The Past and Future of Novel, Non-Dopamine-2 Receptor Therapeutics for Schizophrenia: a Critical and Comprehensive Review T

Total Page:16

File Type:pdf, Size:1020Kb

The Past and Future of Novel, Non-Dopamine-2 Receptor Therapeutics for Schizophrenia: a Critical and Comprehensive Review T Journal of Psychiatric Research 108 (2019) 57–83 Contents lists available at ScienceDirect Journal of Psychiatric Research journal homepage: www.elsevier.com/locate/jpsychires The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: A critical and comprehensive review T ∗ Ragy R. Girgis ,1, Anthony W. Zoghbi1, Daniel C. Javitt, Jeffrey A. Lieberman The New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, N.Y, USA ARTICLE INFO ABSTRACT Keywords: Since the discovery of chlorpromazine in the 1950's, antipsychotic drugs have been the cornerstone of treatment Schizophrenia of schizophrenia, and all attenuate dopamine transmission at the dopamine-2 receptor. Drug development for Experimental treatments schizophrenia since that time has led to improvements in side effects and tolerability, and limited improvements Clinical trials in efficacy, with the exception of clozapine. However, the reasons for clozapine's greater efficacy remain unclear, Dopamine despite the great efforts and resources invested therewith. We performed a comprehensive review of the lit- Glutamate erature to determine the fate of previously tested, non-dopamine-2 receptor experimental treatments. Overall we Novel therapeutics included 250 studies in the review from the period 1970 to 2017 including treatments with glutamatergic, serotonergic, cholinergic, neuropeptidergic, hormone-based, dopaminergic, metabolic, vitamin/naturopathic, histaminergic, infection/inflammation-based, and miscellaneous mechanisms. Despite there being several pro- mising targets, such as allosteric modulation of the NMDA and α7 nicotinic receptors, we cannot confidently state that any of the mechanistically novel experimental treatments covered in this review are definitely effective for the treatment of schizophrenia and ready for clinical use. We discuss potential reasons for the relative lack of progress in developing non-dopamine-2 receptor treatments for schizophrenia and provide recommendations for future efforts pursuing novel drug development for schizophrenia. 1. Introduction and cognitive deficits, along with better tolerability. However, there has been relatively little progress in the development of new treatments Since the serendipitous discovery of chlorpromazine in the 1950's, since the introduction of antipsychotic medications. antipsychotic drugs (APDs) have been the cornerstone of treatment of First generation APDs had high affinity and were full antagonists at schizophrenia (Lehmann and Ban, 1997). However, 30% of all schizo- D-2 receptors, while second generation APDs were D-2 receptor an- phrenia subjects do not respond to currently available treatments, and tagonists and possessed higher affinity for other neuro-receptors in- 60% have partial response with residual symptoms persisting (Barbui cluding the 5-HT2A receptors (Miyamoto et al., 2012). More recently, et al., 2009). Moreover, antipsychotic medications have very limited compounds have been developed that represent variations on this D-2 effects on negative symptoms (Breier et al., 1994; Kasper et al., 2003; receptor super-family and include partial agonists at the D-2 receptor Marder et al., 1997; Meltzer et al., 1998; Miyamoto et al., 2005) and (aripiprazole and brexpiprazole), D-3 selective compounds (cariprazine cognitive deficits (e.g., working memory, verbal memory, attention, [Allergan] and F1764 [Pierre Fabre]) and ITI-007 (Intracellular executive functioning) (Davidson et al., 2009; Green et al., 1997, 2002; Therapies) which acts intra and extracellularly and at