In Defence of Repugnance,” Mind 117 (2008): 899-933

Total Page:16

File Type:pdf, Size:1020Kb

In Defence of Repugnance,” Mind 117 (2008): 899-933 [This paper was published as “In Defence of Repugnance,” Mind 117 (2008): 899-933. The official version appears at http://academic.oup.com/mind/article/117/468/899/1109795.] In Defence of Repugnance Michael Huemer Abstract: I defend the ‘Repugnant’ Conclusion that for any possible population of happy people, a population containing a sufficient number of people with lives barely worth living would be better. Four lines of argument converge on this conclusion, and the conclusion has a simple, natural theoretical explanation. The opposition to the Repugnant Conclusion rests on a bare appeal to intuition. This intuition is open to charges of being influenced by multiple distorting factors. Several theories of population ethics have been devised to avoid the Repugnant Conclusion, but each generates even more counterintuitive consequences. The intuition opposing the Repugnant Conclusion is thus among the best candidates for an intuition that should be revised. In Defence of Repugnance 1. The Repugnant Conclusion and the Benign Addition Proof 1.1 The ‘Repugnant’ Conclusion The following ethical theorem was proved a number of years ago by Derek Parfit, who, however, recoiled from his own progeny, cruelly naming it ‘the Repugnant Conclusion’: RC: For any world full of happy people, a world full of people whose lives were just barely worth living would be better, provided that the latter world contained enough people.1 Upon proving this proposition, Parfit introduced the name ‘the Mere Addition Paradox’ to denote the intellectual problem occasioned by the existence of the proof and its conflict with our intuitions. Since Parfit’s unwelcome discovery, several moral philosophers have taken RC under their wing, and several discoveries have been made that further strengthen RC.2 Despite all this, most philosophers continue to despise RC, citing (what else?) their intuitive sense of repugnance.3 At times, it seems that RC will never earn acceptance, no matter how strong the arguments in its favour. Because of this ongoing injustice, I have undertaken in this piece to offer a comprehensive defence of RC and response to its critics, in the hopes that RC will at last come to be accepted for what it is: one of the few genuine, nontrivial theorems of ethics discovered thus far. 1.2 The assumptions of population axiology The Repugnant Conclusion, like other theses in population ethics, asks us to compare possible worlds in terms of their overall value. I assume that such comparisons are possible, and that we may rely on our ethical intuitions in making such comparisons—whether directly or through reasoning based on abstract principles. These assumptions are nontrivial. In addition to those who doubt the validity of intuition as a source of ethical knowledge (Mackie 1977; Sinnott-Armstrong 2006), some philosophers reject the notion of the overall goodness of an event or state of affairs, or of improving or worsening the world as a whole. Geach (1956) holds that a thing can be a good F, for some particular sortal term ‘F’, but not good simply. Nor is there such a thing as a good event in his view, since ‘event’ is 1Parfit 1984, Ch. 17. I have slightly altered the principle from Parfit’s formulation. 2See Anglin 1977; Sikora 1978; 1981; Ng 1990, pp. 191–3; Attfield 1991, pp. 127–30; Ryberg 1996; Fotion 1997; Tännsjö 2002; and Broome 2004, pp. 210–14. 3See Parfit 1984; Temkin 1987; Locke 1987; Boonin-Vail 1996; Arrhenius 2000; Rachels 2001; Hurka 2003; Cowen 2004; and Blackorby, Bossert, and Donaldson 2004. too broad of a category for there to be standards for good events in the way that there are standards, for example, for good pens. Thomson holds that all goodness is goodness in a way—where being good in a way includes being a good F, being good for a given person, and being good for a given purpose, among other things. Like Geach, she denies that a thing can be good simply, that there are unqualifiedly good and bad events, or that there is such a thing as improving the world as a whole (for this reason, she sees consequentialism as incoherent). She characterises the contrary assumption as reflecting a confusion about the use of language (Thomson 2001, pp. 17–19). I do not attempt to disprove their views here; however, I shall assume that these philosophers are mistaken. When I ask myself whether it would be better for there to be one billion barely-worth-living lives or one million wonderful lives, it seems to me that I clearly understand the question, and thus that it is not incoherent or meaningless. I am not asking which would be better for some particular person or group, nor which would be better for