Histone Deacetylase Inhibitors for the Epigenetic Therapy of Proximal Spinal Muscular Atrophy

Total Page:16

File Type:pdf, Size:1020Kb

Histone Deacetylase Inhibitors for the Epigenetic Therapy of Proximal Spinal Muscular Atrophy Histone deacetylase inhibitors for the epigenetic therapy of proximal spinal muscular atrophy Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Lutz Garbes aus Köln Köln 2010 The Doctoral Thesis "Histone deacetylase inhibitors for the epigenetic therapy of proximal spinal muscular atrophy“ was performed at the Institute of Human Genetics, Institute of Genetics and Centre for Molecular Medicine Cologne (CMMC) of the University of Cologne from November 2006 to 2010. Berichterstatter/in: Prof. Dr. rer. nat. Brunhilde Wirth Prof. Dr. rer. nat. Thomas Wiehe Tag der letzten mündlichen Prüfung: 22.11.2010 Für meine Eltern Acknowledgements First, I would like to thank my supervisor Brunhilde Wirth for giving me the opportunity to work on various interesting and challenging projects, for sharing her scientific knowledge and enthusiasm, and for allowing me to work independently. Furthermore, I woud like to thank her for motivating discussions and encouragement, for her generous support to attend scientific meetings, and for bringing me in touch with various scientist all over the world. I greatly appreciate her dedication. I thank my examiners Prof. Dr. Thomas Wiehe and Prof. Dr. Günter Schwarz. Of course a big “Thanks!” to all past and present members of the SMA group, and the whole Institute of Human Genetics in Cologne. A very big “extra thank you” to Irmgard Hölker for her excellent technical support during the last years, for countless triplicates and for staying at my side during the VPA odyssey. I thank the Markus Rießland for good advice whenever needed, valuable discussions about science, all the world and his wife and all the interesting news out there. Furthermore, I like to thank Bastian Ackermann and Sandra Kröber for keeping a hilarious atmosphere in our lab and all those funny Fridays. In the end, I salute the navigator for leading the quarterhorse cowboys on the right track. Moreover, I thank Miriam Jakubik and Ylva Mende for “introducing me to the mice”, and how to put syringes in mice without making kebap. Of course, I thank all the people, who carefully went through this manuscript, for their helpful suggestions and stamina: Markus (the big one), Julia (always positive – I merely bought it), Basti, Sabrina and Markus (the small one). Furthermore, I thank also thank Karin Boß reading the draft, sharing her English skills and donating me some extra commas. I thank Eric Hahnen helpful discussions (400nM!!) and for bringing me in touch with his buddies in Erlangen and Bonn. I would to thank Ingmar Blümcke and Roland Coras for the NSCs and OHSCs and Christian Tränkle for the HDAC inhibition assay. I thank Carsten Müller and Tim Bauer for the coffee meetings and their help and patience with the LC-MS/MS. Especially, I think Tim Bauer for his willingness to shorten his weekends for some additional sample measurements. I would like to thank Jürgen-Christoph von Kleist-Retzow for his help with polarography experiments. I thank my parents for their constant support and motivation, their confidence and everything they taught me. This work wouldn´t have been possible without you!! Furthermore, I give props to Maurits and Niklas for distraction whenever needed . Finally, this list wouldn´t be complete without Sabrina Rosenbaum: Thank you for just being you - you are more than beautiful. Table of contents i Table of contents LIST OF ABBREVIATIONS ........................................................................................................................... VI 1. INTRODUCTION ............................................................................................................................... 1 1.1 AUTOSOMAL RECESSIVE PROXIMAL SPINAL MUSCULAR ATROPHY (SMA) ........................................................... 1 1.1.1 Clinical diagnosis ...................................................................................................................... 1 1.1.2 Classification of proximal SMA ................................................................................................. 3 1.1.2.1 SMA type I (Werdnig-Hoffmann disease), MIM #25330 ...................................................................... 3 1.1.2.2 SMA type II, MIM #253550 .................................................................................................................. 4 1.1.2.3 SMA type III (Kugelberg-Welander disease), MIM #253400 ................................................................ 4 1.1.2.4 SMA type IV (adult SMA), MIM #271150 ............................................................................................. 4 1.2 THE MOLECULAR BASIS OF SMA ................................................................................................................ 