multiple neu- Keefe et al., 1999, 2004, 2006, 2007; Kern et al., 1998; Miyamoto et al., roreceptors including D-2 (Lieberman et al., 2016; Durgam et al., 2014; 2005), and no medications are currently approved for the treatment of Rakhit et al., 2014). residual psychotic, negative or cognitive symptoms. In addition, me- Landmark comparative effectiveness studies such as CATIE, tabolic disturbances such as hyperglycemia, hyperlipidemia, obesity CUTLASS, and EUFEST showed that older and newer medications were and diabetes can add to the morbidity of schizophrenia and decrease more similar than different (with the greatest exception being cloza- patient adherence to the required long-term treatment regimens pine), with the greatest differences being in side effects (Jones et al., (Marder et al., 2004). New therapies are needed that provide rapid 2006; Kahn et al., 2008; Lieberman et al., 2005). Clozapine is unique in improvement in active psychotic symptomatology, negative symptoms, that it is an effective antipsychotic medication and exhibits therapeutic ∗ Corresponding author. New York State Psychiatric Institute, Columbia University Medical Center, 1051 Riverside Drive, Unit 31, New York, N.Y10032. USA. E-mail address: [email protected] (R.R. Girgis). 1 These authors contributed equally. https://doi.org/10.1016/j.jpsychires.2018.07.006 Received 15 January 2018; Received in revised form 13 June 2018; Accepted 12 July 2018 0022-3956/ © 2018 Elsevier Ltd. All rights reserved. R.R. Girgis et al. Table 1 Clinical trials of experimental medications with glutamatergic mechanisms. Name (Mechanism) Reference Design Sample Length Treatment Conditions Primary Outcome Results Comment Sarcosine (Glycine (Lin et al., 2017b) RCT, Add-on, 63 12 weeks Sarcosine 2 g/day + Benzoate 1 g/day, PANSS total, global Improvement in global and Taiwanese inpatients, transporter-1 inhibitor) Double Blind Sarcosine 2 g/day, Placebo and neurocognitive neurocognitive composite scores in required PANSS > 60, small and Sodium Benzoate (D- composite of Chinese Sarcosine + Benzoate over both sample amino acid oxidase) MCCB equivalent Sarcosine and placebo groups, no difference in PANSS total Sarcosine (Glycine (Lane et al., RCT, Add-on, 60 6 weeks Sarcosine 2 g/day, D-Serine 2 g/day, PANSS, SANS, QOL, Improvement with Sarcosine on Han Chinese inpatients transporter-1 inhibitor) 2010) Double Blind Placebo GAF PANSS total, SANS, QOL, and GAF, and D-Serine no differences for D-serine Sarcosine (Glycine (Lane et al., RCT, Add-on, 20 6 weeks Sarcosine 1 g/day, Sarcosine 2 g/day PANSS, SANS, QOL No differences Acutely ill Han Chinese transporter-1 inhibitor) 2008) Double Blind inpatients Sarcosine (Glycine (Lane et al., RCT, Add-on, 20 6 weeks Sarcosine 2 g/day, Placebo PANSS No differences Add-on to clozapine, transporter-1 inhibitor) 2006) Double Blind hypothesized negative result Sarcosine (Glycine (Lane et al., RCT, Add-on, 65 6 weeks Sarcosine 2 g/day, D-Serine 2 g/day, PANSS, SANS Sarcosine superior to D-Serine and Add on to risperidone transporter-1 inhibitor) 2005) Double Blind Placebo Placebo on PANSS total, general, and D-Serine cognitive, depressive, SANS Sarcosine (Glycine (Tsai et al., 2004) RCT, Add-on, 38 6 weeks Sarcosine 2 g/day, Placebo PANSS, SANS, BPRS Improvement on BPRS, SANS, and Add on to non-clozapine transporter-1 inhibitor) Double Blind PANSS positive, cognitive, general, antipsychotics and total Bitopertin (Glycine (Bugarski-Kirola RCT, 301 4 weeks Bitopertin 10 mg/day, Bitopertin PANSS No differences Failed active comparator, transporter-1 inhibitor) et al., 2014a,b) Monotherapy, 30 mg/day, Olanzapine 15 mg/day, multicenter phase II/III trial, Double Blind Placebo used LOCF Bitopertin (Glycine (Arango et al., RCT, Add-on, 605 24 weeks Bitopertin 5 mg/day, Bitopertin 10 mg/ PANSS negative No differences