Fifty Years of Power Generation at the Geysers Geothermal Field, California – the Lessons Learned

Total Page:16

File Type:pdf, Size:1020Kb

Fifty Years of Power Generation at the Geysers Geothermal Field, California – the Lessons Learned PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 FIFTY YEARS OF POWER GENERATION AT THE GEYSERS GEOTHERMAL FIELD, CALIFORNIA – THE LESSONS LEARNED Subir K. Sanyal1 and Steven L. Enedy2 1GeothermEx, Inc. Richmond, California 94806, USA E-mail: [email protected] 2Calpine Corporation Middletown, CA 95461, USA E-mail: [email protected] ABSTRACT INTRODUCTION This paper analyzes the fifty-year history of The Geysers geothermal field in California has been commercial power generation at The Geysers supplying commercial electric power continuously geothermal field in California as six distinct and for the last half century (1960 to present). Only two consecutive periods (1960-1969, 1969-1979, 1979- other geothermal fields in the world have had a 1986, 1986-1995, 1995-1998, 1998-2004 and 2004- longer history of power generation, namely, 2010) reflecting the intricate interrelationship Lardarello in Italy (continuously producing since between the prevailing socio-economic forces, field 1948) and Wairakei in New Zealand (continuously development and management practices, and producing since 1958). Since the 1970s, the level of consequent reservoir response. It is shown that this power generation at The Geysers has been field has proven to be by far the largest source of consistently higher than at either Lardarello or commercial geothermal power tapped to date in the Wairakei, or at any other geothermal field in the world, and its history presents a singularly pioneering world. As discussed below, The Geysers field is case of ingenious field management in the face of expected to be capable of supplying several hundred unpredictable socio-economic forces and challenging megawatts of power even another five decades from reservoir behavior. The most important innovation in now, when the field will have completed a century of this regard has been the augmentation of injection commercial power generation. This long production into the reservoir by piping in treated municipal history and the high level of power generation makes effluents from long distances outside the field. this field unique in the geothermal world. It is shown that (a) this field by now has produced BACKGROUND electricity equivalent to a 1,033 MW plant producing at 90% capacity factor over a typical project life of The Geysers is a steam field, that is, it produces 30 years; and (b) innovations in field management saturated steam rather than water or a steam-water have led to a 33% higher generation level today than mixture. Furthermore, this field represents an forecast two decades ago. This paper also attempts to essentially closed system rather than the usual forecast the future of this field. We believe the situation of an open geothermal system receiving present generation capacity of about 850 MW will natural recharge of hot or cold water from outside the have declined to about 700 MW over the next two reservoir. Steam fields are relatively rare, there being decades, taking into account the planned addition of only half a dozen commercially exploited steam at least 100 MW new capacity in the near future. A fields in the world compared to the numerous century since its exploitation began, this field would geothermal fields producing hot water or two-phase still be exploited by continued injection into the fluids (steam-water mixture). Figure 1 shows a map relatively pressure depleted reservoir, or possibly of this field showing the boundary of the known topping the yet-unexploited ultra-high temperature steam production area, the locations of the power zones known to exist below the exploited system. plants and the “unit area” dedicated to each power Finally, we point out the lessons learned by the plant. This field is the largest geothermal field in the geothermal industry from the history of this unique world in terms of the areal extent (at least 100 square field. kilometers) and has more than 400 active wells at 1 present. There are 18 operating power plants, steam production between 1960 and 1987, when it generating about 850 MW at present in this field. peaked at 10 billion kg per month, equivalent to about 1,600 MW (net). The installed generation Figure 2 presents the historical production and capacity in this field peaked at about 2,000 MW (net) injection data from the field during the past five in 1989. Subsequently, steam production and