Sif 00 Prelim (Bc-D)

Total Page:16

File Type:pdf, Size:1020Kb

Sif 00 Prelim (Bc-D) SiF 04 Chap 4 (bc-t) 7/6/06 3:55 pm Page 19 4 The neurochemistry of schizophrenia Our knowledge of the neurochemical abnormalities associated with schizophrenia has grown substantially over the past decade or so. Five decades ago, the accidental discovery of chlorpromazine’s antipsychotic action led, eventually, to a better understanding of the neuronal nature of schizophrenia. More recently, modern techniques for in vivo imaging of neurotransmitter receptors have advanced our understanding still further. Nonetheless, the true and complete neurochemical nature of schizophrenia is still to be elucidated and drug efficacy remains somewhat limited, with no major advance since the introduction of clozapine, a drug first synthesised in the 1950s. In fact, our knowledge of the neurochemistry of schizophrenia is such that we cannot say with certainty whether we know almost nothing or almost everything – it is not clear whether or not we are 1 year or a 100 years away from a major therapeutic breakthrough. In this chapter, we examine neurochemical candidates in schizo- phrenia and summarise knowledge of their suspected or established involvement in the disorder. Dopamine Dopamine is synthesised in neurones from extracellular tyrosine via dihydrophenylalanine. Intracellular dopamine levels are controlled by the enzyme monoamine oxidase. After release, dopamine may be taken back up into the presynaptic neurone or metabolised by catechol-o- methyl transferase. In the brain, dopamine interacts with a range of postsynaptic dopamine receptors (D1–D5; Figure 4.1). There are four major dopaminergic pathways: 1. the nigrostriatal pathway, controlling motor activities 2. the mesolimbic pathways, controlling reward, pleasure and many behaviours 3. the mesocortical pathway, which has uncertain function but contributes to cognition and volition 4. the tuberoinfundibular pathway, controlling production of prolactin SiF 04 Chap 4 (bc-t) 7/6/06 3:55 pm Page 20 20 The neurochemistry of schizophrenia Dopamine receptors D1 family D2 family D1 D5 D2 D3 D4 Figure 4.1 Dopamine receptor classification. As is well known, the dopamine theory of schizophrenia has its origin in early observation of the pharmacological actions of antipsychotics such as reserpine [1] and chlorpromazine [2]. The theory is further supported by the neurochemically unique correlation between in vitro activity at dopamine receptors and clinical dose [3] and the observed pro-psychotic effects of dopamine agonists such as amfetamine [4]. It became accepted that schizophrenia was a condition associated with, or caused by, dopamine overactivity. Over the last decade or so, the dopamine theory of schizophrenia has suffered numerous blows to its status as accepted fact. Some rather confusing and contradictory evidence comes from neuroimaging studies (Box 4.1). In the 1980s an in vivo positron emission tomography (PET) study of antipsychotic-naive patients using the ligand [11C] N-methyl- spiperone [5] suggested an increase in dopamine (D2, D3, D4) receptor numbers in schizophrenia, so supporting the dopamine theory of schizo- phrenia. However, later, studies using a more specific ligand, [11C] raclo- pride, found no increase in D2 or D3 receptors [6]. In addition to this, neuroimaging studies in patients receiving antipsychotics were able to show, first, that antipsychotics sometimes failed to be effective despite high dopamine receptor binding and, second, that the supremely effec- tive antipsychotic clozapine was able to induce response despite low D2 receptor occupancy [7, 8]. Recent research has also attempted to determine which type or types of dopamine receptor might be involved in the neurochemistry of schizophrenia. D1 receptors are concentrated in the caudate putamen, the nucleus accumbens and the olfactory tubercle but are highly abundant, being found in cortical and limbic regions. There is limited evidence that D1 SiF 04 Chap 4 (bc-t) 7/6/06 3:55 pm Page 21 Dopamine 21 Box 4.1 Neuroimaging Neuroimaging involves the use of radiolabelled receptor-binding compounds (ligands) to identify the location and number of specific neurochemical receptors. The technique is suitable for in vitro and in vivo studies but the latter are generally more illuminating. The radiolabelled compound is usually a specific antagonist of a certain receptor or receptor 11 type. Examples include [ C] N-methylspiperone (D2, D3, D4 receptors); 11 11 123 [ C] raclopride (D2, D3); [ C] SCH 23390 (D1); [ I] epidepride (D2, D3); 123 [ I]-iodobenzamide and R 91150 (5HT2a). There are two major experimental methods: PET and single photon