Origin of the Avian Predentary and Evidence of a Unique Form of Cranial Kinesis in Cretaceous Ornithuromorphs

Total Page:16

File Type:pdf, Size:1020Kb

Origin of the Avian Predentary and Evidence of a Unique Form of Cranial Kinesis in Cretaceous Ornithuromorphs Origin of the avian predentary and evidence of a unique form of cranial kinesis in Cretaceous ornithuromorphs Alida M. Bailleula,b,1, Zhiheng Lia,b, Jingmai O’Connora,b, and Zhonghe Zhoua,b,1 aKey Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China; and bCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100044 Beijing, China Contributed by Zhonghe Zhou, October 14, 2019 (sent for review July 11, 2019; reviewed by Anthony Herrel and Adam K. Huttenlocker) The avian predentary is a small skeletal structure located rostral to in 5 species of nonornithurine ornithuromorphs from the Early the paired dentaries found only in Mesozoic ornithuromorphs. The Cretaceous Jehol Biota of northeastern China (SI Appendix, Fig. evolution and function of this enigmatic element is unknown. S2) (5, 7). Because all extant birds lack this bone, it was hypoth- Skeletal tissues forming the predentary and the lower jaws in the esized that the APD was a common feature of Cretaceous orni- basal ornithuromorph Yanornis martini are identified using computed- thuromorphs that was subsequently lost (6). Additionally, the tomography,scanningelectronmicroscopy,andhistology.Onthe APD is apparently only present in toothed birds, being absent in basis of these data, we propose hypotheses for the development, all known specimens of the edentulous Archaeorhynchus (12–14). structure, and function of this element. The predentary is composed This study aims to shed light on the origin and the function of of trabecular bone. The convex caudal surface articulates with ros- the APD. No developmental hypothesis for the APD has ever tromedial concavities on the dentaries. These articular surfaces are been proposed. Based on its anatomical location, we see 3 pos- covered by cartilage, which on the dentaries is divided into 3 discrete sibilities: It may be that it originated within Meckel’s cartilage, patches: 1 rostral articular cartilage and 2 symphyseal cartilages. The which belongs to the splanchnocranium (developmental hy- mechanobiology of avian cartilage suggests both compression and pothesis 1), or it may have arisen from the DEs (developmental kinesis were present at the predentary–dentary joint, therefore sug- hypothesis 2), in which case the APD would be of dermatocranial gesting a yet unknown form of avian cranial kinesis. Ontogenetic – EVOLUTION processes of skeletal formation occurring within extant taxa do not origin (15 17). A third possibility is that the APD is a sesamoid suggest the predentary originates within the dentaries, nor Meckel’s (e.g., ref, 18) that arose ectocranially within the connective tis- cartilage. We hypothesize that the predentary is a biomechanically sues located rostral to the DEs (developmental hypothesis 3). ’ induced sesamoid that arose within the soft connective tissues Meckel s cartilage first arises within the developing skull as a located rostral to the dentaries. The mandibular canal hosting primary cartilage model, which then gets partially replaced by the alveolar nerve suggests that the dentary teeth and predentary bone through the process of endochondral ossification, whereas of Yanornis were proprioceptive. This whole system may have in- the DEs are membrane (dermal) bones that arise directly from creased foraging efficiency. The Mesozoic avian predentary appar- ently coevolved with an edentulous portion of the premaxilla, Significance representing a unique kinetic morphotype that combined teeth ∼ with a small functional beak and persisted successfully for 60 The avian predentary is a small, rarely preserved skeletal million years. structure found only in toothed Mesozoic ornithuromorph birds. The origin and function of this enigmatic bone is poorly predentary | birds | sesamoid | kinesis | proprioception understood. Based on skeletal tissue identification in a speci- men of the Early Cretaceous Yanornis martini, we propose he predentary (PD) is a bone located just rostral to the developmental, structural, and functional hypotheses for this Tpaired, unfused dentaries (DEs). This element is rare, only element. It consists of trabecular bone with a caudal articular found in 3 groups of extinct vertebrates: Actinopterygian fishes surface for the dentary covered by