4 1.2.1 SMN1 and SMN2 ...................................................................................................................... 5 1.2.2 SMN splicing ............................................................................................................................. 6 1.3 THE SMN PROTEIN................................................................................................................................. 9 1.3.1 The SMN complex ................................................................................................................... 10 1.3.2 Functions of SMN .................................................................................................................... 10 1.3.2.1 Housekeeping functions .................................................................................................................... 10 1.3.2.2 Neuron-specific functions .................................................................................................................. 12 1.3.2.3 Muscle-specific functions .................................................................................................................. 13 1.4 ANIMAL MODELS OF SMA ..................................................................................................................... 13 1.4.1 Non-vertebrate SMA models .................................................................................................. 13 1.4.2 Vertebrate SMA models .......................................................................................................... 14 1.5 SMA: WHY DO SPECIFICALLY MOTOR NEURONS DIE? .................................................................................. 17 1.6 THERAPEUTIC APPROACHES IN SMA ........................................................................................................ 18 1.6.1 Epigenetic therapy targeting SMN2 expression ..................................................................... 19 1.6.1.1 The concept of epigenetic therapy .................................................................................................... 19 1.6.1.2 Histone Acetyl Transferases (HAT) ..................................................................................................... 22 1.6.1.3 Histone Deacetylases (HDAC) ............................................................................................................ 23 1.6.1.3.1 Class I HDACs .............................................................................................................................. 23 1.6.1.3.2 Class II HDACs ............................................................................................................................. 23 1.6.1.3.3 Class III HDACs (sirtuins) ............................................................................................................. 24 1.6.1.3.4 Class IV HDACs ............................................................................................................................ 24 1.6.1.4 HDAC inhibitors ................................................................................................................................. 24 1.6.1.5 Epigenetic SMA therapy with HDACi ................................................................................................. 27 1.6.1.6 VPA in SMA therapy ........................................................................................................................... 27 1.6.2 Further therapies targeting SMN2.......................................................................................... 28 1.6.2.1 RNA-based therapy ............................................................................................................................ 28 1.6.2.2 Gene therapy ..................................................................................................................................... 29 ii Table of contents 1.6.2.3 Drug therapy ...................................................................................................................................... 29 1.6.3 SMN2-independent therapies ................................................................................................. 30 1.6.3.1 Neurotrophic agents .......................................................................................................................... 30 1.6.3.2 Stem cell therapy ............................................................................................................................... 31 2. STUDY AIMS .................................................................................................................................. 33 3. MATERIAL
Recommended publications
  • S41598-018-33190-8.Pdf