power decades. Figure 2 shows the monthly production generation in the field declined continuously for the (uppermost plot) and monthly injection (middle plot) next 7 to 9 years, reaching stability after 1995. in billion kg, and the percent of the produced mass Between 1995 and present both steam production and injected each month (lowermost plot) as a function of power generation have seen relatively modest time. declines with time. 1969 1979 1986 1995 2.5 1998 2004 1 2 345 6 7 2.0 63.1 billion kg per / year 1.5 kg) 12 13.9 billion (10 kg / year 1.0 31.1 billion kg / year 0.5 Cumulative Production, Injection and depletion 0.0 Figure 1: Location of power plants and unit areas at 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 The Geysers geothermal field. Figure 3: Cumulative production, injection and depletion data for The Geysers. 1969 1979 1986 1995 1998 2004 12 10 1969 1979 1986 1995 1998 2004 8 100 1600 6 4 123 4 5 6 7 (billion kg) 2 Monthly Production 80 1280 0 8 1 2 3 4 5 6 7 Generation 6 60 960 4 (billion kg) 2 otl Injection Monthly 640 40 Generation (MW) 0 Depletion 140 Depletion(billionkg) n 120 o i t c u 100 d o 20 320 r 80 P o t 60 n Ratio, % o i t 40 c e j n 20 I 0 0 0 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 Figure 2: Historical production and injection data Figure 4: Annual depletion data for The Geysers. for The Geysers. Figure 5 presents the monthly steam production rate As attempted in this paper, the fifty-year history of (thousand kg/month) from the field (on log scale) the field can be best described as seven distinct versus time to establish the productivity decline trend periods of 3 to 10 years’ duration both in terms of in the field since 1987. Figure 6 presents a similar field and well behavior as well as the prevailing plot of the steam production rate in kilopounds per socio-economic forces; these periods are indicated in hour (on log scale) versus time since 1980 for a Figure 2. typical well (GDC-12) to illustrate the changes in the productivity decline trend of individual wells. Figure 3 presents the cumulative production, injection and depletion (that is, production minus injection) history of this field (in trillion kg), while Figure 4 shows the annual steam depletion (billion kg) and the power capacity (MW) versus time. Figures 2 and 4 show that this field had increasing 2 1995 1998 2004 1x107 9x106 D = 4.8% per year 8x106 D=2.9%peryear 7x106 D=2%peryear 6x106 5x106 4x106 3x106 456 7 2x106 Steam Production Rate (1,000 kg/month) 1x106 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 Figure 5: Total steam production rate from The Geysers field versus time. Figure 7: Crude oil and Natural Gas Prices. 1979 2 1969 1986 1995 1998 2004 1986 1995 1000 1998 2004 1 2 345 6 7 3 4567 1 D = 4.2% per year ) h p k ( e t a D = 1.2% per year R 0 n o i t 100 c u d o r P m a e t Inflation Rate / Interrest Rate Rate / Interrest Rate Inflation S -1 -2 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 Years Ye ar Figure 6: Steam production rate of well GDC-12 Figure 8: History of U.S. inflation rate to interest versus time. rate ratio. We believe the long history of this field exemplifies the intricate inter-relationship between the socio- economic forces at play, field development and management practices, and consequent reservoir response. Therefore, in Figures 7 through 9 we present the histories of some indicators of the prevailing socio-economic forces in the United States over the last half century. Figure 7 shows the history of crude oil and natural gas prices, Figure 8 presents the history of the ratio of inflation rate to interest rate, and Figure 9 presents the history of two leading stock market indicators (Dow Jones Industrial Average and Standard & Poor 500). We will refer to the field behavior trends shown in Figures 2 through 5, an individual well behavior trend shown in Figure 6, and the trends in the socio-economic forces shown in Figure 9: Leading stock market indicators. Figures 7 through 9, in the remainder of this paper. In light of the above-discussed background, we analyze below the history of this field through each THE FLEDGLING YEARS (PERIOD 1) of the seven successive periods. Electric power generation started at The Geysers with the installation of a 12 MW (gross) plant in 1960. During Period 1 (1960-1969), the installed capacity grew very slowly to above 100 MW (Figures 2 and 4). During this period the produced steam was 3 vented to the atmosphere, the steam condensate was developer's bank loan for a geothermal project could disposed of at the surface and there was no injection.