Multicenter phase III transporter-1 inhibitor) 2014) Double Blind day, Placebo symptoms factor score DayLyte study, stable patients 58 Bitopertin (Glycine (Umbricht et al., RCT, Add-on, 323 8 weeks Bitopertin 10 mg/day, 30 mg/day, PANSS Improvement in PANSS negative Phase II multicenter trial transporter-1 inhibitor) 2014a) Double Blind 60 mg/day, Placebo symptoms at 10 mg/day and 30 mg/ day, no differences at 60 mg/day Bitopertin (Glycine (Blaettler et al., RCT, Add-on, 627 24 weeks Bitopertin 10 mg/day, Bitopertin PANSS negative No differences Multicenter phase III transporter-1 inhibitor) 2014) Double Blind 20 mg/day, Placebo symptoms factor score FlashLyte study, stable patients, used ITT Sodium Benzoate (D-amino (Lin et al., 2017a) RCT, Add-on, 60 6 weeks Sodium Benzoate 1 g/day, 2 g/day, PANSS Total, SANS- Improvement on SANS-20 for both Taiwanese inpatients, acid oxidase inhibitor) Double Blind Placebo 20, QOL, GAF doses, QOL and PANSS total for 2 g resistant to clozapine, dose, no difference in GAF for either PANSS > 70, SANS > 40, dose change in catalase correlated with improvement in PANSS total/positive scores Sodium Benzoate (D-amino (Lane et al., RCT, Add-on, 52 6 weeks Sodium Benzoate 1 g/day, Placebo PANSS Total Improvement on PANSS total, Taiwanese outpatients, acid oxidase inhibitor) 2013) Double Blind negative, general, positive, SANS, required PANSS > 60, large CGI, GAF, QOLS, processing speed, effect sizes Journal ofPsychiatricResea visual learning memory, MCCB composite score LY2140023 (mGlu 2/3 (Kinon et al., RCT, 667 4 weeks LY2140023 5 mg, 20 mg, 40 mg, or PANSS total No differences Failed active comparator, receptor agonist) 2011) Monotherapy, 80 mg BID, Olanzapine 15 mg/day, multicenter phase II trial, Double Blind Placebo four seizures in treatment group, LY2140023 (mGlu 2/3 (Patil et al., 2007) RCT, 196 4 weeks LY2140023 40 mg BID, Olanzapine PANSS total Improvement on total, negative, and Active comparator, receptor agonist) Monotherapy, 15 mg/day, Placebo positive subscales multicenter trial, placebo Double Blind group worsened rch 108(2019)57–83 significantly Sodium Nitroprusside
Recommended publications
  • Présentation HJ
    Conflits d’intérêts Astra-Zeneca, Janssen, Abacus international, Laboratoire ETAP, Institut Pasteur. Dr Hervé JAVELOT Pharmacien PH Etablissement Public de Santé Alsace Nord Service Pharmacie 141 avenue de Strasbourg 67 170 BRUMATH Tél. : 03 88 64 61 70 Fax : 03 88 64 61 58 Mail : [email protected] Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Hervé JAVELOT Etablissement Public de Santé Alsace Nord Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Traitements des troubles anxio-dépressifs. Les perspectives. ◦ L’axe GABAergique…éternellement prometteur ? ◦ L’incontournable théorie « monoaminergique »… ◦ Des théories alternatives à suivre … Traitements des troubles anxio-dépressifs. Contexte : ◦ XXI ème siècle : Le « siècle de la dépression » s’installe ? (Hardeveld et al., 2010) L’« ère de l’angoisse » s’affirme ? (Auden, 1947) ◦ Prévalence au cours de la vie : 16 à 17% pour la dépression, 17 à 18% pour les troubles anxieux Co-morbidité des 2 troubles dans 20 à 40% des cas (Antony, 2011 ; Depping et al., 2010 ; Hardeveld et al., 2010 ; Huppert, 2009) Auden WH (1947). The Age of Anxiety: A Baroque Eclogue. Random House: New York. Hardeveld F, Spijker J, De Graaf R, Nolen WA, Beekman AT. Prevalence and predictors of recurrence of major depressive disorder in the adult population. Acta Psychiatr Scand. 2010;122(3):184-91. Antony MM. Recent advances in the treatment of anxiety disorders. Canadian Psychology 2011;52(1), 10-19. Depping AM, Komossa K, Kissling W, Leucht S. Second-generation antipsychotics for anxiety disorders. Cochrane Database Syst Rev. 2010;(12):CD008120. Huppert JD. Anxiety disorders and depression comorbidity.
