-CLEAs was only 22%. After repeated use for ve times, compared with the 22% residual activity of CRL-CLEAs, the value of CRL-FIL- CLEAs was 51%. Further kinetic analysis indicated that the Km values for CRL-FIL-CLEAs and CRL-CLEAs were 4.80 mM and 8.06 mM, respectively, which was inferred that the anity to substrate was increased after modication.
    [Show full text]
  • A Reminder… Chirality: a Type of Stereoisomerism
    A Reminder… Same molecular formula, isomers but not identical. constitutional isomers stereoisomers Different in the way their Same connectivity, but different atoms are connected. spatial arrangement. and trans-2-butene cis-2-butene are stereoisomers. Chirality: A Type of Stereoisomerism Any object that cannot be superimposed on its mirror image is chiral. Any object that can be superimposed on its mirror image is achiral. Chirality: A Type of Stereoisomerism Molecules can also be chiral or achiral. How do we know which? Example #1: Is this molecule chiral? 1. If a molecule can be superimposed on its mirror image, it is achiral. achiral. Mirror Plane of Symmetry = Achiral Example #1: Is this molecule chiral? 2. If you can find a mirror plane of symmetry in the molecule, in any achiral. conformation, it is achiral. Can subject unstable conformations to this test. ≡ achiral. Finding Chirality in Molecules Example #2: Is this molecule chiral? 1. If a molecule cannot be superimposed on its mirror image, it is chiral. chiral. The mirror image of a chiral molecule is called its enantiomer. Finding Chirality in Molecules Example #2: Is this molecule chiral? 2. If you cannot find a mirror plane of symmetry in the molecule, in any conformation, it is chiral. chiral. (Or maybe you haven’t looked hard enough.) Pharmacology of Enantiomers (+)-esomeprazole (-)-esomeprazole proton pump inhibitor inactive Prilosec: Mixture of both enantiomers. Patent to AstraZeneca expired 2002. Nexium: (+) enantiomer only. Process patent coverage to 2007. More examples at http://z.umn.edu/2301drugs. (+)-ibuprofen (-)-ibuprofen (+)-carvone (-)-carvone analgesic inactive (but is converted to spearmint oil caraway oil + enantiomer by an enzyme) Each enantiomer is recognized Advil (Wyeth) is a mixture of both enantiomers.
    [Show full text]
  • Part I Principles of Enzyme Catalysis
    j1 Part I Principles of Enzyme Catalysis Enzyme Catalysis in Organic Synthesis, Third Edition. Edited by Karlheinz Drauz, Harald Groger,€ and Oliver May. Ó 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA. j3 1 Introduction – Principles and Historical Landmarks of Enzyme Catalysis in Organic Synthesis Harald Gr€oger and Yasuhisa Asano 1.1 General Remarks Enzyme catalysis in organic synthesis – behind this term stands a technology that today is widely recognized as a first choice opportunity in the preparation of a wide range of chemical compounds. Notably, this is true not only for academic syntheses but also for industrial-scale applications [1]. For numerous molecules the synthetic routes based on enzyme catalysis have turned out to be competitive (and often superior!) compared with classic chemicalaswellaschemocatalyticsynthetic approaches. Thus, enzymatic catalysis is increasingly recognized by organic chemists in both academia and industry as an attractive synthetic tool besides the traditional organic disciplines such as classic synthesis, metal catalysis, and organocatalysis [2]. By means of enzymes a broad range of transformations relevant in organic chemistry can be catalyzed, including, for example, redox reactions, carbon–carbon bond forming reactions, and hydrolytic reactions. Nonetheless, for a long time enzyme catalysis was not realized as a first choice option in organic synthesis. Organic chemists did not use enzymes as catalysts for their envisioned syntheses because of observed (or assumed) disadvantages such as narrow substrate range, limited stability of enzymes under organic reaction conditions, low efficiency when using wild-type strains, and diluted substrate and product solutions, thus leading to non-satisfactory volumetric productivities.