some particular purpose, nor, in general, which would be better in some particular way. I am asking which would be better in the generic, agent-neutral sense—‘from the point of view of the universe’, in Sidgwick’s phrase.4 In asking this, I am not falling prey to a simple oversight about the proper use of language: I have explicitly considered whether the words ‘good’ and ‘better’ function only as Geach and Thomson describe, and it seems to me that they do not. Likewise, I do not attempt to refute skeptics about ethical intuition here.5 I assume that we have some prima facie justification for believing what our intuitions tell us regarding generic, agent-neutral value. These intuitions, however, are fallible, and a process of reasoning may often be needed to correct wayward intuitions. These assumptions are commonly taken for granted in population axiology, whether one accepts the Repugnant Conclusion or not. I believe, for example, that a world containing a billion people with slightly valuable lives is better than a world containing a million people each with lives 100 times better than in the first world. I base this conclusion on reasoning from certain intuitive axioms described below. My arguments are addressed to those who think, on the basis of intuition, that the first world would be overall worse than the second. 1.3 The Benign Addition Argument I begin with a variant of Parfit’s proof.6 Assume that there are levels of well- 4Sidgwick 1907, p. 382. See Moore (1903), whom Thomson mistakenly accuses of linguistic confusion, for more on the concept of generic, agent-neutral goodness. 5I defend the epistemic value of ethical intuition elsewhere (2005, Ch. 5; 2008). 6The argument following in the text is inspired by Parfit (1984, Ch. 19; see also his 1986, pp. 14– 17), but I have taken considerable liberties. I have simplified the argument so that only two world- comparisons are required, and I have substituted for Parfit’s (1984, p. 420) ‘mere addition’ a case of ‘benign addition’ (my term). Mere addition occurs when a group of people with positive welfare is added to the world without changing the welfare of any of the original people; benign addition occurs when a group of people with positive welfare is added while increasing the welfare of all of the original people (as in Parfit 1986, pp. 15–16; Tännsjö 2002, pp. 358–9). The purpose of the being, which may be represented by numbers. Positive numbers represent desirable levels of well-being, levels of well-being that render life worth living. Negative numbers represent states in which life is worth not living. ‘0’ represents a neutral state, in which it is a matter of indifference whether one continues in that state or ceases to exist. A possible world’s total utility is the sum of all its inhabitants’ levels of well-being. A world’s average utility is its total utility divided by the population size. We start with the following ethical axioms: The Benign Addition Principle: If worlds x and y are so related that x would be the result of increasing the well-being of everyone in y by some amount and adding some new people with worthwhile lives, then x is better than y with respect to utility.7 Non-anti-egalitarianism: If x and y have the same population, but x has a higher average utility, a higher total utility, and a more equal distribution of utility than y, then x is better than y with respect to utility.8 Transitivity: If x is better than y with respect to utility and y is better than z with respect to utility, then x is better than z with respect to utility. The qualifier ‘with respect to utility’ indicates that we are only considering the value that a world has in virtue of the levels of well-being enjoyed by its inhabitants; we are bracketing questions about such values as justice, freedom, knowledge, virtue, and so on. We are to assume, then, that all the worlds discussed are comparable in all those other dimensions. There remains an interesting question as to how we should evaluate worlds on the basis solely of their distributions of utility. Hereafter, I shall take these qualifications as read. To see how these principles necessitate the Repugnant Conclusion, consider three possible worlds (figure 1): World A: One million very happy people (welfare level 100). World A+: The same one million people, slightly happier (welfare level 101), plus 99 million new people with lives barely worth living (welfare level 1). World Z: The same 100 million people as in A+, but all with lives slightly better than the worse-off group in A+ (welfare level 3). latter change is to avoid objections stemming from the Person-Affecting Principle (see Sect. 3 below) and from Parfit’s (1984, pp. 430–32) view that A+ might fail to be worse than A without being either as good as or better than A.