    [Show full text]
  • A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling
    biomolecules Review Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling Christopher L. Cioffi Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA; christopher.cioffi@acphs.edu; Tel.: +1-518-694-7224 Abstract: Among the myriad of cellular and molecular processes identified as contributing to patho- logical pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread + − interest as a potential class of novel analgesics. The GlyTs are Na /Cl -dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a Citation: Cioffi, C.L. Inhibition of possible mechanism
    [Show full text]
  • Targeting Glycine Reuptake in Alcohol Seeking and Relapse
    JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. TITLE PAGE Targeting Glycine Reuptake in Alcohol Seeking and Relapse Valentina Vengeliene, Martin Roßmanith, Tatiane T. Takahashi, Daniela Alberati, Berthold Behl, Anton Bespalov, Rainer Spanagel Downloaded from The primary laboratory of origin: Institute of Psychopharmacology, Central Institute of jpet.aspetjournals.org Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; at ASPET Journals on September 30, 2021 VV, MR, TTT, RS: Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; DA: Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, CH-4070 Basel, Switzerland; BB, AB: Department of Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany; AB: Department of Psychopharmacology, Pavlov Medical University, St Petersburg, Russia JPET #244822 JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. RUNNING TITLE GlyT1 in Alcohol Seeking and Relapse Corresponding author with complete address: Valentina Vengeliene, Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J5, 68159 Mannheim, Germany Email: [email protected], phone: +49-621-17036261; fax: +49-621- Downloaded from 17036255 jpet.aspetjournals.org The number of text pages: 33 Number of tables: 0 Number of figures: 6 Number of references: 44 at ASPET Journals on September 30, 2021 Number of words in the Abstract: 153 Number of words in the Introduction: 729 Number of words in the Discussion: 999 A recommended section assignment to guide the listing in the table of content: Drug Discovery and Translational Medicine 2 JPET #244822 JPET Fast Forward.
    [Show full text]
  • Appendix 13C: Clinical Evidence Study Characteristics Tables
    APPENDIX 13C: CLINICAL EVIDENCE STUDY CHARACTERISTICS TABLES: PHARMACOLOGICAL INTERVENTIONS Abbreviations ............................................................................................................ 3 APPENDIX 13C (I): INCLUDED STUDIES FOR INITIAL TREATMENT WITH ANTIPSYCHOTIC MEDICATION .................................. 4 ARANGO2009 .................................................................................................................................. 4 BERGER2008 .................................................................................................................................... 6 LIEBERMAN2003 ............................................................................................................................ 8 MCEVOY2007 ................................................................................................................................ 10 ROBINSON2006 ............................................................................................................................. 12 SCHOOLER2005 ............................................................................................................................ 14 SIKICH2008 .................................................................................................................................... 16 SWADI2010..................................................................................................................................... 19 VANBRUGGEN2003 ....................................................................................................................