cartilage. Tissue mecha- (1–3), ornithischian dinosaurs (4), and Cretaceous nonneornithine nobiology suggests this contact was kinetic, representing a ornithuromorph birds (5–8). Among extant taxa, a structure re- previously unknown type of avian cranial kinesis. We hypoth- ferred to as the PD is known in some (but not all) sailfishes and esize that the avian predentary was a biomechanically induced marlins of the Istiophorid family (actinopterygians) (3, 9), al- sesamoid that coevolved with an edentulous portion of the though the development of the PD in this lineage has yet to be premaxilla, together representing a successful morphotype investigated. The disparate distribution of this element among that combined a small beak with a proprioceptive system. vertebrates does not favor any hypothesis of homology and par- simony strongly suggests that the PD in actinopterygians, ornith- Author contributions: A.M.B., Z.L., J.O., and Z.Z. designed research; A.M.B., Z.L., J.O., and Z.Z. performed research; Z.Z. contributed new reagents/analytic tools; A.M.B. and Z.L. ischians, and Cretaceous nonneornithine ornithuromorph birds all collected the data; A.M.B., Z.L., J.O., and Z.Z. analyzed data; and A.M.B. and J.O. wrote evolved independently, resulting in the proposal that the avian PD the paper. be alternatively referred to as the intersymphyseal ossification to Reviewers: A.H., Muséum National d’Histoire Naturelle; and A.K.H., University of Southern avoid mistaken inferences regarding homology with the ornithis- California. chian PD (SI Appendix,Fig.S1) (10). However, because the os- The authors declare no competing interest. sification is not strictly intersymphyseal, in fact located rostral to Published under the PNAS license. the DEs and the mandibular symphysis, we will refer to the PD in Data deposition: We have deposited large computed tomography data in the Open nonneornithine ornithuromorphs as the “avian PD” (APD). Science Framework, OSF, https://osf.io/q9xsp/. The APD was first described in the Late Cretaceous orni- 1To whom correspondence may be addressed. Email: [email protected] or thurines Hesperornis and Parahesperornis (8). Although no PD [email protected]. has ever been recovered in the ornithurine Ichthyornis (11), the This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. morphology of its dentaries strongly suggests a PD was also 1073/pnas.1911820116/-/DCSupplemental. present in this species (7, 8). More recently, it has been identified www.pnas.org/cgi/doi/10.1073/pnas.1911820116 PNAS Latest Articles | 1of11 Downloaded by guest on September 29, 2021 the cephalic mesenchyme via ossification centers without going scanning, scanning electron microscopy [SEM], standard ground- through a primary cartilage model (15, 17). The distribution and sectioning techniques, and paraffin histology) on the extracted PD identification of skeletal tissues, such as bone and cartilage, are key and on an extracted fragment of the right DE in order to under- to differentiating between these competing hypotheses, as these stand the origin and function of the APD. tissues reflect different embryological origins within the skull. The function of the APD is also mysterious. It has been noted Results that it is always associated with an edentulous rostral portion of Gross Morphology and Nondestructive μCT-Scanning. The edentu- the premaxillae (PM) dorsally overlapping the PD (7). This may lous PD in Yanornis IVPP V13358 is ovoid in dorsal view. In suggest that these features coevolved, possibly representing an lateral view it is semicircular, such that the ventral margin is early stage in the evolution of the beak in the Ornithuromorpha, straight and the dorsal margin is strongly convex (Fig. 1). The a clade in which a beak evolved multiple times [including that of caudal half of this convex surface articulates with the DEs (Fig. the Neornithes but also in the Archaeorhynchus and Eogranivora 1A). The right lateral half of the PD in IVPP V13358 is damaged, lineages and others (14, 19)]. The DE–PD junction has been revealing an internal trabecular architecture (Fig. 1B). The left interpreted as a synovial joint linked to a piscivorous diet (7), but lateral surface was covered by sediments. CT scans indicate this details beyond gross morphology are necessary to truly understand surface was concave and perforated by 3 small foramina (Fig. the function of this skeletal feature and the tissues linking it to the rest 2B). The DEs of Yanornis bear numerous hypertrophied teeth of the lower jaws. In addition to providing clues reflecting different (also present in the caudal portion of the PM and rostral portion embryological origins (e.g., dermatocranial, splanchnocranial, or of the maxilla) (26, 27). The rostral tips are unfused at the ectocranial), bone and cartilage are also a direct reflection of the symphysis (Fig. 1). The rostral articular surface of the DEs is biomechanical stimuli (e.g., tension, compression) in which they relatively straight and angled rostrodorsal-caudoventrally, with a are deposited and maintained (20–23). slight protuberance at the rostrodorsal margin visible in