Recommended publications
  • Dialetheists' Lies About the Liar
    PRINCIPIA 22(1): 59–85 (2018) doi: 10.5007/1808-1711.2018v22n1p59 Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil. DIALETHEISTS’LIES ABOUT THE LIAR JONAS R. BECKER ARENHART Departamento de Filosofia, Universidade Federal de Santa Catarina, BRAZIL [email protected] EDERSON SAFRA MELO Departamento de Filosofia, Universidade Federal do Maranhão, BRAZIL [email protected] Abstract. Liar-like paradoxes are typically arguments that, by using very intuitive resources of natural language, end up in contradiction. Consistent solutions to those paradoxes usually have difficulties either because they restrict the expressive power of the language, orelse because they fall prey to extended versions of the paradox. Dialetheists, like Graham Priest, propose that we should take the Liar at face value and accept the contradictory conclusion as true. A logical treatment of such contradictions is also put forward, with the Logic of Para- dox (LP), which should account for the manifestations of the Liar. In this paper we shall argue that such a formal approach, as advanced by Priest, is unsatisfactory. In order to make contradictions acceptable, Priest has to distinguish between two kinds of contradictions, in- ternal and external, corresponding, respectively, to the conclusions of the simple and of the extended Liar. Given that, we argue that while the natural interpretation of LP was intended to account for true and false sentences, dealing with internal contradictions, it lacks the re- sources to tame external contradictions. Also, the negation sign of LP is unable to represent internal contradictions adequately, precisely because of its allowance of sentences that may be true and false.
    [Show full text]
  • Semantical Paradox* Tyler Burge
    4 Semantical Paradox* Tyler Burge Frege remarked that the goal of all sciences is truth, but that it falls to logic to discern the laws of truth. Perceiving that the task of determining these laws went beyond Frege’s conception of it, Tarski enlarged the jurisdiction of logic, establishing semantics as truth’s lawyer.1 At the core of Tarski’s theory of truth and validity was a diagnosis of the Liar paradox according to which natural language was hopelessly infected with contradiction. Tarski construed himself as treating the disease by replacing ordinary discourse with a sanitized, artificial construction. But those interested in natural language have been dissatisfied with this medication. The best ground for dis­ satisfaction is that the notion of a natural language’s harboring contradictions is based on an illegitimate assimilation of natural language to a semantical system. According to that assimilation, part of the nature of a “language” is a set of postulates that purport to be true by virtue of their meaning or are at least partially constitutive of that “language”. Tarski thought that he had identified just such postulates in natural language as spawning inconsistency. But postulates are contained in theories that are promoted by people. Natural languages per se do not postulate or Tyler Burge, “Semantical Paradox", reprinted from The Journal of Philosophy 76 (1979), 169-98. Copyright © 1979 The Journal of Philosophy. Reprinted by permission of the Editor of The Journal of Philosophy and the author. * I am grateful to Robert L. Martin for several helpful discussions; to Herbert Enderton for proving the consistency (relative to that of arithmetic) of an extension of Construction C3; to Charles Parsons for stimulating exchanges back in 1973 and 1974; and to the John Simon Guggenheim Foundation for its support.
    [Show full text]
  • The Liar Paradox As a Reductio Ad Absurdum Argument
    University of Windsor Scholarship at UWindsor OSSA Conference Archive OSSA 3 May 15th, 9:00 AM - May 17th, 5:00 PM The Liar Paradox as a reductio ad absurdum argument Menashe Schwed Ashkelon Academic College Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive Part of the Philosophy Commons Schwed, Menashe, "The Liar Paradox as a reductio ad absurdum argument" (1999). OSSA Conference Archive. 48. https://scholar.uwindsor.ca/ossaarchive/OSSA3/papersandcommentaries/48 This Paper is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized conference organizer of Scholarship at UWindsor. For more information, please contact [email protected]. Title: The Liar Paradox as a Reductio ad Absurdum Author: Menashe Schwed Response to this paper by: Lawrence Powers (c)2000 Menashe Schwed 1. Introduction The paper discusses two seemingly separated topics: the origin and function of the Liar Paradox in ancient Greek philosophy and the Reduction ad absurdum mode of argumentation. Its goal is to show how the two topics fit together and why they are closely connected. The accepted tradition is that Eubulides of Miletos was the first to formulate the Liar Paradox correctly and that the paradox was part of the philosophical discussion of the Megarian School. Which version of the paradox was formulated by Eubulides is unknown, but according to some hints given by Aristotle and an incorrect version given by Cicero1, the version was probably as follows: The paradox is created from the Liar sentence ‘I am lying’.