    [Show full text]
  • L-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System
    catalysts Article L-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System María José Rodríguez-Alonso 1,2, Felipe Rodríguez-Vico 1,2, Francisco Javier Las Heras-Vázquez 1,2 and Josefa María Clemente-Jiménez 1,2,* 1 Department of Chemistry and Physic, University of Almeria, The Agrifood Campus of International Excellence, ceiA3, E-04120 Almería, Spain; [email protected] (M.J.R.-A.); [email protected] (F.R.-V.); [email protected] (F.J.L.H.-V.) 2 Research Centre for Agricultural and Food Biotechnology, BITAL, E-04120 Almería, Spain * Correspondence: [email protected]; Tel.: +34-950-015-055 Academic Editor: Manuel Ferrer Received: 4 May 2017; Accepted: 15 June 2017; Published: 20 June 2017 Abstract: Protein immobilization is proving to be an environmentally friendly strategy for manufacturing biochemicals at high yields and low production costs. This work describes the optimization of the so-called “double-racemase hydantoinase process,” a system of four enzymes used to produce optically pure L-amino acids from a racemic mixture of hydantoins. The four proteins were immobilized separately, and, based on their specific activity, the optimal whole relation was determined. The first enzyme, D,L-hydantoinase, preferably hydrolyzes D-hydantoins from D,L-hydantoins to N-carbamoyl-D-amino acids. The remaining L-hydantoins are racemized by the second enzyme, hydantoin racemase, and continue supplying substrate D-hydantoins to the first enzyme. N-carbamoyl-D-amino acid is racemized in turn to N-carbamoyl-L-amino acid by the third enzyme, carbamoyl racemase. Finally, the N-carbamoyl-L-amino acid is transformed to L-amino acid by the fourth enzyme, L-carbamoylase.
    [Show full text]
  • Screening of Macromolecular Cross-Linkers and Food-Grade Additives for Enhancement of Catalytic Performance of MNP-CLEA-Lipase of Hevea Brasiliensis
    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP-CLEA-lipase of hevea brasiliensis To cite this article: Nur Amalin Ab Aziz Al Safi and Faridah Yusof 2020 IOP Conf. Ser.: Mater. Sci. Eng. 932 012019 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.202.226 on 23/09/2021 at 18:45 1st International Conference on Science, Engineering and Technology (ICSET) 2020 IOP Publishing IOP Conf. Series: Materials Science and Engineering 932 (2020) 012019 doi:10.1088/1757-899X/932/1/012019 Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP- CLEA-lipase of hevea brasiliensis. Nur Amalin Ab Aziz Al Safi1 and Faridah Yusof1 1 Department of Biotechnology Engineering, International Islamic University Malaysia. Abstract. Skim latex from Hevea brasiliensis (rubber tree) consist of many useful proteins and enzymes that can be utilized to produce value added products for industrial purposes. Lipase recovered from skim latex serum was immobilized via cross-linked enzyme aggregates (CLEA) technology, while supported by magnetic nanoparticles for properties enhancement, termed ‘Magnetic Nanoparticles CLEA-lipase’ (MNP-CLEA-lipase). MNP-CLEA-lipase was prepared by chemical cross-linking of enzyme aggregates with amino functionalized magnetic nanoparticles. Instead of using glutaraldehyde as cross-linking agent, green, non-toxic and renewable macromolecular cross-linkers (dextran, chitosan, gum Arabic and pectin) were screened and the best alternative based on highest residual activity was chosen for further analysis.
    [Show full text]
  • Chirality in Chemical Molecules
    Chirality in Chemical Molecules. Molecules which are active in human physiology largely function as keys in locks. The active molecule is then called a ligand and the lock a receptor. The structures of both are highly specific to the degree that if one atom is positioned in a different position than that required by the receptor to be activated, then no stimulation of the receptor or only partial activation can take place. Again in a similar fashion if one tries to open the front door with a key that looks almost the same than the proper key for that lock, one will usually fail to get inside. A simple aspect like a lengthwise groove on the key which is on the left side instead of the right side, can mean that you can not open the lock if your key is the “chirally incorrect” one. The second aspect to understand is which molecules display chirality and which do not. The word chiral comes from the Greek which means “hand-like”. Our hands are mirror images of each other and as such are not identical. If they were, then we would not need a right hand and left hand glove. We can prove that they are not identical by trying to lay one hand on top of the other palms up. When we attempt to do this, we observe that the thumbs and fingers do not lie on top of one another. We say that they are non-super imposable upon one another. Since they are not the same and yet are mirror images of each other, they are said to exhibit chirality.
    [Show full text]
  • Chapter 4: Stereochemistry Introduction to Stereochemistry
    Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.
