3D Structural Analysis of the Benton Uplift, Ouachita Orogen, Arkansas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TEXTURES of CHERT and NOVACULITE: an EXPLORATION GUIDE Walter D
TEXTURES OF CHERT AND NOVACULITE: AN EXPLORATION GUIDE Walter D. Keller1, Charles G. Stone2, and Alice L. Hoersch3 ABSTRACT Textures of chert and novaculite observable in scanning electron the fold belt to have attained a maximum metamorphic grade in the micrographs (SEMs) are useful as a practical, geologic ther zeolite to lower green schist facies. mometer for estimating the maximum temperature of those rocks Cherts and novaculites adjacent to Magnet Cove, a Cretaceous during and since deposition. Such information may be further ap age pluton in the eastern Ouachita Mountains of Arkansas, il plied during exploration for hydrocarbons (maturation or degrada lustrate a superposed overprinting of polygonal triple-point tex tion) and for metallic and nonmetallic minerals, in those and ture. It ranges from a background of about 5 //rn (talc grade) in associated rocks. chert 4500 meters from the pluton to about 45 fan (forsterite grade) from near the contact. Private drilling operations indicate that the Scanning electron micrographs of cherts and novaculites that pluton contact dips about 45 ° beneath much of the sedimentary crop out in the Ouachita Mountain fold belt of Arkansas and rock that exhibits locally anomalous crystallinity. Homogenization Oklahoma and in areas adjacent to exposed and buried intrusives temperatures of vein quartz determined by Herman Jackson and show a sequential range in textures from cryptocrystalline, George Nichols (1973, personal communication) show a gradient anhedral quartz in the nonmetamorphosed chert and novaculite to along this profile of slightly above 200° C in quartz 4500 meters coarse euhedral, polygonal triple-point quartz 60 micrometers (fjuxi) from the pluton to about 440° C near the contact. -
Permian Basin, West Texas and Southeastern New Mexico
Report of Investigations No. 201 Stratigraphic Analysis of the Upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico John B. Comer* *Current address Indiana Geological Survey Bloomington, Indiana 47405 1991 Bureau of Economic Geology • W. L. Fisher, Director The University of Texas at Austin • Austin, Texas 78713-7508 Contents Abstract ..............................................................................................................................1 Introduction ..................................................................................................................... 1 Methods .............................................................................................................................3 Stratigraphy .....................................................................................................................5 Nomenclature ...................................................................................................................5 Age and Correlation ........................................................................................................6 Previous Work .................................................................................................................6 Western Outcrop Belt ......................................................................................................6 Central Texas ...................................................................................................................7 Northeastern Oklahoma -
Data of Geochemistry
Data of Geochemistry * Chapter T. Nondetrital Siliceous Sediments GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Data of Geochemistry Michael Fleischer, Technical Editor Chapter T. Nondetrital Siliceous Sediments By EARLE R. CRESSMAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Tabulation and discussion of chemical analyses of chert with respect to mineralogic composition, petrographic type, and geologic occurrence UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. DATA OP GEOCHEMISTRY, SIXTH EDITION Michael Fleischer, Technical Editor The first edition of the Data of Geochemistry, by F. W. Clarke, was published in 1908 as U.S. Geological Survey Bulletin 330. Later editions, also by Clarke, were published in 1911, 1916, 1920, and 1924 as Bul letins 491, 616, 695, and 770. This, the sixth edition, has been written by several scientists in the Geological Survey and in other institutions in the United States and abroad, each preparing a chapter on his special field. The current edition is being published in individual chapters, titles of which are listed below. Chapters already published are indicated by boldface type. CHAPTER A. The chemical elements B. Cosmochemistry C. Internal structure and composition of the Earth D. Composition of the earth's crust E. Chemistry of the atmosphere F. Chemical composition of subsurface waters, by Donald E. White, John D. Hem, and G. A. Waring G. Chemical composition of rivers and lakes, by Daniel A. Livingstone H. Chemistry of the oceans I. -
Paleozoic 3: Alabama in the Paleozoic
UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Paleozoic 3: Alabama in the Paleozoic Instructor: Dr. Douglas W. Haywick Last Time The Paleozoic Part 2 1) Back to Newfoundland 2) Eastern Laurentian Orogenies (Appalachians) 3) Other Laurentian Orogenies (Antler, Ouachita) (web notes 25) Laurentia (Paleozoic North America) Even though this coastline of Laurentia was a passive continental margin, a plate tectonic boundary was rapidly approaching… A B A B Laurentia (Paleozoic North America) The resulting Taconic Orogeny first depressed the seafloor Laurentia (localized transgression) and A Island arc then pushed previously deposited passive continental B margin sediments up into thrust fault mountains. Baltica There was only minimal metamorphism and igneous A intrusions. B Middle Ordovician Laurentia (Paleozoic North America) Laurentia Baltica Middle Ordovician Laurentia (Paleozoic North America) Laurentia Baltica Middle Ordovician Laurentia (Paleozoic North America) The next tectonic event (the Acadian Orogeny) was caused Laurentia by the approach of Baltica A B Baltica A B Baltica Baltica Late Ordovician Laurentia (Paleozoic North America) The Acadian Orogeny was more extensive and more intense (metamorphism and A lots of igneous intrusions) B A B Early Devonian Laurentia (Paleozoic North America) The Acadian Orogeny was more extensive and more intense (metamorphism and lots of igneous intrusions) Early Devonian Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea. A B B A B Mississippian Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea. A B B A B Pennsylvannian Suture zone Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea. -