    www.nature.com/scientificreports OPEN Ankyrin Repeat Domain 1 Overexpression is Associated with Common Resistance to Afatinib and Received: 20 February 2018 Accepted: 25 September 2018 Osimertinib in EGFR-mutant Lung Published: xx xx xxxx Cancer Akiko Takahashi1, Masahiro Seike1, Mika Chiba1, Satoshi Takahashi1, Shinji Nakamichi1, Masaru Matsumoto1, Susumu Takeuchi1, Yuji Minegishi1, Rintaro Noro1, Shinobu Kunugi2, Kaoru Kubota1 & Akihiko Gemma1 Overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is critical in combating EGFR-mutant non-small cell lung cancer (NSCLC). We tried to construct a novel therapeutic strategy to conquer the resistance to second-and third-generation EGFR-TKIs in EGFR-positive NSCLC patients. We established afatinib- and osimertinib-resistant lung adenocarcinoma cell lines. Exome sequencing, cDNA array and miRNA microarray were performed using the established cell lines to discover novel therapeutic targets associated with the resistance to second-and third-generation EGFR-TKIs. We found that ANKRD1 which is associated with the epithelial- mesenchymal transition (EMT) phenomenon and anti-apoptosis, was overexpressed in the second-and third-generation EGFR-TKIs-resistant cells at the mRNA and protein expression levels. When ANKRD1 was silenced in the EGFR-TKIs-resistant cell lines, afatinib and osimertinib could induce apoptosis of the cell lines. Imatinib could inhibit ANKRD1 expression, resulting in restoration of the sensitivity to afatinib and osimertinib of EGFR-TKI-resistant cells. In EGFR-mutant NSCLC patients, ANKRD1 was overexpressed in the tumor after the failure of EGFR-TKI therapy, especially after long-duration EGFR- TKI treatments. ANKRD1 overexpression which was associated with EMT features and anti-apoptosis, was commonly involved in resistance to second-and third-generation EGFR-TKIs.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Molecular Classification of Diffuse Cerebral WHO Grade II/III Gliomas
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups Weller, Michael ; Weber, Ruthild G ; Willscher, Edith ; Riehmer, Vera ; Hentschel, Bettina ; Kreuz, Markus ; Felsberg, Jörg ; Beyer, Ulrike ; Löffler-Wirth, Henry ; Kaulich, Kerstin ; Steinbach, Joachim P ; Hartmann, Christian ; Gramatzki, D ; Schramm, J ; Westphal, M ; Schackert, G ; Simon, M ; Martens, T ; Boström, J ; Hagel, C ; Sabel, M ; Krex, D ; Tonn, J C ; Wick, W ; Noell, S ; Schlegel, U ; Radlwimmer, B ; Pietsch, T ; Loeffler, M ; von Deimling, A ; Binder, H ; Reifenberger, G Abstract: Cerebral gliomas of World Health Organization (WHO) grade II and III represent a major challenge in terms of histological classification and clinical management. Here, we asked whether large- scale genomic and transcriptomic profiling improves the definition of prognostically distinct entities. We performed microarray-based genome- and transcriptome-wide analyses of primary tumor samples from a prospective German Glioma Network cohort of 137 patients with cerebral gliomas, including 61 WHO grade II and 76 WHO grade III tumors. Integrative bioinformatic analyses were employed to define molecular subgroups, which were then related to histology, molecular biomarkers, including isocitrate de- hydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutations, and patient outcome. Genomic profiling identified five distinct glioma groups, in- cluding three IDH1/2 mutant and two IDH1/2 wild-type groups. Expression profiling revealed evidence for eight transcriptionally different groups (five IDH1/2 mutant, three IDH1/2 wild type), which were only partially linked to the genomic groups.
    [Show full text]
  • Breeding Against Infectious Diseases in Animals
    Breeding against infectious diseases in animals Hamed Rashidi Thesis committee Promotor Prof. Dr J.A.M. van Arendonk Professor of Animal Breeding and Genomics Centre Wageningen University, The Netherlands Co-promotors Dr H.A. Mulder Assistant Professor, Animal Breeding and Genomics Centre Wageningen University, The Netherlands Dr P.K. Mathur Senior Geneticist, Topigs Norsvin Research Center The Netherlands Other members (assessment committee) Prof. Dr M.C.M. de Jong, Wageningen University, The Netherlands Prof. Dr J.A. Stegeman, Utrecht University, The Netherlands Prof. Dr J.K. Lunney, United States Department of Agriculture, USA Dr B. Nielsen, Pig Research Center, Denmark This research was conducted under the auspices of the Graduate School of Wageningen Institute of Animal Sciences (WIAS). Breeding against infectious diseases in animals Hamed Rashidi Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Acadamic Board to be defended in public on Friday March 18, 2016 at 16.00 p.m. in the Aula Rashidi, H. Breeding against infectious diseases in animals, 182 Pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in English ISBN 978-94-6257-645-2 Abstract Infectious diseases in farm animals are of major concern because of welfare, production costs, and public health. Control strategies, however, are not always successful. Selective breeding for the animals that can defend against infections, therefore, could be an option. Defensive ability of animals against infections consists of resistance (ability to control pathogen burden) and tolerance (ability to maintain performance when pathogen burden increases).