emission tomography (SPET). Both are able to image receptor location, receptor density and numbers of free (unbound) receptors. Both have two potential sources of error: (1) specificity of ligands for receptor types and (2) the competition for receptor sites between the ligand, endogenous neurotransmitter and any drug present. Ligands are therefore specially selected for their specificity and their receptor affinity so that specific, free receptors can be imaged (the ligand should not, for example, displace the drug under investigation from receptor sites). receptor numbers are reduced in schizophrenia but this is not conclusive [8]. Some PET studies have detected reduced D1 density [9]; others have not [10]. Newly developed ligands such as [11C] NNC 112 may help clarify the situation [11]. A reduction in D1 receptor density is an intriguing possibility, which, counterintuitively, supports the dopamine hypothesis. It is possible that antipsychotics (which in general block D2 receptors but not D1) may induce increased dopamine turnover which may compensate for the pathological reduction in D1 numbers and perhaps restore the balance in D1/D2 stimulation [8]. This explanation stands whether D1 receptors are primarily postsynaptic or presynaptic autoreceptors. It is noteworthy that a specific D1 antagonist SCH39166 seems to cause deterioration of psychotic symptoms [12], while clozapine appears to be a D1 receptor agonist [13]. D2 receptors are the most abundant dopamine receptors in the brain with widespread distribution but particular concentration in the basal ganglia (striatum, putamen). Measurements of D2 receptor numbers in schizophrenia have provided conflicting results, largely as a consequence of the use of antipsychotics which share a propensity for D2 antagonism and inevitably affect D2 receptor density. In vivo neuro- imaging studies in drug-naive subjects generally suggest increased D2 SiF 04 Chap 4 (bc-t) 7/6/06 3:55 pm Page 22 22 The neurochemistry of schizophrenia receptor density in the striatum with perhaps decreased receptor numbers in the anterior cingulate cortex [14]. Those with schizophrenia also seem to show an exaggerated response to amfetamine – striatal dopamine release is significantly greater than in normal controls [15]. D2 receptor antagonism remains the most plausible and well- supported method by which antipsychotics exert their effects [7, 8]. Neuroimaging studies confirm the D2 receptor-blocking action of all antipsychotics but these studies are limited by their lack of specificity for different dopamine receptor subtypes and their restricted capacity for imaging receptor density in areas of the brain with few receptors (e.g. extrastriatal structures). Improved techniques may eventually be illuminating, as may genetic studies, which have already proposed an association between a polymorphism of a D2 receptor gene and a diag- nosis of schizophrenia [16]. Investigation into the role of D3 receptors in schizophrenia has been severely hampered by the absence of a specific D3 ligand [8]. D3 receptors appear to be predominantly found in limbic areas of the brain – the sites of emotional processing. As such, they are potential candi- dates for involvement in the symptoms of schizophrenia and for targets for antipsychotic action. D3 receptor densities may be increased in the brains of those with schizophrenia [17], although the evidence for this is slim. Knowledge of the role of D3 receptors is likely to develop more quickly now that specific ligands such as [125I]7-hydroxy-PIPAT have begun to be used [17–19]. Genetic studies may also be productive: it has been suggested that D3 receptor messenger RNA is increased in white blood cells of those with schizophrenia [20]. In the 1990s there was considerable excitement over the role of D4 receptors. This excitement and resultant flurry of activity followed the apparent discovery of a sixfold increase in D4 receptor numbers in schizophrenia [21]. Clozapine was also noted to be a potent D4 receptor antagonist [22]. However, the D4 receptor theory of schizophrenia was short-lived: other workers failed to replicate original findings [8] and the D4 antagonist fananserin was found to have no antipsychotic effects [23]. The role of dopamine D5 receptors in schizophrenia is unclear and their function is unknown. Studies examining associations between genetic mutations of the D5 gene and schizophrenia have produced con- tradictory results [24, 25] (Dopamine focus 4.1). SiF 04 Chap 4 (bc-t) 7/6/06 3:55 pm Page 23 Serotonin 23 DOPAMINE FOCUS 4.1 Dopamine activity in schizophrenia Brain region Dopamine activity Associated symptoms Broca’s area ↑ Auditory hallucinations Superior temporal gyrus ↑ Auditory hallucinations Cingulate gyrus ↑ Passivity experiences Hippocampus ↑ Positive symptoms Prefrontal cortex ↓ Negative symptoms Anterior cingulate ↓ Thought disorder Attention deficit Serotonin Serotonin or 5-hydroxytryptamine (5HT) has been suspected