Recommended publications
  • LETTER Doi:10.1038/Nature14423
    LETTER doi:10.1038/nature14423 A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings Xing Xu1,2*, Xiaoting Zheng1,3*, Corwin Sullivan2, Xiaoli Wang1, Lida Xing4, Yan Wang1, Xiaomei Zhang3, Jingmai K. O’Connor2, Fucheng Zhang2 & Yanhong Pan5 The wings of birds and their closest theropod relatives share a ratios are 1.16 and 1.08, respectively, compared to 0.96 and 0.78 in uniform fundamental architecture, with pinnate flight feathers Epidendrosaurus and 0.79 and 0.66 in Epidexipteryx), an extremely as the key component1–3. Here we report a new scansoriopterygid short humeral deltopectoral crest, and a long rod-like bone articu- theropod, Yi qi gen. et sp. nov., based on a new specimen from the lating with the wrist. Middle–Upper Jurassic period Tiaojishan Formation of Hebei Key osteological features are as follows. STM 31-2 (Fig. 1) is inferred Province, China4. Yi is nested phylogenetically among winged ther- to be an adult on the basis of the closed neurocentral sutures of the opods but has large stiff filamentous feathers of an unusual type on visible vertebrae, although this is not a universal criterion for maturity both the forelimb and hindlimb. However, the filamentous feath- across archosaurian taxa12. Its body mass is estimated to be approxi- ers of Yi resemble pinnate feathers in bearing morphologically mately 380 g, using an empirical equation13. diverse melanosomes5. Most surprisingly, Yi has a long rod-like The skull and mandible are similar to those of other scansoriopter- bone extending from each wrist, and patches of membranous tissue ygids, and to a lesser degree to those of oviraptorosaurs and some basal preserved between the rod-like bones and the manual digits.
    [Show full text]
  • Review REVIEW 1: 543–559, 2014 Doi: 10.1093/Nsr/Nwu055 Advance Access Publication 5 September 2014
    National Science Review REVIEW 1: 543–559, 2014 doi: 10.1093/nsr/nwu055 Advance access publication 5 September 2014 GEOSCIENCES Special Topic: Paleontology in China The Jehol Biota, an Early Cretaceous terrestrial Lagerstatte:¨ new discoveries and implications Zhonghe Zhou ABSTRACT The study of the Early Cretaceous terrestrial Jehol Biota, which provides a rare window for reconstruction of a Lower Cretaceous terrestrial ecosystem, is reviewed with a focus on some of the latest progress. A newly proposed definition of the biota based on paleoecology and taphonomy is accepted. Although theJehol fossils are mainly preserved in two types of sedimentary rocks, there are various types of preservation with a complex mechanism that remains to be understood. New discoveries of significant taxa from the Jehol Biota, with an updated introduction of its diversity, confirm that the Jehol Biota represents one of themost diversified biotas of the Mesozoic. The evolutionary significance of major biological groups (e.g. dinosaurs, birds, mammals, pterosaurs, insects, and plants) is discussed mainly in the light of recent discoveries, and some of the most remarkable aspects of the biota are highlighted. The global and local geological, paleogeographic, and paleoenvironmental background of the Jehol Biota have contributed to the unique composition, evolution, and preservation of the biota, demonstrating widespread faunal exchanges between Asia and other continents caused by the presence of the Eurasia–North American continental mass and its link to South America, and confirming northeastern China as the origin and diversification center fora variety of Cretaceous biological groups. Although some progress has been made on the reconstruction of the paleotemperature at the time of the Jehol Biota, much more work is needed to confirm a possible link between the remarkable diversity of the biota and the cold intervals during the Early Cretaceous.