    [Show full text]
  • Alethic Fictionalism, Alethic Nihilism, and the Liar Paradox
    Philos Stud (2017) 174:3083–3096 DOI 10.1007/s11098-016-0847-4 Alethic fictionalism, alethic nihilism, and the Liar Paradox 1 2 Bradley Armour-Garb • James A. Woodbridge Published online: 23 December 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract Recently, several philosophers have proposed fictionalist accounts of truth- talk, as a means for resolving the semantic pathology that the Liar Paradox appears to present. These alethic fictionalists aim to vindicate truth-talk as a kind of as if dis- course, while rejecting that the talk attributes any real property of truth. Liggins (Analysis 74:566–574, 2014) has recently critically assessed one such proposal, Beall’s (The law of non-contradiction: new philosophical essays. Oxford University Press, New York, pp 197–216, 2004) constructive methodological deflationist (henceforth, ‘CMD’), offering objections to Beall’s proposed alethic fictionalism that potentially generalize to other alethic fictionalist accounts. Liggins further argues that CMD supports a classically consistent response to the Liar Paradox—one that can be extracted from CMD, while leaving its putatively problematic fictionalist elements behind in favor of alethic nihilism. In this paper, after establishing that Liggins’s criticisms of CMD are off base, we show that the classical resolution of the Liar Paradox that he proposes is unworkable. Since his resistance to alethic fictionalism turns out to be unmotivated, we conclude that this approach is still worth considering as a framework for a resolution of the Liar Paradox. Keywords Truth Á Liar Paradox Á Fictionalism Á Pretense & Bradley Armour-Garb [email protected] James A. Woodbridge [email protected] 1 Department of Philosophy, University at Albany—SUNY, Albany, NY, USA 2 Department of Philosophy, University of Nevada, Las Vegas, NV, USA 123 3084 B.
    [Show full text]
  • On Common Solutions to the Liar and the Sorites
    On Common Solutions to the Liar and the Sorites Sergi Oms Sardans Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License. On Common Solutions to the Liar and the Sorites Sergi Oms Sardans Phd in Cognitive Science and Language Supervisor: Jose´ Mart´ınez Fernandez´ Tutor: Manuel Garc´ıa-Carpintero Sanchez-Miguel´ Department of Philosophy Faculty of Philosophy University of Barcelona CONTENTS Abstract iv Resum v Acknowledgements vi 1 Introduction 1 1.1 Truth . 1 1.2 The Liar . 3 1.3 The Formal Liar . 6 1.4 The Sorites ............................ 10 1.5 Forms of the Sorites ....................... 12 1.6 Vagueness . 17 1.7 This Dissertation . 18 2 The notion of Paradox 20 2.1 A Minor Point . 20 2.2 The Traditional Definition . 22 2.3 Arguments and Premises . 25 2.4 The Logical Form . 28 2.5 A First Attempt . 29 2.6 The Notion of Paradox . 31 2.7 Two Consequences . 35 2.8 Two Objections . 36 3 Solving Paradoxes 39 3.1 Solving One Paradox . 39 3.2 Solving more than One Paradox . 45 3.3 Van McGee: Truth as a Vague Notion . 47 i CONTENTS ii 3.3.1 The Sorites in Partially Interpreted Languages . 47 3.3.2 The Liar and vagueness . 49 3.3.3 Solving the Paradoxes . 54 4 Why a Common Solution 56 4.1 Why a Common Solution? .
    [Show full text]
  • The Liar: an Essay in Truth and Circularity, by Jon Barwise and John Etchemendy, Oxford University Press, New York and Oxford, 1987, Xii + 185 Pp., $19.95
    216 BOOK REVIEWS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 20, Number 2, April 1989 ©1989 American Mathematical Society 0273-0979/89 $1.00 + $.25 per page The Liar: An essay in truth and circularity, by Jon Barwise and John Etchemendy, Oxford University Press, New York and Oxford, 1987, xii + 185 pp., $19.95. ISBN 0-19-505072-x Consider the classic Liar sentence: "This sentence is false." It claims that it is false. So if we assume that a sentence is true if and only if what it claims is the case, then the Liar is true if and only if it is false. People have thought about this paradox for centuries. Despite this, there is no single standard "solution." An attempted resolution of the paradox would tell us which of our intuitions are sound and which need further clarification. It would point out where and why our naive reasoning leads us to a contradiction. Modern logic applies mathematical methods to the modeling and study of truth, proof, computation, and infinity. The paradoxes of semantics and set theory were important in the development of the field. The reason for working on the paradoxes of any field is not only to secure a foundation. The deeper reason is that by introducing, discarding, and clarifying the concepts that lead to paradox we are lead to the central ideas and questions of the field. We see from The Liar that the paradoxes are still a source of inspiration in logic. The book is a new, exciting contribution to the study of truth.