Recommended publications
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Among a Series of Novel D4 Dopamine Receptor Agonists and Antagonists Jeremiah J
    Topographically Based Search for an “Ethogram” Among a Series of Novel D4 Dopamine Receptor Agonists and Antagonists Jeremiah J. Clifford, Ph.D., and John L. Waddington, Ph.D., D.Sc. The effects of three selective D4 antagonists [CP-293,019, 25.0 mg/kg) failed to influence any behavior; whereas, PD L-745,870, and Ro 61-6270] and two putative selective D4 168077 (0.2–25.0 mg/kg) induced nonstereotyped shuffling agonists [CP-226,269 and PD 168077] were compared with locomotion with uncoordinated movements, jerking, and those of the generic D2-like [D2L/S,D3, D4] antagonist yawning, which were insensitive to antagonism by haloperidol to identify any characteristic “ethogram,” in CP-293,019, L-745,870, or haloperidol. These findings fail terms of individual topographies of behavior within the to indicate any “ethogram” for selective manipulation of D4 natural rodent repertoire, as evaluated using ethologically receptor function at the level of the interaction between based approaches. Among the D4 antagonists, neither motoric and psychological processes in sculpting behavioral L-745,870 (0.0016–1.0 mg/kg) nor Ro 61-6270 (0.2–25.0 topography over habituation of exploration through to mg/kg) influenced any behavior; whereas, CP-293,019 quiescence and focus attention on social, cognitive, or other (0.2–25.0 mg/kg) induced episodes of nonstereotyped levels of examination. sniffing, sifting, and vacuous chewing; there were no [Neuropsychopharmacology 22:538–544, 2000] consistent effects on responsivity to the D2-like agonist RU © 2000 American College of Neuropsychopharmacology. 24213. Among the putative D4 agonists, CP-226,269 (0.2– Published by Elsevier Science Inc.
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1
    [Show full text]
  • Ligand-Based Pharmacophore Studies in the Dopaminergic System Amar P
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2011 Ligand-based pharmacophore studies in the dopaminergic system Amar P. Inamdar University of Wollongong Recommended Citation Inamdar, Amar P., Ligand-based pharmacophore studies in the dopaminergic system, Doctor of Philosophy thesis, School of Chemistry, University of Wollongong, 2011. http://ro.uow.edu.au/theses/3535 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. LIGAND-BASED PHARMACOPHORE STUDIES IN THE DOPAMINERGIC SYSTEM A thesis submitted in partial fulfilment of the requirements for the award of the degree DOCTOR OF PHILOSOPHY From UNIVERSITY OF WOLLONGONG By AMAR P. INAMDAR, B.PHARM., M.PHARM. SCHOOL OF CHEMISTRY November 2011 THESIS CERTIFICATION I, Amar P. Inamdar, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Amar P. Inamdar November 2011 i ACKNOWLEDGEMENTS I am truly grateful to my supervisor, Prof. John B. Bremner, whose support, encouragement and guidance has helped me immensely in the completion of this project. Most importantly, I am thankful for his patience over all these years and believing in me in spite of various difficult periods in this journey. I know he has sacrificed a significant amount of his personal time to make this happen. I also owe my deepest gratitude to Associate Prof.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Atypical Antipsychotic Drugs in Schizophrenia
    Health Technology Assessment 2003; Vol. 7: No. 13 A systematic review of atypical antipsychotic drugs in schizophrenia A-M Bagnall L Jones L Ginnelly R Lewis J Glanville S Gilbody L Davies D Torgerson J Kleijnen Health Technology Assessment NHS R&D HTA Programme HTA HTA How to obtain copies of this and other HTA Programme reports. An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below). Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents. Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph. You can order HTA monographs from our Despatch Agents: – fax (with credit card or official purchase order) – post (with credit card or official purchase order or cheque) – phone during office hours (credit card only). Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it. Contact details are as follows: HTA Despatch Email: [email protected] c/o Direct Mail Works Ltd Tel: 02392 492 000 4 Oakwood Business Centre Fax: 02392 478 555 Downley, HAVANT PO9 2NP, UK Fax from outside the UK: +44 2392 478 555 NHS libraries can subscribe free of charge.