    [Show full text]
  • Chirality and Enantiomers
    16.11.2010 Bioanalytics Part 5 12.11.2010 Chirality and Enantiomers • Definition: Optical activity • Properties of enantiomers • Methods: – Polarimetry – Circular dichroism • Nomenclature • Separation of enantiomers • Determination of enantiomeric excess (ee) Determination of absolute configuration • Enantiomeric ratio (E‐value) 1 16.11.2010 Definitions Enantiomers: the two mirror images of a molecule Chirality: non‐superimposable mirror‐images •Depends on the symmetry of a molecule •Point‐symmetry: asymmetric C, Si, S, P‐atoms •Helical structures (protein α‐helix) Quarz crystals snail‐shell amino acids Properties of Enantiomers – Chemical identical – Identical UV, IR, NMR‐Spectra – Differences: • Absorption and refraction of circular polarized light is different – Polarimetry, CD‐spectroscopy • Interaction with other chiral molecules/surfaces is different – Separation of enantiomers on chiral columns (GC, HPLC) 2 16.11.2010 Chiral compounds show optical activity A polarimeter is a device which measures the angle of rotation by passing polarized light through an „optical active“ (chiral) substance. Interaction of light and matter If light enters matter, its intensity (amplitude), polarization, velocity, wavelength, etc. may alter. The two basic phenomena of the interaction of light and matter are absorption (or extinction) and a decrease in velocity. 3 16.11.2010 Interaction of light and matter Absorption means that the intensity (amplitude) of light decreases in matter because matter absorbs a part of the light. (Intensity is the square of amplitude.) Interaction of light and matter The decrease in velocity (i.e. the slowdown) of light in matter is caused by the fact that all materials (even materials that do not absorb light at all) have a refraction index, which means that the velocity of light is smaller in them than in vacuum.
    [Show full text]
  • Chapter 8. Chiral Catalysts José M
    Chapter 8. Chiral Catalysts José M. Fraile, José I. García, José A. Mayoral 1. The Origin of Enantioselectivity in Catalytic Processes: the Nanoscale of Enantioselective Catalysis. Enantiomerically pure compounds are extremely important in fields such as medicine and pharmacy, nutrition, or materials with optical properties. Among the different methods to obtain enantiomerically pure compounds, asymmetric catalysis1 is probably the most interesting and challenging, in fact one single molecule of chiral catalyst can transfer its chiral information to thousands or even millions of new chiral molecules. Enantioselective reactions are the result of the competition between different possible diastereomeric reaction pathways, through diastereomeric transition states, when the prochiral substrate complexed to the chiral catalyst reacts with the corresponding reagent. The efficiency of the chirality transfer, measured as enantiomeric excess [% ee = (R−S)/(R+S) × 100], depends on electronic and steric factors in a very subtle form. A simple calculation shows that differences in energy of only 2 kcal/mol between these transition states are enough to obtain more than 90% ee, and small changes in any of the participants in the catalytic process can modify significantly this difference in energy. Those modifications may occur in the near environment of the catalytic centre, at less than 1 nm scale, but also at longer distances in the catalyst, substrate, reagent, solvent, or support in the case of immobilized catalysts. This is the reason because asymmetric
    [Show full text]
  • Chirality in Supramolecular Assemblies: Causes and Consequences F
    To purchase this product, please visit https://www.wiley.com/en-us/9781118867334 Chirality in Supramolecular Assemblies: Causes and Consequences F. Richard Keene (Editor) E-Book 978-1-118-86731-0 January 2017 $146.00 Hardcover 978-1-118-86734-1 November 2016 $182.00 O-Book 978-1-118-86733-4 December 2016 Available on Wiley Online Library DESCRIPTION Supramolecular chemistry deals with the organisation of molecules into defined assemblies using non-covalent interactions, including weaker and reversible interactions such as hydrogen bonds, and metal-ligand interactions. The aspect of stereochemistry within such chemical architectures, and in particular chirality, is of special interest as it impacts on considerations of molecular recognition, the development of functional materials, the vexed question of homochirality, nanoscale effects of interactions at interfaces, biocatalysis and enzymatic catalysis, and applications in organic synthesis. Chirality in Supramolecular Assemblies addresses many of these aspects, presenting a broad overview of this important and rapidly developing interdisciplinary field. Topics covered include: • Origins of molecular and topological chirality • Homochirogenesis • Chirality in crystallinity • Host-guest behavior • Chiral influences in functional materials • Chirality in network solids and coordination solids • Aspects of chirality at interfaces • Chirality in organic assemblies • Chirality related to biocatalysis and enzymes in organic synthesis. This book is a valuable reference for researchers in the molecular sciences, materials science and biological science working with chiral supramolecular systems. It provides summaries and special insights by acknowledged international experts in the various fields. ABOUT THE AUTHOR Emeritus Professor F. Richard Keene Adjunct Professor of Chemistry, School of Pharmacy & Molecular Sciences, James Cook University, Australia and Department of Chemistry, University of Canterbury, New Zealand.