    [Show full text]
  • The Molecular Evolution of Feathers with Direct Evidence from Fossils
    The molecular evolution of feathers with direct evidence from fossils Yanhong Pana,1, Wenxia Zhengb, Roger H. Sawyerc, Michael W. Penningtond, Xiaoting Zhenge,f, Xiaoli Wange,f, Min Wangg,h, Liang Hua,i, Jingmai O’Connorg,h, Tao Zhaoa, Zhiheng Lig,h, Elena R. Schroeterb, Feixiang Wug,h, Xing Xug,h, Zhonghe Zhoug,h,i,1, and Mary H. Schweitzerb,j,1 aChinese Academy of Sciences Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; bDepartment of Biological Sciences, North Carolina State University, Raleigh, NC 27695; cDepartment of Biological Sciences, University of South Carolina, Columbia, SC 29205; dAmbioPharm Incorporated, North Augusta, SC 29842; eInstitute of Geology and Paleontology, Lingyi University, Lingyi City, 27605 Shandong, China; fShandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China; gCAS Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China; hCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100044 Beijing, China; iCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China; and jNorth Carolina Museum of Natural Sciences, Raleigh, NC 27601 Contributed by Zhonghe Zhou, December 15, 2018 (sent for review September 12, 2018; reviewed by Dominique G. Homberger and Chenxi Jia) Dinosaur fossils possessing integumentary appendages of various feathers in Anchiornis, barbules that interlock to form feather morphologies, interpreted as feathers, have greatly enhanced our vanes critical for flight have not been identified yet (12).
    [Show full text]
  • Additional Specimen of Microraptor Provides Unique Evidence of Dinosaurs Preying on Birds
    Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds Jingmai O’Connor1, Zhonghe Zhou1, and Xing Xu Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, October 28, 2011 (sent for review September 13, 2011) Preserved indicators of diet are extremely rare in the fossil record; The vertebral column of this specimen is complete except for even more so is unequivocal direct evidence for predator–prey its proximal and distal ends; pleurocoels are absent from the relationships. Here, we report on a unique specimen of the small thoracic vertebrae, as in dromaeosaurids and basal birds. Poor nonavian theropod Microraptor gui from the Early Cretaceous preservation prevents clear observation of sutures; however, Jehol biota, China, which has the remains of an adult enantiorni- there does not appear to be any separation between the neural thine bird preserved in its abdomen, most likely not scavenged, arches and vertebral centra, or any other indicators that the but captured and consumed by the dinosaur. We provide direct specimen is a juvenile. The number of caudal vertebrae cannot evidence for the dietary preferences of Microraptor and a nonavian be estimated, but the elongate distal caudals are tightly bounded dinosaur feeding on a bird. Further, because Jehol enantiorni- by elongated zygapophyses, as in other dromaeosaurids. The rib thines were distinctly arboreal, in contrast to their cursorial orni- cage is nearly completely preserved; both right and left sides are thurine counterparts, this fossil suggests that Microraptor hunted visible ventrally closed by the articulated gastral basket.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Foot Scales in the Early Cretaceous Bird Gansus Yumenensis from China
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447457; this version posted June 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Foot scales in the Early Cretaceous bird Gansus yumenensis from China 2 3 Tao Zhao1, Zhiheng Li2,3, He Zhang1 Yanhong Pan1 4 5 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and 6 Engineering, Centre for Research and Education on Biological Evolution and 7 Environment and Frontiers Science Center for Critical Earth Material Cycling, 8 Nanjing University, Nanjing 210023, China 9 2Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of 10 Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese 11 Academy of Sciences, Beijing 100044, China 12 3CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China 13 14 15 16 Corresponding authors: 17 Tao Zhao, [email protected] 18 Yanhong Pan, [email protected] 19 20 21 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447457; this version posted June 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 24 Most modern birds have scales covering the foot and feathers elsewhere. Discoveries 25 of fossil feathers attached to the metatarsus in non-avian dinosaurs and basal birds 26 suggests that the avian scales are secondarily derived from feathers. However, our 27 knowledge of early avian scales and their taphonomy is still limited, due to the 28 scarcity of fossil record.
