Cordycepin Induces Apoptosis in Human Liver Cancer Hepg2 Cells Through Extrinsic and Intrinsic Signaling Pathways
ONCOLOGY LETTERS 12: 995-1000, 2016 Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways LE-WEN SHAO1, LI-HUA HUANG1, SHENG YAN2, JIAN-DI JIN3 and SHAO-YAN REN3 1Nursing Department; Departments of 2Hepato-Biliary-Pancreatic Surgery and 3Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China Received March 6, 2015; Accepted April 12, 2016 DOI: 10.3892/ol.2016.4706 Abstract. Cordycepin, also termed 3'-deoxyadenosine, is a to have natural medicinal properties, such as anti-angiogenic, nucleoside analogue from Cordyceps sinensis and has been anti‑tumor, anti‑viral, anti‑inflammatory and hypoglycemic reported to demonstrate numerous biological and pharma- effects (1-8). cological properties. Our previous study illustrated that the Cordycepin, also termed 3'-deoxyadenosine, is a nucleo- anti-tumor effect of cordycepin may be associated with apop- side analogue from C. militaris (9) and has been reported tosis. In the present study, the apoptotic effect of cordycepin to demonstrate numerous notable biological and pharma- on HepG2 cells was investigated using 4',6-diamidino-2-phe- cological properties, including immunological stimulation, nylindole, tetraethylbenzimidazolylcarbocyanine iodide and anti-cancer and anti-viral effects (10-15), a stimulating effect propidium iodide staining analysis and flow cytometry. The on interlukin-10 production as an immune modulator (16) and results showed that cordycepin exhibited the ability to inhibit preventing hyperlipidermia (17). HepG2 cells in a time- and dose-dependent manner when cells Apoptosis, also termed programmed cell death, is a key produced typical apoptotic morphological changes, including regulator of tissue homeostasis and is characterized by chromatin condensation, the accumulation of sub-G1 cells and typical morphological and biochemical hallmarks, including change mitochondrial permeability.
[Show full text]