    [Show full text]
  • Comparative Transcriptome Analysis of Muscular Dystrophy Models Largemyd, Dmdmdx&Sol
    European Journal of Human Genetics (2016) 24, 1301–1309 & 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/16 www.nature.com/ejhg ARTICLE Comparative transcriptome analysis of muscular dystrophy models Largemyd, Dmdmdx/Largemyd and Dmdmdx: what makes them different? Camila F Almeida, Poliana CM Martins and Mariz Vainzof* Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of Mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmdmdx (mutation in dystrophin gene), Largemyd − / − (mutation in Large)andDmdmdx/Largemyd − / − (both mutations). The identification of altered biological functions can contribute to understand diseases and to find prognostic biomarkers and points for therapeutic intervention. We identified a substantial number of differentially expressed genes (DEGs) in each model, reflecting diseases' complexity. The main biological process affected in the three strains was immune system, accounting for the majority of enriched functional categories, followed by degeneration/regeneration and extracellular matrix remodeling processes. The most notable differences were in 21-day-old Dmdmdx, with a high proportion of DEGs related to its regenerative capacity. A higher number of positive embryonic myosin heavy chain (eMyHC) fibers confirmed this. The new Dmdmdx/Largemyd − / − model did not show a highly different transcriptome from the parental lineages, with a profile closer to Largemyd − / − , but not bearing the same regenerative potential as Dmdmdx.Thisisthefirst report about transcriptome profile of a mouse model for congenital MD and Dmdmdx/Largemyd.
    [Show full text]
  • Ankyrin Repeat Domain 1, ANKRD1, a Novel Determinant of Cisplatin Sensitivity Expressed in Ovarian Cancer Lyndee L
    Cancer Therepy: Preclinical Ankyrin Repeat Domain 1, ANKRD1, a Novel Determinant of Cisplatin Sensitivity Expressed in Ovarian Cancer Lyndee L. Scurr,1, 2 Alexander D. Guminski,1, 2 , 3 Yoke-Eng Chiew,1, 2 Rosemary L. Balleine,1, 5 Raghwa Sharma,4 Ying Lei,1, 2 Kylie Pryor,1, 2 Gerard V. Wain,2 Alison Brand,2 Karen Byth,6 Catherine Kennedy,1, 2 Helen Rizos,1Paul R. Harnett,1, 3 and Anna deFazio1, 2 Abstract Purpose:The standard of care for ovarian cancer includes platinum-based chemotherapy. It is not possible, however, to predict clinical platinum sensitivity or to design rational strategies to overcome resistance. We used a novel approach to identify altered gene expression associated with high sensitivity to cisplatin, to define novel targets to sensitize tumor cells to platins and ultimately improve the effectiveness of this widely used class of chemotherapeutics. Experimental Design: Using differential display PCR, we identified genes differentially expressed in a mutagenized cell line with unusual sensitivity to cisplatin. The most highly differentially expressed gene was selected, and its role in determining cisplatin sensitivity was validated by gene transfection and small interfering RNA (siRNA) approaches, by associ- ation of expression levels with cisplatin sensitivity in cell lines, and by association of tumor expression levels with survival in a retrospective cohort of 71 patients with serous ovarian adenocarcinoma. Results: The most highly differently expressed gene identified was ANKRD1, ankyrin repeat domain1 (cardiac muscle). ANKRD1mRNA levels were correlated with platinum sensitivity in cell lines, and most significantly, decreasing ANKRD1 using siRNA increased cisplatin sensitivity >2-fold.