    [Show full text]
  • Anatomical Network Analyses Reveal Oppositional Heterochronies in Avian Skull Evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,;
    ARTICLE https://doi.org/10.1038/s42003-020-0914-4 OPEN Birds have peramorphic skulls, too: anatomical network analyses reveal oppositional heterochronies in avian skull evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,; In contrast to the vast majority of reptiles, the skulls of adult crown birds are characterized by a high degree of integration due to bone fusion, e.g., an ontogenetic event generating a net reduction in the number of bones. To understand this process in an evolutionary context, we investigate postnatal ontogenetic changes in the skulls of crown bird and non-avian ther- opods using anatomical network analysis (AnNA). Due to the greater number of bones and bone contacts, early juvenile crown birds have less integrated skulls, resembling their non- avian theropod ancestors, including Archaeopteryx lithographica and Ichthyornis dispars. Phy- logenetic comparisons indicate that skull bone fusion and the resulting modular integration represent a peramorphosis (developmental exaggeration of the ancestral adult trait) that evolved late during avialan evolution, at the origin of crown-birds. Succeeding the general paedomorphic shape trend, the occurrence of an additional peramorphosis reflects the mosaic complexity of the avian skull evolution. ✉ 1 Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland. email: [email protected] COMMUNICATIONS BIOLOGY | (2020) 3:195 | https://doi.org/10.1038/s42003-020-0914-4 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0914-4 fi fi irds represent highly modi ed reptiles and are the only length (L), quality of identi ed modular partition (Qmax), par- surviving branch of theropod dinosaurs.
    [Show full text]
  • A Reassessment of Sinornis Santensis and Cathayornis Yandica (Aves: Enantiornithes)
    © The Authors, 2010. Journal compilation © Australian Museum, Sydney, 2010 Records of the Australian Museum (2010) Vol. 62: 7–20. ISSN 0067-1975 doi:10.3853/j.0067-1975.62.2010.1540 A Reassessment of Sinornis santensis and Cathayornis yandica (Aves: Enantiornithes) Jingmai O’COnnOr*1 and gareth dyke2 1 Dinosaur Institute, Natural History Museum of Los Angeles, 900 Exposition Boulevard, Los Angeles, CA 90007, United States of America, and University of Southern California, 3651 Trousdale Parkway ZHS 117, Los Angeles, CA 90089, United States of America 2 School of Biology and Environmental Science, University College Dublin, Belfield Dublin 4, Ireland [email protected] · [email protected] abstraCt. The taxonomy of the first two enantiornithine birds named from the Early Cretaceous of China, Cathayornis yandica and Sinornis santensis, has remained controversial despite the relative completeness of both holotype specimens. This is because C. yandica is regarded as a junior synonym of S. santensis by some researchers, and as a distinct taxon by others. This question is revisited in this paper; in order to determine the validity of C. yandica, we conduct a detailed morphological review of both holotype specimens. Despite proposed synonymy we argue that there are clear and distinct anatomical differences between the two taxa; indeed our morphological observations demonstrate that the two birds constitute valid and distinct branches in the diverse enantiornithine evolutionary radiation. Of course, and like many other groups of fossil vertebrates, the diverse Cretaceous bird lineage Enantiornithes requires taxonomic revision yet in the case of C. yandica and S. santensis we attribute much of the confusion to: (1) incomplete specimens being designated as holotypes, and (2) the absence of clear morphological character-based taxon diagnoses founded on rigorous anatomical comparisons.
    [Show full text]
  • Herbivorous Ecomorphology and Specialization Patterns in Theropod Dinosaur Evolution
    Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution Lindsay E. Zanno1 and Peter J. Makovicky Department of Geology, The Field Museum, Chicago, IL 60605 Edited by Randall Irmis, Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, and accepted by the Editorial Board November 10, 2010 (received for review August 16, 2010) Interpreting key ecological parameters, such as diet, of extinct characteristics have been used to propose a myriad of dietary organisms without the benefit of direct observation or explicit preferences with little consensus (8, 11, 15–20). fossil evidence poses a formidable challenge for paleobiological Recently, a burst of theropod dinosaur discoveries bearing an studies. To date, dietary categorizations of extinct taxa are largely unexpected degree of ecomorphological disparity (particularly generated by means of modern analogs; however, for many with respect to dental anatomy) (12, 20–24) has sparked species the method is subject to considerable ambiguity. Here a renewed interest in the diet of coelurosaurian species. Yet, to we present a refined approach for assessing trophic habits in fossil date, a large scale quantitative analysis on theropod ecomor- taxa and apply the method to coelurosaurian dinosaurs—a clade phology has not been conducted. Serendipitously, an increasing for which diet is particularly controversial. Our findings detect 21 number of theropod specimens preserve unequivocal evidence of morphological features that exhibit statistically significant corre- diet in the form of fossilized gut contents (25–27), coprolites lations with extrinsic fossil evidence of coelurosaurian herbivory, (28), or a gastric mill (21–23, 29–31), which are known to cor- such as stomach contents and a gastric mill.