    [Show full text]
  • The Liar Paradox: Tangles and Chains Author(S): Tyler Burge Source: Philosophical Studies: an International Journal for Philosophy in the Analytic Tradition, Vol
    The Liar Paradox: Tangles and Chains Author(s): Tyler Burge Source: Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, Vol. 41, No. 3 (May, 1982), pp. 353-366 Published by: Springer Stable URL: http://www.jstor.org/stable/4319529 Accessed: 11-04-2017 02:26 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Springer is collaborating with JSTOR to digitize, preserve and extend access to Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition This content downloaded from 128.97.244.236 on Tue, 11 Apr 2017 02:26:37 UTC All use subject to http://about.jstor.org/terms TYLER BURGE THE LIAR PARADOX: TANGLES AND CHAINS (Received 20 March, 1981) In this paper I want to use the theory that I applied in 'Semantical paradox' to the Liar and Grelling paradoxes to handle some subtler versions of the Liar.! These new applications will serve as tools for sharpening some of the pragmatic principles and part of the underlying motivation of the theory. They also illustrate the superiority of our theory to previous ones in the hier- archical tradition. The heart of the theory is that 'true' is an indexical-schematic predicate.
    [Show full text]
  • List of Paradoxes 1 List of Paradoxes
    List of paradoxes 1 List of paradoxes This is a list of paradoxes, grouped thematically. The grouping is approximate: Paradoxes may fit into more than one category. Because of varying definitions of the term paradox, some of the following are not considered to be paradoxes by everyone. This list collects only those instances that have been termed paradox by at least one source and which have their own article. Although considered paradoxes, some of these are based on fallacious reasoning, or incomplete/faulty analysis. Logic • Barbershop paradox: The supposition that if one of two simultaneous assumptions leads to a contradiction, the other assumption is also disproved leads to paradoxical consequences. • What the Tortoise Said to Achilles "Whatever Logic is good enough to tell me is worth writing down...," also known as Carroll's paradox, not to be confused with the physical paradox of the same name. • Crocodile Dilemma: If a crocodile steals a child and promises its return if the father can correctly guess what the crocodile will do, how should the crocodile respond in the case that the father guesses that the child will not be returned? • Catch-22 (logic): In need of something which can only be had by not being in need of it. • Drinker paradox: In any pub there is a customer such that, if he or she drinks, everybody in the pub drinks. • Paradox of entailment: Inconsistent premises always make an argument valid. • Horse paradox: All horses are the same color. • Lottery paradox: There is one winning ticket in a large lottery. It is reasonable to believe of a particular lottery ticket that it is not the winning ticket, since the probability that it is the winner is so very small, but it is not reasonable to believe that no lottery ticket will win.
    [Show full text]
  • Truth & Paradox
    c Toby Meadows Online v0.7 Truth & Paradox Draft Toby Meadows c Toby Meadows Online v0.7 Draft 3 READ ME: These notes are still drafts: • there will be typos; • there may be errors; and • I plan to augment them. That said, they should be complete enough to be useful and I hope you find them so. I plan to update this document on my website: https://sites.google.com/site/tobymeadows/. Unless you’ve already come from there, it could be worth looking there for a more recent version of Toby Meadows c this document. Draft Also, if you do spot any problems or there’s something you don’t like or understand, I’d like to hear about it. Please drop me an email at: [email protected]. Online v0.7 Contents Chapter 1. om liar sentences to Kripke’s construction 5 1.1. The Liar Paradox 6 1.2. Getting formal 11 1.3. What should we do? 21 1.4. Tarski’s solution 22 Chapter 2. Kripke’s construction, its cousins & what you can do with them 29 2.1. Kripke’s solution 30 2.2. Contemporary research in formal theories of truth 40 2.3. Consistency & non-triviality 41 Bibliography 44 Toby Meadows c Draft Online v0.7 4 CHAPTER 1 om liar sentences to Kripke’s construction This week, we’re going to build up some of the technical basics involved in understanding the liar paradox and some of the contemporary approaches to it on the market. We’ll run through the following sections: (1) The liar paradox - we’ll develop the basic ingredients of the paradox, investigate some problematic solutions and in so doing make things more precise.