Ouachita Mountains Ecoregional Assessment December 2003
Ouachita Mountains Ecoregional Assessment December 2003 Ouachita Ecoregional Assessment Team Arkansas Field Office 601 North University Ave. Little Rock, AR 72205 Oklahoma Field Office 2727 East 21st Street Tulsa, OK 74114 Ouachita Mountains Ecoregional Assessment ii 12/2003 Table of Contents Ouachita Mountains Ecoregional Assessment............................................................................................................................i Table of Contents ........................................................................................................................................................................iii EXECUTIVE SUMMARY..............................................................................................................1 INTRODUCTION..........................................................................................................................3 BACKGROUND ...........................................................................................................................4 Ecoregional Boundary Delineation.............................................................................................................................................4 Geology..........................................................................................................................................................................................5 Soils................................................................................................................................................................................................6 -
Mineralogical and Chemical Composition of Samples from the Christy Vanadium-Titanium Deposit, Hot Spring County, Arkansas
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY MINERALOGICAL AND CHEMICAL COMPOSITION OF SAMPLES FROM THE CHRISTY VANADIUM-TITANIUM DEPOSIT, HOT SPRING COUNTY, ARKANSAS By G. N. Breit1, C. Rice1, D.L. Fey2, and W.J. Sadler2 Open-File Report 92-288 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey 1 U.S. Geological Survey, Branch of Sedimentary Processes, Box 25046 MS 916 Denver Federal Center, Denver, Colorado 80225. 2 U.S. Geological Survey, Branch of Geochemistry, Box 25046 MS 973 Denver Federal Center, Denver, Colorado 80225. CONTENTS Abstract...........................................................................................! Introduction.....................................................................................! Geologic Setting.....................................................................2 Methods...........................................................................................4 Sampling..............................................................................4 Mineralogical analysis ...........................................................7 Chemical analyses.................................................................9 Whole-rock analyses.....................................................9 Partial dissolution analyses...........................................9 Statistical -
University of Texas at Arlington Dissertation Template
CHEMOSTRATIGRAPHY AND PALEOCEANOGRAPHY OF THE MISSISSIPPIAN BARNETT FORMATION, SOUTHERN FORT WORTH BASIN, TEXAS, USA by JAMES DANIEL HOELKE Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY THE UNIVERSITY OF TEXAS AT ARLINGTON AUGUST 2011 Copyright © by James Hoelke 2011 All Rights Reserved ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Harry Rowe, for his patience, time and energy during these past few years. I have learned much from him. This thesis would not have been possible without him. Second, I would like to thank the members of my graduate committee, Dr. Andrew Hunt and Dr. Robert Loucks, for the knowledge and insight you have provided in class and in conversations. I would also like to thank Dr. Christopher Scotese for assistance and advice with paleogeographic maps. I would also like to thank several members of the Texas Bureau of Economic Geology. I would like to thank especially Dr. Stephen Ruppel for providing core access and material support for this project as well as advice. I would also like to thank James Donnelly, Nathan Ivicic, Kenneth Edwards, and Josh Lambert for core handling assistance. I want to thank Henry Francis and Andrea Conner at the Kentucky Geological Survey for providing geochemical analyses. I would also like to thank some members of our geochemistry research group. Niki Hughes provided substantial assistance especially with calibrations and great encouragement. I would also like to thank Jak Kearns, Pukar Mainali, Krystin Robinson, and Robert Nikirk for their help. -
Mapping a Novaculite Quarry in Hot Springs National Park