    [Show full text]
  • Treatment of Schizophrenia Course Director: Philip Janicak, M.D
    S6735- Treatment of Schizophrenia Course Director: Philip Janicak, M.D. #APAAM2016 Saturday, May 14, 2016 Marriott Marquis - Marquis Ballroom D psychiatry.org/ annualmeetingS4637 ANNUAL MEETING May 14-18, 2016 • Atlanta Reference • Janicak PG, Marder SR, Tandon R, Goldman M (Eds.). Schizophrenia: Recent Advances in Diagnosis and Treatment. New York, NY: Springer; 2014. Schizophrenia: Recent Diagnostic Advances, Neurobiology, and the Neuropharmacology of Antipsychotic Drug Therapy Rajiv Tandon, MD Professor of Psychiatry University of Florida College of Medicine Gainesville, Florida Annual Meeting of the American Psychiatric Association New York, New York May 3–7, 2014 Disclosure Information MEMBER, WPA PHARMACOPSYCHIATRY SECTION MEMBER, DSM-5 WORKGROUP ON PSYCHOTIC DISORDERS A CLINICIAN AND CLINICAL RESEARCHER Pharmacological Treatment of Any Disease • Know the Disease that you are treating • Nature; Treatment targets; Treatment goals; • Know the Treatments at your disposal • What they do; How they compare; Costs; • Principles of Treatment • Measurement-based; Targeted; Individualized Program Outline • Nature and Definition of psychosis? • Clinical description • What is wrong in psychotic illness • Dimensions of Psychopathology • Neurobiological Abnormalities • Mechanisms underlying antipsychotic effects? • What contributes to Efficacy • Basis of Side-effect differences 5 Challenges in DSM-IV Construct of Psychotic Disorders ♦ Indistinct Boundaries ♦ With Other Disorders (eg., with OCD) ♦ Within Group of Psychotic Disorders (eg. between
    [Show full text]
  • The Impact of D-Cycloserine and Sarcosine on in Vivo Frontal Neural
    Yao et al. BMC Psychiatry (2019) 19:314 https://doi.org/10.1186/s12888-019-2306-1 RESEARCH ARTICLE Open Access The impact of D-cycloserine and sarcosine on in vivo frontal neural activity in a schizophrenia-like model Lulu Yao1, Zongliang Wang1, Di Deng1, Rongzhen Yan1, Jun Ju1 and Qiang Zhou1,2* Abstract Background: N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie the pathogenesis of schizophrenia. Specifically, reduced function of NMDARs leads to altered balance between excitation and inhibition which further drives neural network malfunctions. Clinical studies suggested that NMDAR modulators (glycine, D-serine, D-cycloserine and glycine transporter inhibitors) may be beneficial in treating schizophrenia patients. Preclinical evidence also suggested that these NMDAR modulators may enhance synaptic NMDAR function and synaptic plasticity in brain slices. However, an important issue that has not been addressed is whether these NMDAR modulators modulate neural activity/spiking in vivo. Methods: By using in vivo calcium imaging and single unit recording, we tested the effect of D-cycloserine, sarcosine (glycine transporter 1 inhibitor) and glycine, on schizophrenia-like model mice. Results: In vivo neural activity is significantly higher in the schizophrenia-like model mice, compared to control mice. D-cycloserine and sarcosine showed no significant effect on neural activity in the schizophrenia-like model mice. Glycine induced a large reduction in movement in home cage and reduced in vivo brain activity in control mice which prevented further analysis of its effect in schizophrenia-like model mice. Conclusions: We conclude that there is no significant impact of the tested NMDAR modulators on neural spiking in the schizophrenia-like model mice.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Efficacy and Safety of Bitopertin in Patients with Schizophrenia And
    ORIGINAL ARTICLE Print ISSN 1738-3684 / On-line ISSN 1976-3026 https://doi.org/10.4306/pi.2017.14.1.63 OPEN ACCESS Efficacy and Safety of Bitopertin in Patients with Schizophrenia and Predominant Negative Symptoms: Subgroup Analysis of Japanese Patients from the Global Randomized Phase 2 Trial Yoshio Hirayasu1 , Shin-Ichi Sato2, Norifumi Shuto2, Miwa Nakano2, and Teruhiko Higuchi3 1Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan 2Chugai Pharmaceutical Co., Ltd., Tokyo, Japan 3National Center of Neurology and Psychiatry, Tokyo, Japan ObjectiveaaThe aim of the present study was to perform a subgroup analysis of data from a phase II global, multi-center, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of bitopertin, a glycine reuptake inhibitor that activates N-methyl- D-aspartate receptors by increasing the concentration of glycine in the synaptic cleft, in Japanese and non-Japanese patients with schizo- phrenia and predominant negative symptoms. MethodsaaPatients with schizophrenia and predominant negative symptoms on one or two antipsychotic drugs, including atypical anti- psychotic drugs (olanzapine, risperidone, quetiapine, aripiprazole, and paliperidone) as the primary treatment, received bitopertin (10, 30, or 60 mg/day) or placebo once daily for 8 weeks as an add-on treatment. Efficacy was assessed using the Positive and Negative Syndrome Scale (PANSS) negative symptom factor score (NSFS). ResultsaaThe efficacy of bitopertin (10 mg and 30 mg) was similar between Japanese and non-Japanese patients. In the bitopertin 60-mg group, no difference from the placebo group was observed in Japanese or non-Japanese patients. The response to placebo was lower in Japanese patients, and there was a trend towards a greater difference in the change in PANSS NSFS between the placebo group and the 10- mg and 30-mg groups among Japanese patients.