    [Show full text]
  • A Semantic Situation Without Syntax (Non- Axiomatizibility of Theories)
    A Semantic Situation without Syntax (Non- axiomatizibility of Theories) Farzad Didehvar [email protected] Department of Mathematics &Computer Science, Amir Kabir University, Tehran, Iran Tel: 98-21-66952518 Abstract: Here, by introducing a version of “Unexpected hanging paradox” first we try to open a new way and a new explanation for paradoxes, similar to liar paradox. Also, we will show that we have a semantic situation which no syntactical logical system could support it. Finally, we propose a claim in the subject of axiomatizibility. Based on this claim, having an axiomatic system for Computability Theory is not possible. In fact, the same argument shows that many other theories are non-axiomatizable. (Dare to say: General Theories of Physics and Mathematics). Keywords: Unexpected hanging paradox, Liar paradox, formalizing the proof, Turing machine, Axiomatization Introduction: The surprise exam paradox (Unexpected hanging paradox ) is a well-known paradox that too many works have been done based on that or about it. Simple formulation of this paradox is: A judge condemned a prisoner. The verdict is:you will be executed in the next week, in a day that you did not know about it in previous days, so it will be a surprise for you. The prisoner starts to argue as following: 1. I will not be executed in Friday, since in this case, I will not be executed in the days before so in the Thursday I will understand that I will be executed in Friday. A contradiction. 2. I will not be executed in Thursday, since in this case; I will not be executed in the days before by 1 I know that I will not be executed in Friday, so in the Wednesday I will understand that I will be executed in Thursday.
    [Show full text]
  • Paradoxes of Intensionality Version Of: March 1, 2007 Dustin Tucker and Richmond H
    Paradoxes of Intensionality Version of: March 1, 2007 Dustin Tucker and Richmond H. Thomason Philosophy Department, University of Michigan Abstract We identify a class of paradoxes that are neither set-theoretical or semantical, but that seem to depend on intensionality. In particular, these paradoxes arise out of plausible properties of propositional attitudes and their objects. We try to explain why logicians have neglected these paradoxes, and to show that, like the Russell Paradox and the direct discourse Liar Paradox, these intensional paradoxes are recalcitrant and challenge logical analysis. Indeed, when we take these paradoxes seriously, we may need to rethink the commonly accepted methods for dealing with the logical paradoxes. 1. Introduction Contemporary work on the paradoxes of logic and set theory is framed by ideas that go back to the 1920s and 1930s. In 1925, Frank Ramsey divided the paradoxes into those (like the Russell Paradox) that arise within mathematics, and those (like the Liar Paradox) that do not. Having made his division of the paradoxes, Ramsey took the Liar and related paradoxes to be extralogical, involving an “empirical” linguistic element. But later, in work published in 1936, Alfred Tarski showed that the Liar Paradox does arise even in rigorously presented semantic theories of formalized languages, making a compelling case that the enterprise of producing these theories belongs to logic. At the same time, he demonstrated how the para- dox could be avoided by relativizing truth to a language and invoking a linguistic hierarchy in which no language could serve as its own semantic metalanguage. These ideas were congenial to the spirit of the times.
    [Show full text]
  • Eubulides As a 20Th-Century Semanticist Pieter A.M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MPG.PuRe Language Sciences 27 (2005) 75–95 www.elsevier.com/locate/langsci Eubulides as a 20th-century semanticist Pieter A.M. Seuren Max Planck Institute for Psycholinguistics, P.O. Box 310, 6500 AH Nijmegen, The Netherlands Accepted 2 December 2003 Abstract It is the purpose of the present paper to highlight the figure of Eubulides, a relatively unknown Greek philosopher who lived ±405–330 BC and taught at Megara, not far from Athens. He is mainly known for his four paradoxes (the Liar, the Sorites, the Electra, and the Horns), and for the mutual animosity between him and his younger contemporary Aristotle. The Megarian school of philosophy was one of the main sources of the great Stoic tradition in ancient philosophy. What has never been made explicit in the literature is the importance of the four paradoxes for the study of meaning in natural language: they summarize the whole research programme of 20th century formal or formally oriented semantics, including the problems of vague predicates (Sorites), intensional contexts (Electra), and presuppositions (Horns). One might say that modern formal or formally oriented semantics is essentially an attempt at finding linguistically tenable answers to problems arising in the context of Aris- totelian thought. It is a surprising and highly significant fact that a contemporary of Aristotle already spotted the main weaknesses of the Aristotelian paradigm. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: Aristotle; Eubulides; Logical paradoxes; Semantics 1. Introduction Eubulides was a Greek philosopher in the fourth century BC, and is the almost forgotten author of four so-called ‘paradoxes’, the Liar, Electra, Sorites and the Horns.
    [Show full text]