    [Show full text]
  • Pharmacology and Therapeutic Potential of Sigma1 Receptor Ligands E.J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central 344 Current Neuropharmacology, 2008, 6, 344-366 Pharmacology and Therapeutic Potential of Sigma1 Receptor Ligands E.J. Cobos1,2, J.M. Entrena1, F.R. Nieto1, C.M. Cendán1 and E. Del Pozo1,* 1Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, and 2Biomedical Research Center, University of Granada, Granada, Spain Abstract: Sigma () receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of receptors, termed 1 and 2. Of these two subtypes, the 1 re- ceptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for 1 receptors, including the antipsychotic haloperi- dol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in ad- dition, the anticonvulsant drug phenytoin allosterically modulates 1 receptors. Certain neurosteroids are known to interact with 1 receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in 2+ intracellular Ca signaling. Sigma1 receptors also play a modulatory role in the activity of some ion channels and in sev- eral neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modula- tory role, 1 receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine).
    [Show full text]
  • The Past and Future of Novel, Non-Dopamine-2 Receptor Therapeutics for Schizophrenia: a Critical and Comprehensive Review T
    Journal of Psychiatric Research 108 (2019) 57–83 Contents lists available at ScienceDirect Journal of Psychiatric Research journal homepage: www.elsevier.com/locate/jpsychires The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: A critical and comprehensive review T ∗ Ragy R. Girgis ,1, Anthony W. Zoghbi1, Daniel C. Javitt, Jeffrey A. Lieberman The New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, N.Y, USA ARTICLE INFO ABSTRACT Keywords: Since the discovery of chlorpromazine in the 1950's, antipsychotic drugs have been the cornerstone of treatment Schizophrenia of schizophrenia, and all attenuate dopamine transmission at the dopamine-2 receptor. Drug development for Experimental treatments schizophrenia since that time has led to improvements in side effects and tolerability, and limited improvements Clinical trials in efficacy, with the exception of clozapine. However, the reasons for clozapine's greater efficacy remain unclear, Dopamine despite the great efforts and resources invested therewith. We performed a comprehensive review of the lit- Glutamate erature to determine the fate of previously tested, non-dopamine-2 receptor experimental treatments. Overall we Novel therapeutics included 250 studies in the review from the period 1970 to 2017 including treatments with glutamatergic, serotonergic, cholinergic, neuropeptidergic, hormone-based, dopaminergic, metabolic, vitamin/naturopathic, histaminergic, infection/inflammation-based, and miscellaneous mechanisms. Despite there being several pro- mising targets, such as allosteric modulation of the NMDA and α7 nicotinic receptors, we cannot confidently state that any of the mechanistically novel experimental treatments covered in this review are definitely effective for the treatment of schizophrenia and ready for clinical use.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Discovery of E1r: a Novel Positive Allosteric Modulator of Sigma-1 Receptor
