Buried Treasure: the Environmental, Economic, and Employment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Springs of California
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIBECTOB WATER- SUPPLY PAPER 338 SPRINGS OF CALIFORNIA BY GEKALD A. WARING WASHINGTON GOVERNMENT PRINTING OFFICE 1915 CONTENTS. Page. lntroduction by W. C. Mendenhall ... .. ................................... 5 Physical features of California ...... ....... .. .. ... .. ....... .............. 7 Natural divisions ................... ... .. ........................... 7 Coast Ranges ..................................... ....•.......... _._._ 7 11 ~~:~~::!:: :~~e:_-_-_·.-.·.·: ~::::::::::::::::::::::::::::::::::: ::::: ::: 12 Sierra Nevada .................... .................................... 12 Southeastern desert ......................... ............. .. ..... ... 13 Faults ..... ....... ... ................ ·.. : ..... ................ ..... 14 Natural waters ................................ _.......................... 15 Use of terms "mineral water" and ''pure water" ............... : .·...... 15 ,,uneral analysis of water ................................ .. ... ........ 15 Source and amount of substances in water ................. ............. 17 Degree of concentration of natural waters ........................ ..· .... 21 Properties of mineral waters . ................... ...... _. _.. .. _... _....• 22 Temperature of natural waters ... : ....................... _.. _..... .... : . 24 Classification of mineral waters ............ .......... .. .. _. .. _......... _ 25 Therapeutic value of waters .................................... ... ... 26 Analyses -
Sustainability Guidelines for Geothermal Development
REPORT DECEMBER Sustainability Guidelines for 2013 Geothermal Development Sustainability Guidelines for Geothermal Development WWF Indonesia 2013 Sustainability Guidelines for Geothermal Development ISBN 978-979-1461-35-1 @2013 Published by WWF-Indonesia Supported by British Embassy Jakarta Coordinator Program Indra Sari Wardhani Writer : Robi Royana Technical Editor : Indra Sari Wardhani Technical Contributor : Hadi Alikodra, WWF-Indonesia Budi Wardhana, WWF-Indonesia Nyoman Iswarayoga, WWF-Indonesia Anwar Purwoto, WWF-Indonesia Indra Sari Wardhani, WWF-Indonesia Retno Setiyaningrum, WWF-Indonesia Arif Budiman, WWF-Indonesia Thomas Barano, WWF-Indonesia Zulra Warta, WWF-Indonesia Layout and Design Arief Darmawan WWF Indonesia Graha Simatupang Tower 2 Unit C LetJen TB Simatupang Kav 38 , South Jakarta, 12540 Indonesia Phone: +62-21-782 9461 Fax : +62-21-782 9462 Foreword Energy has become one of the benchmarks of the development of a country and even become a political economic power including Indonesia. Along with the growth of population and economy, it is undeniable that the energy needs of Indonesia also continues to increase rapidly. Most of the source of this energy needs are from non-renewable/ fossil energy such as petroleum, natural gas and coal, and the utilization of it will produce greenhouse gas emissions (GHG) that contribute to global warming and climate change. To improve national energy security in the long term and contribute to global efforts to put a half to climate change, energy conservation and energy diversication through the development of sustainable renewable energy is a necessity. WWF's vision in the energy sector is to encourage the achievement of 100% Renewable Energy in 2050 globally. -
Abandoned Mines Can Be Used As Geothermal Energy Source
17 February 2011 Abandoned mines can be used as geothermal energy source Scientists have reviewed the potential for worldwide development of geothermal energy systems in old, unused mines. The technology is proven in many sites and could therefore help increase the share of renewable energy sources in the energy mix, offering sustainability and job creation, which may make mining operations more appealing to investors, communities and policymakers. The mineral industry is energy intensive and is therefore focusing on developing energy efficiency and cleaner production technologies. It is also expensive to open, operate and close mines, but few are ever considered as being useful once they have been closed. They are often located on marginal, unproductive land in remote, harsh environments and nearby communities may only live in the area as a direct result of the mine. Being often highly dependent on the mine and on imports of (fossil) fuel, such communities are highly unsustainable. The researchers argue that mines could be used post-closure for energy generation (heating and cooling) using the natural heat contained in the mine water. Geothermal energy systems could be implemented to extract this heat using heat pumps, from both closed and potentially working mines. This would offer local employment and energy resilience to the surrounding communities. Other uses of the energy may include melting snow on icy roads (instead of using salt) or supplying heat for fish farms and greenhouses. Several other technologies can extract energy from abandoned mines, including compressed air storage or the direct use of warm mine water to regulate the temperature of microalgae raceway ponds, allowing a longer growing season for cultivation; key products that can be obtained from the microalgae include nutraceuticals and biofuels. -