Recommended publications
  • Springs of California
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIBECTOB WATER- SUPPLY PAPER 338 SPRINGS OF CALIFORNIA BY GEKALD A. WARING WASHINGTON GOVERNMENT PRINTING OFFICE 1915 CONTENTS. Page. lntroduction by W. C. Mendenhall ... .. ................................... 5 Physical features of California ...... ....... .. .. ... .. ....... .............. 7 Natural divisions ................... ... .. ........................... 7 Coast Ranges ..................................... ....•.......... _._._ 7 11 ~~:~~::!:: :~~e:_-_-_·.-.·.·: ~::::::::::::::::::::::::::::::::::: ::::: ::: 12 Sierra Nevada .................... .................................... 12 Southeastern desert ......................... ............. .. ..... ... 13 Faults ..... ....... ... ................ ·.. : ..... ................ ..... 14 Natural waters ................................ _.......................... 15 Use of terms "mineral water" and ''pure water" ............... : .·...... 15 ,,uneral analysis of water ................................ .. ... ........ 15 Source and amount of substances in water ................. ............. 17 Degree of concentration of natural waters ........................ ..· .... 21 Properties of mineral waters . ................... ...... _. _.. .. _... _....• 22 Temperature of natural waters ... : ....................... _.. _..... .... : . 24 Classification of mineral waters ............ .......... .. .. _. .. _......... _ 25 Therapeutic value of waters .................................... ... ... 26 Analyses
    [Show full text]
  • Human Impacts on Geyser Basins
    volume 17 • number 1 • 2009 Human Impacts on Geyser Basins The “Crystal” Salamanders of Yellowstone Presence of White-tailed Jackrabbits Nature Notes: Wolves and Tigers Geyser Basins with no Documented Impacts Valley of Geysers, Umnak (Russia) Island Geyser Basins Impacted by Energy Development Geyser Basins Impacted by Tourism Iceland Iceland Beowawe, ~61 ~27 Nevada ~30 0 Yellowstone ~220 Steamboat Springs, Nevada ~21 0 ~55 El Tatio, Chile North Island, New Zealand North Island, New Zealand Geysers existing in 1950 Geyser basins with documented negative effects of tourism Geysers remaining after geothermal energy development Impacts to geyser basins from human activities. At least half of the major geyser basins of the world have been altered by geothermal energy development or tourism. Courtesy of Steingisser, 2008. Yellowstone in a Global Context N THIS ISSUE of Yellowstone Science, Alethea Steingis- claimed they had been extirpated from the park. As they have ser and Andrew Marcus in “Human Impacts on Geyser since the park’s establishment, jackrabbits continue to persist IBasins” document the global distribution of geysers, their in the park in a small range characterized by arid, lower eleva- destruction at the hands of humans, and the tremendous tion sagebrush-grassland habitats. With so many species in the importance of Yellowstone National Park in preserving these world on the edge of survival, the confirmation of the jackrab- rare and ephemeral features. We hope this article will promote bit’s persistence is welcome. further documentation, research, and protection efforts for The Nature Note continues to consider Yellowstone with geyser basins around the world. Documentation of their exis- a broader perspective.
    [Show full text]
  • U.S. Geological Survey Circular 1249
    ��� � Geothermal Energy—Clean Power From the Earth’s Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey Geothermal Energy—Clean Power From the Earth’s Heat By Wendell A. Duffield and John H. Sass C1249 U.S. Department of the Interior U.S. Geological Survey ii iii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2003 Available from U.S. Geological Survey Information Services� Box 25286, Denver Federal Center� Denver, CO 80225� This report and any updates to it are available at� http://geopubs.wr.usgs.gov/circular/c1249/� Additional USGS publications can be found at� http://geology.usgs.gov/products.html� For more information about the USGS and its products;� Telephone: 1-888-ASK-USGS� World Wide Web: http://www.usgs.gov/� Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply� endorsement of the U.S. Government.� Although this report is in the public domain, it contains copyrighted materials that are noted in the text. Permission� to reproduce those items must be secured from the individual copyright owners.� Published in the Western Region, Menlo Park, California� Manuscript approved for publication March 20, 2003� Text and illustrations edited by James W. Hendley II and Carolyn Donlin� Cataloging-in-publication data are on file with the Library of Congress (http://www.loc.gov/). Cover—Coso geothermal plant, Navy One, at Naval Air Weapons Station China Lake in southern California (U.S.