    Edijs Vāvers DISCOVERY OF E1R: A NOVEL POSITIVE ALLOSTERIC MODULATOR OF SIGMA-1 RECEPTOR Doctoral Thesis for obtaining the degree of Doctor of Pharmacy Speciality − Pharmaceutical Pharmacology Scientific supervisor: Dr. pharm., Professor Maija Dambrova Riga, 2017 ANNOTATION Sigma-1 receptor (Sig1R) is a new drug target. Notably, the International Union of Basic and Clinical Pharmacology included Sig1R in its list of receptors only in 2013. It is believed that Sig1R ligands are potential novel drug candidates for the treatment of central and peripheral nervous system diseases. The aim of this thesis was to evaluate the pharmacological activity of novel Sig1R ligands and to search for their possible clinical applications. Methylphenylpiracetam (2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide) was synthesised in the Latvian Institute of Organic Synthesis. There are two chiral centres in the molecular structure of methylphenylpiracetam; therefore, it is possible to isolate four individual stereoisomers, which are denoted E1R, T1R, E1S and T1S. The activity of E1R was profiled using commercially available screening assays, which showed that the compound selectively modulates Sig1R activity but does not affect the other investigated neuronal receptors and ion channels. The following detailed in vitro studies, in which more selective Sig1R ligands were used, provided solid evidence that E1R is a positive allosteric modulator of Sig1R. It was found that the enantiomers with the R-configuration at the C-4 chiral centre in the 2-pyrrolidone ring (E1R and T1R) are more effective positive allosteric modulators of Sig1R than their optical antipodes. Since Sig1R agonists demonstrate neuroprotective properties and are effective in the treatment of cognitive disorders of various origins, the activity of E1R was tested in experimental models in vivo.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev
    Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM GADOCOLETICUM 280776-87-6 ABAFUNGIN 129639-79-8 ACIDUM LIDADRONICUM 63132-38-7 ABAMECTIN 65195-55-3 ACIDUM SALCAPROZICUM 183990-46-7 ABANOQUIL 90402-40-7 ACIDUM SALCLOBUZICUM 387825-03-8 ABAPERIDONUM 183849-43-6 ACIFRAN 72420-38-3 ABARELIX 183552-38-7 ACIPIMOX 51037-30-0 ABATACEPTUM 332348-12-6 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABETIMUSUM 167362-48-3 ACIVICIN 42228-92-2 ABIRATERONE 154229-19-3 ACLANTATE 39633-62-0 ABITESARTAN 137882-98-5 ACLARUBICIN 57576-44-0 ABLUKAST 96566-25-5 ACLATONIUM NAPADISILATE 55077-30-0 ABRINEURINUM 178535-93-8 ACODAZOLE 79152-85-5 ABUNIDAZOLE 91017-58-2 ACOLBIFENUM 182167-02-8 ACADESINE 2627-69-2 ACONIAZIDE 13410-86-1 ACAMPROSATE
    [Show full text]
  • Antipsychotics for Treatment of Delirium in Hospitalised Non-ICU Patients
    This is a repository copy of Antipsychotics for treatment of delirium in hospitalised non-ICU patients. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/132847/ Version: Published Version Article: Burry, Lisa, Mehta, S.R., Perreault, M.M et al. (6 more authors) (2018) Antipsychotics for treatment of delirium in hospitalised non-ICU patients. Cochrane Database of Systematic Reviews. CD005594. ISSN 1469-493X https://doi.org/10.1002/14651858.CD005594.pub3 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Cochrane Database of Systematic Reviews Antipsychotics for treatment of delirium in hospitalised non- ICU patients (Review) Burry L, Mehta S, Perreault MM, Luxenberg JS, Siddiqi N, Hutton B, Fergusson DA, Bell C, Rose L Burry L, Mehta S, Perreault MM, Luxenberg JS, Siddiqi N, Hutton B, Fergusson DA, Bell C, Rose L. Antipsychotics for treatment of delirium in hospitalised non-ICU patients. Cochrane Database of Systematic Reviews 2018, Issue 6.
    [Show full text]