Human Impacts on Geyser Basins
volume 17 • number 1 • 2009 Human Impacts on Geyser Basins The “Crystal” Salamanders of Yellowstone Presence of White-tailed Jackrabbits Nature Notes: Wolves and Tigers Geyser Basins with no Documented Impacts Valley of Geysers, Umnak (Russia) Island Geyser Basins Impacted by Energy Development Geyser Basins Impacted by Tourism Iceland Iceland Beowawe, ~61 ~27 Nevada ~30 0 Yellowstone ~220 Steamboat Springs, Nevada ~21 0 ~55 El Tatio, Chile North Island, New Zealand North Island, New Zealand Geysers existing in 1950 Geyser basins with documented negative effects of tourism Geysers remaining after geothermal energy development Impacts to geyser basins from human activities. At least half of the major geyser basins of the world have been altered by geothermal energy development or tourism. Courtesy of Steingisser, 2008. Yellowstone in a Global Context N THIS ISSUE of Yellowstone Science, Alethea Steingis- claimed they had been extirpated from the park. As they have ser and Andrew Marcus in “Human Impacts on Geyser since the park’s establishment, jackrabbits continue to persist IBasins” document the global distribution of geysers, their in the park in a small range characterized by arid, lower eleva- destruction at the hands of humans, and the tremendous tion sagebrush-grassland habitats. With so many species in the importance of Yellowstone National Park in preserving these world on the edge of survival, the confirmation of the jackrab- rare and ephemeral features. We hope this article will promote bit’s persistence is welcome. further documentation, research, and protection efforts for The Nature Note continues to consider Yellowstone with geyser basins around the world. Documentation of their exis- a broader perspective. -
Power from Geothermal Energy History Pros and Cons Pros
Power from Geothermal Energy History The word geothermal comes from Greek “geo” meaning “Earth” and “therme” meaning “Heat”. Since [Ancient Times] people have used geothermal hot springs for bathing, cooking and even healing purposes. Geothermal energy is derived from superheated water inside the earth. The earth’s core can reach temperatures of over 9,000 degrees Fahrenheit and the heat from the earth’s core is constantly moving toward the earth’s surface. The rock surrounding the core sometimes heats up enough to melt creating magma which then floats closer to the surface and carries the heat from below. Sometimes this molten rock pushes to the surface as lava, but typically it stays beneath the surface and heats ground water that has seeped underground from rainfall. Eventually some of this heated water makes its way back to the surface as hot springs or geysers. Throughout the years, engineers have been perfecting ways of harvesting geothermal water to use it to power homes and businesses. In Larderello, Italy in 1904, Prince Piero Ginori Conti tested the first geothermal power generator and lit 4 light bulbs. Seven years later, in 1911, the world’s first geothermal power plant was built in Larderello. Eventually, in 1958, New Zealand become the second producer of geothermal energy in the world and now these power plants exist worldwide. Pros and Cons Pros: If the geothermal water is drilled correctly, there are no harmful emissions put into the air. There are no fossil fuels being used up and sending harmful byproducts into the air. A geothermal power plant takes up a relatively small area of land and can be integrated as a functional addition to a landscape such as the Svartsengi plant in Iceland which provides heated, mineral-rich water for a nearby man-made lagoon. -
U.S. Geological Survey Circular 1249
��� � Geothermal Energy—Clean Power From the Earth’s Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey Geothermal Energy—Clean Power From the Earth’s Heat By Wendell A. Duffield and John H. Sass C1249 U.S. Department of the Interior U.S. Geological Survey ii iii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2003 Available from U.S. Geological Survey Information Services� Box 25286, Denver Federal Center� Denver, CO 80225� This report and any updates to it are available at� http://geopubs.wr.usgs.gov/circular/c1249/� Additional USGS publications can be found at� http://geology.usgs.gov/products.html� For more information about the USGS and its products;� Telephone: 1-888-ASK-USGS� World Wide Web: http://www.usgs.gov/� Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply� endorsement of the U.S. Government.� Although this report is in the public domain, it contains copyrighted materials that are noted in the text. Permission� to reproduce those items must be secured from the individual copyright owners.� Published in the Western Region, Menlo Park, California� Manuscript approved for publication March 20, 2003� Text and illustrations edited by James W. Hendley II and Carolyn Donlin� Cataloging-in-publication data are on file with the Library of Congress (http://www.loc.gov/). Cover—Coso geothermal plant, Navy One, at Naval Air Weapons Station China Lake in southern California (U.S. -
Biodiversity Conservation Assessments Around Geothermal Power Plants: Bio-Indicators, Data Acquisition and Processing Protocols