    [Show full text]
  • Geophysical Characterization of the Northwest Geysers, California
    PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2019 SGP-TR-214 Geophysical Characterization of the heat source in the Northwest Geysers, California Jared R. Peacock1, Margaret T. Mangan1, Mark Walters2, Craig Hartline2, Jonathan Glen1, Tait Earney1, William Schermerhorn1 1U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA, 2Calpine Corporation, 10350 Socrates Mine Road, Middletown, CA 95461 [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Keywords: The Geysers, magnetotellurics, resistivity, gravity, three-dimensional modeling, EGS, HDR ABSTRACT The Geysers, in northern California, is the largest energy producing geothermal field in the world. Looking to expand capacity, the operator Calpine Corporation developed an anomalously hot (~400 °C at 2.5 km depth) part of the field in the northwest Geysers, including testing of an enhanced geothermal systems (EGS). Though the area is anomalously hot, geophysical methods have failed to adequately image any inferred magmatic heat source. Gravity measurements were collected and jointly modeled with existing magnetic data along a two-dimensional profile aligned with an existing geologic cross-section. The key feature of the potential field model is a low-density, low-susceptibility body below the EGS at 5 km depth. Magnetotelluric (MT) measurements were collected around the northwest Geysers and modeled in three-dimensions to characterize subsurface resistivity structure. The resistivity model images an extension of a Quaternary granitic pluton locally known as “the felsite” under the EGS project and a possible zone of partial melt (<10%) below 7 km in the northwestern part of the field.
    [Show full text]
  • Case Study Mammoth Pacific Power
    IV. CASE STUDY: MAMMOTH PACIFIC POWER PLANT View of Mammoth Pacific II The following section offers a firsthand account of the development process for a geothermal power plant. It reveals what took place behind the scenes to bring a power plant online near a small, California community, as indicated by the people who were involved in that process,.both within and outside the developing company. This case study documents one plant’s transformation from one of the most hotly contested to one of the most locally and internationally appreciated power plants in the United States. A. Setting Travel guides advertise Mono County, California, as .a land of fire and ice. with .extraordinary features [that] attest to the region’s active geologic past. The largest city within Mono County, the Town of Mammoth Lakes, is a recreation area, where regular activities include skiing, mountain climbing, hiking, fishing, and is a land that one local described as Los Angeles. playground. At the time the Mammoth Pacific power plants were developed near the Town of Mammoth Lakes, the type of geothermal technology used was relatively new and unexplored. The effects of such a plant, especially upon such a prime recreation area prized for its natural beauty, were uncertain. B. Plans for Development The first unit at the Mammoth Pacific Complex, the 10-MW MP-I power plant that came online in 1984, was relatively unknown by constituents of Mono County. But the 1990 expansion, which added two 15 MW units to the Mammoth Pacific Complex, bringing the total capacity at the complex to 40 MW, met substantial public scrutiny.
    [Show full text]
  • The Quicksilver Rush 150 Years Ago There Was a World Wide Struggle for a Little Known Commodity Known As Quicksilver
    The Quicksilver Rush 150 years ago there was a world wide struggle for a little known commodity known as Quicksilver. This story ends at the last Quicksilver mine (still operating in the 1970’s) right here in West County at a hamlet called Mercury. Quicksilver The word ‘quicksilver’ sounds like another shortcut to a flimflam…like the term ‘fools gold’. But, quicksilver does have value, it is the slang name for ‘Mercury’. You may also think “Big deal, old fashioned thermometers, how much money is in that?”. Back in the olden golden days, prospecting, mining, and speculation in quicksilver was big buckeroos. The Bay Area was the capital of quicksilver (at just the right time), and Sonoma County had a flurry of boomtowns. Refining Rocks into Gold When gold miners realized they could no longer pick up nuggets in the stream and the excitement of the '49er migration faded, gold mining became just another extraction industry. Hydraulic mining engineers knew that the way to recover gold (and silver) from low-grade ore was by a process called There was only one problem, there amalgamation, the was no Mercury in California. All treatment of ground-up the processed Mercury was in ore with mercury to Europe, it would have been too extract gold. expensive to transport a million tons of Mercury around the world to the California gold fields. The Richest Mine In 1845 Captain Andres Castillero, a Mexican soldier, diplomat and scholar, was sent to Alta California. While exploring south of Yerba Buena he recognizing a reddish color cliff as probably being cinnabar, he proceeded to test the ore and discovered that it was indeed cinnabar.