    [Show full text]
  • A Review on Chiral Chromatography and Its Application to the Pharmaceutical Industry
    Chemsearch Journal 2(1): 8 - 11 Publication of Chemical Society of Nigeria, Kano Chapter CHIRAL CHROMATOGRAPHY AND ITS APPLICATION TO THE PHARMACEUTICAL INDUSTRY: A REVIEW Mudi, S. Y. and *Muhammad, A. Department of Pure and Industrial Chemistry, Bayero University, PMB 3011, Kano. *Correspondence author: [email protected] ABSTRACT Chiral chromatographic enantioseparation has been in practice by researchers. There has been a considerable interest in the synthesis and separation of enantiomers of organic compounds especially because of their importance in the biochemical and pharmaceutical industries. Often, these compounds are purified rather than being produced by chiral-specific synthesis. We herein present a general discussion that focuses on the chromatographic enantioseparation, which we hope will be useful to chromatographic and pharmaceutical industries. Keywords: Chiral chromatography, enantioseparation, pharmaceutical industry. INTRODUCTION giving differing affinities between the analytes Chromatography is the collective term for a set of (Schreier et al., 1995). laboratory techniques for the separation of mixtures. It The main goal of this review is to provide a brief involves passing a mixture dissolved in a "mobile overview of chiral separations to researchers who phase" through a “stationary phase”, which separates are versed in the area of analytical separations but the analyte from other compounds in the mixture unfamiliar with chiral separations. This review based on differential partitioning between the mobile highlights significant issues of the chiral and stationary phases. Subtle differences in a separations and provides salient examples from compound's partition coefficient result in differential specific classes of chiral selectors where retention on the stationary phase and thus effecting appropriate. the separation (Laurence and Christopher, 1989; Pascal et al., 2000).
    [Show full text]
  • A Tool for Chirality Control in Asymmetric Catalysis
    Flexibility – A Tool for Chirality Control in Asymmetric Catalysis Raivis Žalubovskis Doctoral Thesis Stockholm 2006 Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av filosofie doktorsexamen i kemi med inrikting mot organisk kemi, måndagen den 27 november, kl 10.00 i sal F3, KTH, Lindstedtsvägen 26, Stockholm. Avhandlingen försvaras på engelska. Opponent är Professor Alexandre Alexakis, Université de Genève, Schweiz. ISBN 91-7178-491-8 ISRN KTH/IOK/FR--06/104--SE ISSN 1100-7974 TRITA-IOK Forskningsrapport 2006:104 © Raivis Zalubovskis Universitetsservice US AB, Stockholm Zalubovskis, R. 2006 ”Flexibility – A Tool for Chirality Control in Asymmetric Catalysis”, Organic Chemistry, KTH Chemical Science and Engineering, SE-100 44 Stockholm, Sweden. Abstract This thesis deals with the design and synthesis of ligands for asymmetric catalysis: palladium catalyzed allylic alkylations, and rho- dium and iridium catalyzed hydrogenations of olefins. Chirally flexible phosphepine ligands based on biphenyl were synthesized and their properties were studied. The rotation barrier for configurationally flexible phosphepines was determined by NMR spectroscopy. The ratio of the atropisomers was shown to depend on the group bound to phosphorus. Only complexes with two homochiral ligands bound to the metal center were observed upon complexation with Rh(I). It was shown that one diastereomer of the flexible ligand exhibits higher activity but lower selectivity than its diastereomer in the rhodium catalyzed hydrogenation of methyl α-acetamido- cinnamate. These ligands were also tested in nickel catalyzed silabora- tions. Chiral P,N-ligands with pseudo-C2 and pseudo-CS symmetry based on pyrrolidines-phospholanes or azepines-phosphepines were synthesized and studied in palladium catalyzed allylic alkylations.
    [Show full text]