Presented at SDG Short Course I on Exploration and Development of Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 10-31, 2016. Kenya Electricity Generating Co., Ltd. BIODIVERSITY CONSERVATION ASSESSMENTS AROUND GEOTHERMAL POWER PLANTS: BIO-INDICATORS, DATA ACQUISITION AND PROCESSING PROTOCOLS Thecla M. Mutia Geothermal Development Company Ltd. P.O. Box 17700 – 20100 Nakuru KENYA [email protected] ABSTRACT Geothermal power plants emit a range of non condensable gases (NCGs) and other elements which have the potential to deposit and bio accumulate in ecosystems. These emitted components such as sulphur (from H2S gas) and trace elements (arsenic, boron, antimony and mercury) pose deleterious long term effects to ecosystem components if not monitored. Some studies in the Mediterranean, sub- tropics and sub-arctic terrestrial ecosystems have revealed deposition and associated impacts of these components in plants and soils, which were used as bio-indicators. The consequences include impacts on plant growth and metabolism. As more of these studies are still limited, wide knowledge on effects of these components and the monitoring protocols to employ for geothermal developers is still lacking. This paper reviews lessons learnt from such studies on effects of geothermal power plant emissions to ecosystems to address the questions, how such studies can be performed, which data needs to be acquired and the processing involved. Knowledge of these studies is important for geothermal power developers to ensure implementation of appropriate mitigation measures for unforeseen environmental impacts to promote sustainable development. 1. INTRODUCTION 1.1 Background To mitigate and adapt against the effects of climate change, the exploitation of geothermal energy has been favoured globally over fossilised energy in countries with the potential, primarily due to its assumed minimal ecosystem impacts. -
Geophysical Characterization of the Northwest Geysers, California
PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2019 SGP-TR-214 Geophysical Characterization of the heat source in the Northwest Geysers, California Jared R. Peacock1, Margaret T. Mangan1, Mark Walters2, Craig Hartline2, Jonathan Glen1, Tait Earney1, William Schermerhorn1 1U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA, 2Calpine Corporation, 10350 Socrates Mine Road, Middletown, CA 95461 [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Keywords: The Geysers, magnetotellurics, resistivity, gravity, three-dimensional modeling, EGS, HDR ABSTRACT The Geysers, in northern California, is the largest energy producing geothermal field in the world. Looking to expand capacity, the operator Calpine Corporation developed an anomalously hot (~400 °C at 2.5 km depth) part of the field in the northwest Geysers, including testing of an enhanced geothermal systems (EGS). Though the area is anomalously hot, geophysical methods have failed to adequately image any inferred magmatic heat source. Gravity measurements were collected and jointly modeled with existing magnetic data along a two-dimensional profile aligned with an existing geologic cross-section. The key feature of the potential field model is a low-density, low-susceptibility body below the EGS at 5 km depth. Magnetotelluric (MT) measurements were collected around the northwest Geysers and modeled in three-dimensions to characterize subsurface resistivity structure. The resistivity model images an extension of a Quaternary granitic pluton locally known as “the felsite” under the EGS project and a possible zone of partial melt (<10%) below 7 km in the northwestern part of the field. -
GEOTHERMAL PROPERTY RIGHTS: Maximizing Successful Site Control
GEOTHERMAL PROPERTY RIGHTS: Maximizing Successful Site Control SMU Geothermal Laboratory 2011 Conference Dallas, TX June 14-15, 2011 Robert P. Wright Baker Botts L.L.P. Houston, TX 1 Who Owns the Geothermal Resources? Federal Geothermal Steam Act of 1970: Geothermal resources include (i) all products of geothermal processes, embracing indigenous steam, hot water and hot brines; (ii) steam and other gases, hot water and hot brines resulting from water, gas or fluids artificially introduced; (iii)heat or other associated energy; and (iv) any by-product derived from them .Surface, mineral or water rights? .The federal government claims geothermal ownership wherever it holds the mineral estate. 2 Who Owns the Geothermal Resources? (cont'd) . Classification of geothermal resources varies by state • Mineral: California, Hawaii, Nebraska, Texas • Water: Alaska, Utah (>120°C); Wyoming (geothermal resources are public resource) • Surface: Nevada, Oregon (can be severed) • Sui Generis: Idaho, Washington, Montana 3 Texas Geothermal Policy Geothermal Resources Act of 1975, Section 141.002: "It is declared to be the policy of the State of Texas that . (1) the rapid and orderly development of geothermal energy and associated resources located within the State of Texas is in the interest of the people of the State of Texas." 4 Texas Geothermal Policy (cont'd) (4) since geopressured geothermal resources in Texas are an energy resource system, and since an integrated development of components of the resources, including recovery of the energy of the geopressured water without waste, is required for best conservation of these natural resources of the state, all of the resource system components, as defined in this chapter, shall be treated and produced as mineral resources; and (5) in making the declaration of policy in Subdivision (4) of this section, there is no intent to make any change in the substantive law of this state, and the purpose is to restate the law in clearer terms to make it more accessible and understandable." 5 Texas Geothermal Policy (cont'd) . -