    [Show full text]
  • Among a Series of Novel D4 Dopamine Receptor Agonists and Antagonists Jeremiah J
    Topographically Based Search for an “Ethogram” Among a Series of Novel D4 Dopamine Receptor Agonists and Antagonists Jeremiah J. Clifford, Ph.D., and John L. Waddington, Ph.D., D.Sc. The effects of three selective D4 antagonists [CP-293,019, 25.0 mg/kg) failed to influence any behavior; whereas, PD L-745,870, and Ro 61-6270] and two putative selective D4 168077 (0.2–25.0 mg/kg) induced nonstereotyped shuffling agonists [CP-226,269 and PD 168077] were compared with locomotion with uncoordinated movements, jerking, and those of the generic D2-like [D2L/S,D3, D4] antagonist yawning, which were insensitive to antagonism by haloperidol to identify any characteristic “ethogram,” in CP-293,019, L-745,870, or haloperidol. These findings fail terms of individual topographies of behavior within the to indicate any “ethogram” for selective manipulation of D4 natural rodent repertoire, as evaluated using ethologically receptor function at the level of the interaction between based approaches. Among the D4 antagonists, neither motoric and psychological processes in sculpting behavioral L-745,870 (0.0016–1.0 mg/kg) nor Ro 61-6270 (0.2–25.0 topography over habituation of exploration through to mg/kg) influenced any behavior; whereas, CP-293,019 quiescence and focus attention on social, cognitive, or other (0.2–25.0 mg/kg) induced episodes of nonstereotyped levels of examination. sniffing, sifting, and vacuous chewing; there were no [Neuropsychopharmacology 22:538–544, 2000] consistent effects on responsivity to the D2-like agonist RU © 2000 American College of Neuropsychopharmacology. 24213. Among the putative D4 agonists, CP-226,269 (0.2– Published by Elsevier Science Inc.
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1
    [Show full text]
  • Ligand-Based Pharmacophore Studies in the Dopaminergic System Amar P
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2011 Ligand-based pharmacophore studies in the dopaminergic system Amar P. Inamdar University of Wollongong Recommended Citation Inamdar, Amar P., Ligand-based pharmacophore studies in the dopaminergic system, Doctor of Philosophy thesis, School of Chemistry, University of Wollongong, 2011. http://ro.uow.edu.au/theses/3535 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. LIGAND-BASED PHARMACOPHORE STUDIES IN THE DOPAMINERGIC SYSTEM A thesis submitted in partial fulfilment of the requirements for the award of the degree DOCTOR OF PHILOSOPHY From UNIVERSITY OF WOLLONGONG By AMAR P. INAMDAR, B.PHARM., M.PHARM. SCHOOL OF CHEMISTRY November 2011 THESIS CERTIFICATION I, Amar P. Inamdar, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Amar P. Inamdar November 2011 i ACKNOWLEDGEMENTS I am truly grateful to my supervisor, Prof. John B. Bremner, whose support, encouragement and guidance has helped me immensely in the completion of this project. Most importantly, I am thankful for his patience over all these years and believing in me in spite of various difficult periods in this journey. I know he has sacrificed a significant amount of his personal time to make this happen. I also owe my deepest gratitude to Associate Prof.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]