    [Show full text]
  • Water Quality Control Plan, Sacramento and San Joaquin River Basins
    Presented below are water quality standards that are in effect for Clean Water Act purposes. EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes. Amendments to the 1994 Water Quality Control Plan for the Sacramento River and San Joaquin River Basins The Third Edition of the Basin Plan was adopted by the Central Valley Water Board on 9 December 1994, approved by the State Water Board on 16 February 1995 and approved by the Office of Administrative Law on 9 May 1995. The Fourth Edition of the Basin Plan was the 1998 reprint of the Third Edition incorporating amendments adopted and approved between 1994 and 1998. The Basin Plan is in a loose-leaf format to facilitate the addition of amendments. The Basin Plan can be kept up-to-date by inserting the pages that have been revised to include subsequent amendments. The date subsequent amendments are adopted by the Central Valley Water Board will appear at the bottom of the page. Otherwise, all pages will be dated 1 September 1998. Basin plan amendments adopted by the Regional Central Valley Water Board must be approved by the State Water Board and the Office of Administrative Law. If the amendment involves adopting or revising a standard which relates to surface waters it must also be approved by the U.S. Environmental Protection Agency (USEPA) [40 CFR Section 131(c)].
    [Show full text]
  • Buried Treasure: the Environmental, Economic, and Employment
    Geothermal Technologies Program Buried Treasure The Environmental, Economic, and Employment Benefits of Geothermal Energy As charged by Secretary Abraham, the Offi ce of Energy Effi ciency and Renewable Energy provides national leadership to revolutionize energy effi ciency and renewable energy technologies, to leapfrog the status quo, and to pursue dramatic environmental benefi ts. The Geothermal Technologies Program, a critical part of our overall effort, is making great strides toward increasing the viability and deployment of geothermal heat and power. The peer reviewed, focused R&D and supporting outreach activities conducted by this program will enable broad expansion of the use of geothermal resources throughout the western United States. Through federal leadership and partnership with states, communities, industry, and universities, we will ensure that geothermal energy is established as an economically competitive contributor to the U.S. energy supply. Our program’s success will mean a stronger economy, a cleaner environment, and a more secure energy future for our nation. “Pursuing a prosperous future where energy is clean, abundant, reliable, and affordable....” David K. Garman Assistant Secretary Energy Effi ciency and Renewable Energy Cover image: People enjoy the geothermal, hot spring pools in Yellowstone National Park, Wyoming. PIX 03698 Warren Gretz, NREL 1 About Geothermal Energy he geothermal energy potential beneath our feet is vast. This tremendous resource amounts to 50,000 times the energy of all oil and gas resources in the world. And geothermal energy is clean; T it represents a promising solution for the nation and the world as we become ever more concerned about global warming, pollution, and rising fossil energy prices.
    [Show full text]
  • Geologic Map and Map Database of Western Sonoma, Northernmost Marin, and Southernmost Mendocino Counties, California
    Geologic Map and Map Database of Western Sonoma, Northernmost Marin, and Southernmost Mendocino Counties, California By M.C. Blake, Jr., R.W. Graymer, and R.E. Stamski Pamphlet to accompany MISCELLANEOUS FIELD STUDIES MAP MF-2402 Version 1.0 2002 U.S. Department of the Interior U.S. Geological Survey Contents Geologic explanation and acknowledgements 1 Introduction 1 Stratigraphy 1 Mesozoic and Tertiary terrane complexes 1 Description of Terranes 2 Tertiary Stratigraphy 10 Quaternary Surficial Deposits 11 Paleontology 11 Radiometric Ages 11 Structure 12 Structural History 12 Description of Map Units 15 Acknowledgements 23 Digital publication and database description 24 Introduction 24 For those who don’t use digital geologic map databases 24 MF-2402 Digital Contents 24 PostScript plotfile package 25 PDF plotfile package 25 Digital database package 25 TAR files 26 PostScript plotfiles 27 PDF plotfiles 27 Obtaining the Digital Database and Plotfile Packages 28 To obtain TAR files of database or plotfile packages from the USGS web pages 28 To obtain TAR files of database or plotfile packages by ftp 28 Obtaining plots from a commercial vendor 28 Obtaining plots from USGS Map On Demand Services 28 Revisions and version numbers 28 Digital database format 29 Converting ARC export files 29 Digital compilation 29 Base maps 29 Faults and landslides 29 Spatial resolution 29 Database specifics 30 Lines 30 Areas 32 Points 33 References Cited 35 ii Geologic Explanation and Acknowledgements Introduction The map in this report is modified from and supercedes USGS Open-File Report 71-44 (Blake and This report contains a new geologic map at 1:100,000 others, 1971).