Case Study Mammoth Pacific Power
IV. CASE STUDY: MAMMOTH PACIFIC POWER PLANT View of Mammoth Pacific II The following section offers a firsthand account of the development process for a geothermal power plant. It reveals what took place behind the scenes to bring a power plant online near a small, California community, as indicated by the people who were involved in that process,.both within and outside the developing company. This case study documents one plant’s transformation from one of the most hotly contested to one of the most locally and internationally appreciated power plants in the United States. A. Setting Travel guides advertise Mono County, California, as .a land of fire and ice. with .extraordinary features [that] attest to the region’s active geologic past. The largest city within Mono County, the Town of Mammoth Lakes, is a recreation area, where regular activities include skiing, mountain climbing, hiking, fishing, and is a land that one local described as Los Angeles. playground. At the time the Mammoth Pacific power plants were developed near the Town of Mammoth Lakes, the type of geothermal technology used was relatively new and unexplored. The effects of such a plant, especially upon such a prime recreation area prized for its natural beauty, were uncertain. B. Plans for Development The first unit at the Mammoth Pacific Complex, the 10-MW MP-I power plant that came online in 1984, was relatively unknown by constituents of Mono County. But the 1990 expansion, which added two 15 MW units to the Mammoth Pacific Complex, bringing the total capacity at the complex to 40 MW, met substantial public scrutiny. -
The Quicksilver Rush 150 Years Ago There Was a World Wide Struggle for a Little Known Commodity Known As Quicksilver
The Quicksilver Rush 150 years ago there was a world wide struggle for a little known commodity known as Quicksilver. This story ends at the last Quicksilver mine (still operating in the 1970’s) right here in West County at a hamlet called Mercury. Quicksilver The word ‘quicksilver’ sounds like another shortcut to a flimflam…like the term ‘fools gold’. But, quicksilver does have value, it is the slang name for ‘Mercury’. You may also think “Big deal, old fashioned thermometers, how much money is in that?”. Back in the olden golden days, prospecting, mining, and speculation in quicksilver was big buckeroos. The Bay Area was the capital of quicksilver (at just the right time), and Sonoma County had a flurry of boomtowns. Refining Rocks into Gold When gold miners realized they could no longer pick up nuggets in the stream and the excitement of the '49er migration faded, gold mining became just another extraction industry. Hydraulic mining engineers knew that the way to recover gold (and silver) from low-grade ore was by a process called There was only one problem, there amalgamation, the was no Mercury in California. All treatment of ground-up the processed Mercury was in ore with mercury to Europe, it would have been too extract gold. expensive to transport a million tons of Mercury around the world to the California gold fields. The Richest Mine In 1845 Captain Andres Castillero, a Mexican soldier, diplomat and scholar, was sent to Alta California. While exploring south of Yerba Buena he recognizing a reddish color cliff as probably being cinnabar, he proceeded to test the ore and discovered that it was indeed cinnabar. -
Water Use in the Development and Operations of Geothermal Power
CONTENTS ACKNOWLEDGMENTS ........................................................................................................ viii ACRONYMS USED IN THIS DOCUMENT .......................................................................... ix EXECUTIVE SUMMARY ...................................................................................................... 1 1 INTRODUCTION .............................................................................................................. 3 1.1 Purpose ...................................................................................................................... 3 1.2 Overview of Study .................................................................................................... 3 2 GEOTHERMAL ELECTRICITY GENERATION ........................................................... 5 2.1 Conventional Hydrothermal Flash System ............................................................... 5 2.2 Conventional Hydrothermal Binary System ............................................................. 5 2.3 Enhanced Geothermal System .................................................................................. 5 2.4 Water and Geothermal Electricity Generation .......................................................... 6 3 APPROACH AND METHODS ......................................................................................... 7 3.1 Life Cycle Analysis ................................................................................................... 7 3.2 Scenarios ..................................................................................................................