    [Show full text]
  • The Muscle Ankyrin Repeat Proteins CARP, Ankrd2, and DARP Are Not Essential for Normal Cardiac Development and Function at Basal
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Harvard University - DASH The Muscle Ankyrin Repeat Proteins CARP, Ankrd2, and DARP Are Not Essential for Normal Cardiac Development and Function at Basal Conditions and in Response to Pressure Overload The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Bang, Marie-Louise, Yusu Gu, Nancy D. Dalton, Kirk L. Peterson, Citation Kenneth R. Chien, and Ju Chen. 2014. “The Muscle Ankyrin Repeat Proteins CARP, Ankrd2, and DARP Are Not Essential for Normal Cardiac Development and Function at Basal Conditions and in Response to Pressure Overload.” PLoS ONE 9 (4): e93638. doi:10.1371/journal.pone.0093638. http://dx.doi.org/10.1371/journal.pone.0093638. Published Version doi:10.1371/journal.pone.0093638 Accessed April 17, 2018 4:49:22 PM EDT Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12152896 This article was downloaded from Harvard University's DASH Terms of Use repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA (Article begins on next page) The Muscle Ankyrin Repeat Proteins CARP, Ankrd2, and DARP Are Not Essential for Normal Cardiac Development and Function at Basal Conditions and in Response to Pressure Overload Marie-Louise Bang1*, Yusu Gu2, Nancy D. Dalton2, Kirk L. Peterson2, Kenneth R. Chien3,4, Ju Chen2* 1 Institute of Genetic and Biomedical Research,
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • Identification of the Genes Involved in Enhanced Fenretinide-Induced Apoptosis by Parthenolide in Human Hepatoma Cells
    Research Article Identification of the Genes Involved in Enhanced Fenretinide-Induced Apoptosis by Parthenolide in Human Hepatoma Cells Jeong-Hyang Park, Lan Liu, In-Hee Kim, Jong-Hyun Kim, Kyung-Ran You, and Dae-Ghon Kim Division of Gastroenterology and Hepatology, The Research Institute of Clinical Medicine, Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Chonju, Chonbuk, Republic of Korea Abstract prostate cancer (6), bladder cancer (7), and a neuroblastoma (8) in Fenretinide (N-4-hydroxyphenyl retinamide, 4HPR) is a syn- preclinical experiments and in early clinical trials. It was previously thetic anticancer retinoid that is a well-known apoptosis- observed that fenretinide effectively induces apoptosis in hepato- ma cells (9, 10), and it was found that this ferentinide-induced inducing agent. Recently, we observed that the apoptosis n n induced by fenretinide could be effectively enhanced in apoptosis could be enhanced by the nuclear factor- B (NF- B) hepatoma cells by a concomitant treatment with parthenolide, inhibitor parthenolide. Fenretinide-induced cytotoxicity is retinoic which is a known inhibitor of nuclear factor-nnB (NF-nnB). acid receptor (RAR)–independent (11). However, fenretinide has Furthermore, treatment with fenretinide triggered the activa- been found to activate the RARs and several RAR-specific tion of NF-nnB during apoptosis, which could be substantially antagonists partially inhibited ferentinide-induced apoptosis (2). inhibited by parthenolide, suggesting that NF-nnB activation Therefore, both RAR-independent and RAR-dependent pathways are involved in the ferentinide-mediated apoptosis. Previously, it during fenretinide-induced apoptosis has an antiapoptotic effect. This study investigated the molecular mechanism of was observed that a lethal concentration of parthenolide could this apoptotic potentiation by NF-nnB inhibition.
    [Show full text]
  • Gene Expression Signatures for Identifying Diffuse-Type Gastric Cancer Associated with Epithelial-Mesenchymal Transition
    INTERNATIONAL JOURNAL OF ONCOLOGY 44: 1955-1970, 2014 Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition SHIHORI TANABE1, KAZUHIKO AOYAGI2, HIROSHI YOKOZAKI3 and HIROKI SASAKI2 1Division of Safety Information on Drug, Food and Chemicals, National Institute of Health Sciences, 1-18-1, Kami-yoga, Setagaya-ku, Tokyo 158-8501; 2Department of Translational Oncology, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045; 3Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan Received February 7, 2014; Accepted March 28, 2014 DOI: 10.3892/ijo.2014.2387 Abstract. Epithelial-mesenchymal transition (EMT) is associ- mammary epithelial cells results in the development of mesen- ated with tumor malignancy. The hedgehog-EMT pathway is chymal cells and the expression of stem-cell markers (2). These preferentially activated in diffuse-type gastric cancer (GC) insights highlight the need to investigate the relationship compared with intestinal-type GC; however, histological between cancer and mesenchymal cells. Cancer genomic land- typing is currently the only method for distinguishing these two scapes have been revealed, and mutations in cancer-associated major types of GC. We compared the gene expression profiles genes involved in cell proliferation have been discovered (3). of 12 bone marrow-derived mesenchymal stem cell cultures Here, we report that the expression of several genes involved and 5 diffuse-type GC tissue samples. Numerous upregulated in EMT or stem cell development is altered in cancer cells and or downregulated genes were identified in diffuse-type GC, mesenchymal stem cells (MSCs).