    [Show full text]
  • December 13, 2019 Leslie Lee Palmer Director, Safety and Enforcement Division California Public Utilities Commission 505 Van Ne
    651 Commerce Drive Roseville, CA 95678 (916) 781- 3636 www.ncpa.com December 13, 2019 Leslie Lee Palmer Director, Safety and Enforcement Division California Public Utilities Commission 505 Van Ness Avenue San Francisco, California 94102 [email protected] Re: Northern California Power Agency Comments on PG&E Public Safety Power Shutoff Report for October 26 to November 1, 2019 PSPS Event Dear Mr. Palmer: The Northern California Power Agency (NCPA)1 and its member were directly and profoundly impacted by the two PG&E public safety power shut-off (PSPS) events that occurred between October 26 and November 1, 2019 (October 26 Event). In order to inform the Commission’s review of PG&E’s actions and aid in the refinement of PSPS procedures and protocols to help mitigate these impacts in the future, NCPA provides this response to PG&E’s Post-PSPS Report for that event (October 26 Report). This response is timely filed pursuant to the extension authorized by Executive Director Stebbins on November 8, 2019. NCPA’s members are both public safety partners and operate critical facilities, as defined in California Public Utilities Commission (Commission) Decision 19-05-042 (Phase 1 PSPS Decision).2 This is not the first PSPS event that has impacted NCPA and its member 1 NCPA is a not-for-profit Joint Powers Agency established in 1968 to make joint investments in energy resources that would ensure an affordable, reliable, and clean supply of electricity for customers in its member communities. NCPA’s 16 members include municipalities, a rural electric cooperative, a port, public transit district, and a public utility district.
    [Show full text]
  • Enhanced Geothermal Systems
    Enhanced Geothermal Systems The Navy I geothermal power plant near Coso Hot Springs, California. How to extract more energy and PIX07667 J.L. Renner, INEEL power from geothermal resources fractured. However, due to secondary-mineralization he Coso geothermal project, located in processes, those fractures have sealed over time, TCalifornia’s Coso volcanic field and about 100 resulting in low permeability and little or no miles (161 kilometers) north of Los Angeles, produces production of fluids. Through a combination of 260 megawatts of geothermal energy. Without tapping hydraulic, thermal, and chemical processes, the into any new geothermal resources (just by fracturing target EGS reservoir can be ‘stimulated,’ causing the existing reservoir), Coso will soon produce another the fractures to open, extend, and interconnect. 20 megawatts of electricity. The additional power This results in the creation of a conductive fracture will come from applying technology designed to network and a reservoir that is indistinguishable improve the production of fields like Coso. Known as from conventional geothermal reservoirs. EGS enhanced geothermal systems (EGS), this technology technology could serve to extend the margins of should more than double the amount of recoverable existing geothermal systems or create entirely new geothermal energy in the U.S., as well as extend the ones, wherever appropriate thermal and tectonic productive life of existing geothermal fields. conditions exist. EGS Benefits The enhanced production at Coso will come as DOE’s partners at the University of Utah’s Energy & • Increased Productivity Geoscience Institute (EGI) and Caithness Corporation • Extended Lifetime pump water under high pressure into a portion of • Expanded Resources the Coso field to reopen sealed fractures in subsurface • Siting Flexibility rocks.
    [Show full text]
  • Notice Concerning Copyright Restrictions
    NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. U.S. Geothermal Development California Claims the World’s Highest Geothermal Power Output, With Potential for Even More Production With Advanced Techniques By John Sass and Sue Priest, U.S. Geological Survey (Flagstaff, AZ) alifornia contains, by far, the greatest geothermal generating capacity in the United States, and with the possible exception of Alaska, the great- Cest potential for development of additional resources. California has nearly two-thirds of U.S. geothermal electrical installed capacity of nearly 3,000 megawatts (MW). Depending on assumptions regarding geothermal res- ervoir characteristics and future market conditions, additional resources of between 2,000 and 10,000 MW might be developed (Muffler, 1979).
    [Show full text]