Volume 2005 Article 19 2005 Mapping a Novaculite Quarry in Hot Springs National Park Mary Beth D. Trubitt Arkansas Archeological Survey, HSU Research Station, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/ita Part of the American Material Culture Commons, Archaeological Anthropology Commons, Environmental Studies Commons, Other American Studies Commons, Other Arts and Humanities Commons, Other History of Art, Architecture, and Archaeology Commons, and the United States History Commons Tell us how this article helped you. Cite this Record Trubitt, Mary Beth D. (2005) "Mapping a Novaculite Quarry in Hot Springs National Park," Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State: Vol. 2005, Article 19. https://doi.org/ 10.21112/.ita.2005.1.19 ISSN: 2475-9333 Available at: https://scholarworks.sfasu.edu/ita/vol2005/iss1/19 This Article is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State by an authorized editor of SFA ScholarWorks. For more information, please contact [email protected]. Mapping a Novaculite Quarry in Hot Springs National Park Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This article is available in Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State: https://scholarworks.sfasu.edu/ita/vol2005/iss1/19 Mapping a Novaculite Quarry in Hot Springs National Park Marv Beth Trubitt, Arkansas Archeologica! Survey, Henderson State Un iversi(r Research Station, Arkadelphia, Arkansas Abstract Novaculite quarries in the Ouachita Mountains of Arkansas and Oklahoma were created through large scale extraction of lithic raw materials, used for stone tools by Caddos and other Native Americans over the past 11,000 years and in recent centuries by Euro-Americans for whetstones. -
Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas Camille M
Journal of the Arkansas Academy of Science Volume 59 Article 15 2005 Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas Camille M. Hutchinson University of Arkansas, Fayetteville Jon C. Dowell University of Arkansas, Fayetteville Stephen K. Boss University of Arkansas, Fayetteville, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Geographic Information Sciences Commons, and the Stratigraphy Commons Recommended Citation Hutchinson, Camille M.; Dowell, Jon C.; and Boss, Stephen K. (2005) "Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas," Journal of the Arkansas Academy of Science: Vol. 59 , Article 15. Available at: http://scholarworks.uark.edu/jaas/vol59/iss1/15 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 59 [2005], Art. 15 Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas CAMILLEM.HUTCHINSONJON C. DOWELL, AND STEPHEN K.BOSS* Department ofGeosciences, 113 Ozark Hall, University ofArkansas, Fayetteville, AR 72701 Correspondent: [email protected] Abstract A digital geologic map of Sonora quadrangle was produced at 1:24,000 scale using the geographic information system GIS) software Maplnfo. -
South Texas Project Units 3 & 4 COLA
Rev. 08 STP 3 & 4 Final Safety Analysis Report 2.5S.1 Basic Geologic and Seismic Information The geological and seismological information presented in this section was developed from a review of previous reports prepared for the existing units, published geologic literature, interpretation of aerial photography, a subsurface investigation, and an aerial reconnaissance conducted for preparation of this STP 3 & 4 application. Previous site-specific reports reviewed include the STP 1 & 2 FSAR, Revision 13 (Reference 2.5S.1-7). A review of published geologic literature and seismologic data supplements and updates the existing geological and seismological information. A list of references used to compile the geological and seismological information presented in the following pages is provided at the end of Subsection 2.5S.1. It is intended in this section of the STP 3 & 4 FSAR to demonstrate compliance with the requirements of 10 CFR 100.23 (c). Presented in this section is information of the geological and seismological characteristics of the STP 3 & 4 site region, site vicinity, site area, and site. Subsection 2.5S.1.1 describes the geologic and tectonic characteristics of the site region and site vicinity. Subsection 2.5S.1.2 describes the geologic and tectonic characteristics of the STP 3 & 4 site area and site. The geological and seismological information was developed in accordance with NRC guidance documents RG-1.206 and RG-1.208. 2.5S.1.1 Regional Geology (200 mile radius) Using Texas Bureau of Economic Geology Terminology, this subsection discusses the physiography, geologic history, stratigraphy, and tectonic setting within a 200 mi radius of the STP 3 & 4 site. -
Copyright by Berton James Seuil
Copyright by Berton James Seuil 1956 THE UNIVERSITY OP " OKLAHOMA" “ 1 ! GRADUATE COLLEGE ORIGIN AND OCCURRENCE OF BARITE IN ARKANSAS A DISSERTATION \ SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY BERTON JAMES SCULL Norman, Oklahoma 1956 ORIGIN AND OCCURRENCE OF BARITE IN ARKANSAS APPROVED BY DISSERTATION COMMITTEE TABLE OP CONTENTS Page LIST OP T A BLES.................................. vl LIST OP ILLUSTRATIONS.................................. Vil Chapter I. INTRODUCTION............................ 1 General Statement .................... 1 Properties and Uses of Barite .............. 3 Scope of the Investigation.................. 6 Methods of Investigation.................. 7 Previous W o r k ................ o Current Work........................ 11 Geography.................................. 13 II. AREAL GEOLOGY................................ l6 General Statement ..... ................ l6 Stratigraphy................................ 17 General discussion.................. 17 Paleozoic r o c k s .................... 17 Bigfork chert .......................... 17 Polk Creek shale............ 19 Blaylock sandstone...................... 21 Missouri Mountain shale ................ 27 Arkansas novaculite . ................. 30 Stanley s h a l e ............... 37 Cretaceous rocks.................. 43 Trinity formation ................ 43 Woodbine formation.................... 46 Igneous rocks .......................... 47 Regional Structure.................... 52 -
Geologic Resources Inventory Report, Hot Springs National Park
National Park Service US Department of the Interior Natural Resource Stewardship and Science Hot Springs National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2013/741 ON THE COVER View from the top of the display spring down to the Arlington Lawn within Hot Springs National Park. THIS PAGE Gulpha Creek flows over Stanley Shale downstream from the Gulpha Gorge Campground. Photographs by Trista L. Thornberry-Ehrlich (Colorado State University) Hot Springs National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2013/741 National Park Service Geologic Resources Division PO Box 25287 Denver, CO 80225 December 2013 US Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.