    [Show full text]
  • The Muscle Ankyrin Repeat Proteins CARP, Ankrd2, and DARP Are Not Essential for Normal Cardiac Development and Function at Basal
    The Muscle Ankyrin Repeat Proteins CARP, Ankrd2, and DARP Are Not Essential for Normal Cardiac Development and Function at Basal Conditions and in Response to Pressure Overload Marie-Louise Bang1*, Yusu Gu2, Nancy D. Dalton2, Kirk L. Peterson2, Kenneth R. Chien3,4, Ju Chen2* 1 Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano (Milan), Italy, 2 Department of Medicine, University of California San Diego, La Jolla, California, United States of America, 3 Department of Cell and Molecular Biology and Medicine, Karolinska Insititutet, Stockholm, Sweden, 4 Harvard University, Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, United States of America Abstract Ankrd1/CARP, Ankrd2/Arpp, and Ankrd23/DARP belong to a family of stress inducible ankyrin repeat proteins expressed in striated muscle (MARPs). The MARPs are homologous in structure and localized in the nucleus where they negatively regulate gene expression as well as in the sarcomeric I-band, where they are thought to be involved in mechanosensing. Together with their strong induction during cardiac disease and the identification of causative Ankrd1 gene mutations in cardiomyopathy patients, this suggests their important roles in cardiac development, function, and disease. To determine the functional role of MARPs in vivo, we studied knockout (KO) mice of each of the three family members. Single KO mice were viable and had no apparent cardiac phenotype. We therefore hypothesized that the three highly homologous MARP proteins may have redundant functions in the heart and studied double and triple MARP KO mice. Unexpectedly, MARP triple KO mice were viable and had normal cardiac function both at basal levels and in response to mechanical pressure overload induced by transverse aortic constriction as assessed by echocardiography and hemodynamic studies.
    [Show full text]
  • Phenotypic Heterogeneity of Sarcomeric Gene Mutations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 54, No. 4, 2009 © 2009 by the American College of Cardiology Foundation ISSN 0735-1097/09/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2009.04.029 Because titin was previously found to be associated with EDITORIAL COMMENT both hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) (6–8), CARP, as part of the titin complex, was also hypothesized to play a role in cardiomy- Phenotypic Heterogeneity of opathies. In this issue of the Journal, 2 reports (1,2) confirm this hypothesis and show that in fact ANKRD1 mutations Sarcomeric Gene Mutations can cause both DCM and HCM. Arimura et al. (2) report the results of the ANKRD1 A Matter of Gain and Loss?* mutation screening in a large HCM population collected in Japan and in the U.S. In 384 index patients, they found 3 Luisa Mestroni, MD missense mutations (ANKRD1 Pro52Ala, Thr123Met, and Ϸ Aurora, Colorado; and Trieste, Italy Ile280Val), accounting for 1% of HCM cases. Interest- ingly, they also investigated the N2A CARP-binding do- main of titin, and found 2 additional mutations (TTN Arg8500 and Arg8604Gln) in their HCM cohort. Moulik After several decades of intense research and various at- et al. (1) investigated a series of 208 DCM index patients of tempts at definition and classification, cardiomyopathies Japanese and U.S. origin, and found 3 missense mutations still remain disorders of remarkable and intriguing complex- (ANKRD1 Pro105Ser, which was recurrent in 2 families, ity.
    [Show full text]