    [Show full text]
  • Molecular Phyloecology Suggests a Trophic Shift Concurrent with the Evolution of the First Birds
    ARTICLE https://doi.org/10.1038/s42003-021-02067-4 OPEN Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds ✉ Yonghua Wu 1,2 Birds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results suggest a trophic shift from carnivory to herbivory (fruit, seed, and/or nut eater) at the archosaur-to- 1234567890():,; bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding non-avian maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding cap- ability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory non-avian maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure. 1 School of Life Sciences, Northeast Normal University, Changchun, China. 2 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, ✉ Northeast Normal University, Changchun, China. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:547 | https://doi.org/10.1038/s42003-021-02067-4 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02067-4 iet plays a fundamental role in the life of an animal.
    [Show full text]
  • Supplemental Figs S1-S6
    Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds Chi Zhang1,2,* and Min Wang1,2 1Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China ∗Corresponding author: E-mail: [email protected] Supplementary Information Figures Dromaeosauridae Archaeopteryx Jeholornis Chongmingia Sapeornis Confuciusornis_sanctus Changchengornis Confuciusornis_dui Yangavis Eoconfuciusornis Pengornis Eopengornis Protopteryx 15.5 Boluochia Longipteryx Longirostravis Rapaxavis Shanweiniao Concornis Elsornis Gobipteryx Neuquenornis Eoalulavis Cathayornis Eocathayornis Eoenantiornis Linyiornis mean relative rate Fortunguavis Sulcavis Bohaiornis 0.3 Parabohaiornis Longusunguis Zhouornis Shenqiornis Vescornis Dunhuangia 1.0 Piscivorenantiornis Pterygornis Qiliania Cruralispennia Monoenantiornis Archaeorhynchus Jianchangornis Schizooura Bellulornis Vorona Patagopteryx Songlingornis Iteravis Yanornis clade probability Yixianornis Piscivoravis Longicrusavis 0.5 Hongshanornis Parahongshanornis Archaeornithura Tianyuornis Apsaravis Gansus Ichthyornis Vegavis Anas Hesperornis Gallus Parahesperornis Baptornis_varneri Baptornis_advenus Enaliornis -175 -150 -125 -100 - 7 5 - 5 0 - 2 5 0 Figure S1. Dated phylogeny (time tree) of the Mesozoic birds under the partitioned analysis. The color of the branch represents the mean relative
    [Show full text]
  • Unenlagiid Theropods: Are They Members of the Dromaeosauridae (Theropoda, Maniraptora)?
    “main” — 2011/2/10 — 14:01 — page 117 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 117-162 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)? , FEDERICO L. AGNOLIN1 2 and FERNANDO E. NOVAS1 1Laboratorio de Anatomía Comparada y Evolución de los Vertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Ángel Gallardo, 470 (1405BDB), Buenos Aires, Argentina 2Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y Antropología CEBBAD, Universidad Maimónides, Valentín Virasoro 732 (1405BDB), Buenos Aires, Argentina Manuscript received on November 9, 2009; accepted for publication on June 21, 2010 ABSTRACT In the present paper we analyze the phylogenetic position of the derived Gondwanan theropod clade Unen- lagiidae. Although this group has been frequently considered as deeply nested within Deinonychosauria and Dromaeosauridae, most of the features supporting this interpretation are conflictive, at least. Modification of integrative databases, such as that recently published by Hu et al. (2009), produces significant changes in the topological distribution of taxa within Deinonychosauria, depicting unenlagiids outside this clade. Our analysis retrieves, in contrast, a monophyletic Avialae formed by Unenlagiidae plus Aves. Key words: Gondwana, Deinonychosauria, Dromaeosauridae, Unenlagiidae, Avialae. INTRODUCTION Until recently, the deinonychosaurian fossil record has been geographically restricted to the Northern Hemisphere (Norell and Makovicky 2004), but recent discoveries demonstrated that they were also present and highly diversified in the Southern landmasses, suggesting that an important adaptive radiation took place in Gondwana during the Cretaceous. Gondwanan dromaeosaurids have been documented from Turonian through Maastrichtian beds of Argentina (Makovicky et al.
    [Show full text]