1. Padil Species Factsheet Scientific Name: Common Name Image

Total Page:16

File Type:pdf, Size:1020Kb

1. Padil Species Factsheet Scientific Name: Common Name Image 1. PaDIL Species Factsheet Scientific Name: Rhathymus sp -- (Hymenoptera: Apidae: Apinae: Rhathymini) Common Name Tribe Representative - Rhathymini Live link: http://www.padil.gov.au/pollinators/Pest/Main/139837 Image Library Australian Pollinators Live link: http://www.padil.gov.au/pollinators/ Partners for Australian Pollinators image library Western Australian Museum https://museum.wa.gov.au/ South Australian Museum https://www.samuseum.sa.gov.au/ Australian Museum https://australian.museum/ Museums Victoria https://museumsvictoria.com.au/ 2. Species Information 2.1. Details Specimen Contact: Museum Victoria - [email protected] Author: Ken Walker Citation: Ken Walker (2010) Tribe Representative - Rhathymini(Rhathymus sp)Updated on 8/17/2010 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/pollinators/Pest/Main/139837 2.3. Facets Bio-Region: Central and South America Host Family: Not recorded Host Genera: Cleptoparasitic Status: Exotic Species not in Australia Bio-Regions: Neotropical Body Hair and Scopal location: Scopa absent, Body hair almost absent Cleptoparasite: Yes - all species Episternal groove: Present and extending below scrobal groove Wings: Submarginal cells - Three, Hairy Head - Structures: One subantennal suture below each antennal socket Head - Mouthparts: Galeal comb absent, Glossa and Labial palps elongate; palps flattened and sheathlike, Stipial comb present, Lorum V shaped; mentum tapered, Mandibles simple Legs: Arolia present, Middle coxa fully exposed Male Genitalia: S7 broad and transverse Metasoma & Metanotum: Pygidial plate present, Prepygidial fimbria continuous, S6 curved to form tubular guide for sting Nests, Ovarioles & Immatures: Parasitic, Larva spins a cocoon, Ovarioles per ovary equals 4 or more Larval provisions: Parasitic on other bees 2.4. Diagnostic Notes The subfamily Apinae consists of the corbiculate Apidae and taxa from the Anthophoridae. There is no known unique subfamily character that is present in all species, many such useful characters are lost in the cleptoparasitic species. Most species have a pygidial plate and well developed prepygidial fimbriae. The scopa is restricted to the hind leg and basitarsus. Source: Michener (2007). Bees of the World. John Hopkins University Press. 3. Diagnostic Images Results Generated: Friday, September 24, 2021 .
Recommended publications
  • Redalyc.CLEPTOPARASITE BEES, with EMPHASIS on THE
    Acta Biológica Colombiana ISSN: 0120-548X [email protected] Universidad Nacional de Colombia Sede Bogotá Colombia ALVES-DOS-SANTOS, ISABEL CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Acta Biológica Colombiana, vol. 14, núm. 2, 2009, pp. 107-113 Universidad Nacional de Colombia Sede Bogotá Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=319027883009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta biol. Colomb., Vol. 14 No. 2, 2009 107 - 114 CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Abejas cleptoparásitas, con énfasis en las abejas hospederas coletoras de aceite ISABEL ALVES-DOS-SANTOS1, Ph. D. 1Departamento de Ecologia, IBUSP. Universidade de São Paulo, Rua do Matão 321, trav 14. São Paulo 05508-900 Brazil. [email protected] Presentado 1 de noviembre de 2008, aceptado 1 de febrero de 2009, correcciones 7 de julio de 2009. ABSTRACT Cleptoparasite bees lay their eggs inside nests constructed by other bee species and the larvae feed on pollen provided by the host, in this case, solitary bees. The cleptoparasite (adult and larvae) show many morphological and behavior adaptations to this life style. In this paper I present some data on the cleptoparasite bees whose hosts are bees specialized to collect floral oil. Key words: solitary bee, interspecific interaction, parasitic strategies, hospicidal larvae. RESUMEN Las abejas Cleptoparásitas depositan sus huevos en nidos construídos por otras especies de abejas y las larvas se alimentan del polen que proveen las hospederas, en este caso, abejas solitarias.
    [Show full text]
  • Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    NovitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3029, 36 pp., 67 figures, 3 tables November 27, 1991 Evolution of Cleptoparasitism in Anthophorid Bees as Revealed by Their Mode of Parasitism and First Instars (Hymenoptera: Apoidea) JEROME G. ROZEN, JR.1 CONTENTS Abstract .............................................. 2 Introduction .............................................. 2 Acknowledgments ............... ............................... 3 Historical Background ................ .............................. 4 Evolution of Cleptoparasitism in the Anthophoridae ............. ................... 6 Systematics of Cleptoparasitic First-Instar Anthophoridae ......... ................. 12 Methods .............................................. 12 Description of the Nomadinae Based on First Instars .......... .................. 13 Description of the Protepeolini Based on the First Instar ......... ................ 13 Description of the Melectini Based on First Instars ............ .................. 17 Xeromelecta (Melectomorpha) californica (Cresson) ........... ................. 17 Melecta separata callura (Cockerell) ......................................... 20 Melecta pacifica fulvida Cresson ............................................. 20 Thyreus lieftincki Rozen .............................................. 22 Zacosmia maculata (Cresson) ............................................. 22 Description of the Rhathymini Based on First Instars .........
    [Show full text]
  • Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2640, pp. 1-24, figs. 1-36, tables 1-3 January 3, 1978 The Bionomics and Immature Stages of the Cleptoparasitic Bee Genus Protepeolus (Anthophoridae, Nomadinae) JEROME G. ROZEN, JR.,' KATHLEEN R. EICKWORT,2 AND GEORGE C. EICKWORT3 ABSTRACT Protepeolus singularis was found attacking cells numerous biological dissimilarities. The first in- in nests of Diadasia olivacea in southeastern Ari- star Protepeolus attacks and kills the pharate last zona. The following biological information is pre- larval instar of the host before consuming the sented: behavior of adult females while searching provisions, a unique feature for nomadine bees. for host nests; intraspecific interactions of fe- First and last larval instars and the pupa are males at the host nesting site; interactions with described taxonomically and illustrated. Brief host adults; oviposition; and such larval activities comparative descriptions of the other larval in- as crawling, killing the host, feeding, defecation, stars are also given. Larval features attest to the and cocoon spinning. In general, adult female be- common origin of Protepeolus and the other havior corresponds to that of other Nomadinae. Nomadinae. Cladistic analysis using 27 characters Females perch for extended periods near nest of mature larvae of the Nomadinae demonstrates entrances and avoid host females, which attack that Isepeolus is a sister group to all the other parasites when encountered. Females apparently Nomadinae known from larvae, including Pro- learn the locations of host nests and return to tepeolus, and that Protepeolus is a sister group to them frequently.
    [Show full text]
  • The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution
    EN58CH04-Danforth ARI 5 December 2012 7:55 The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution Bryan N. Danforth,1∗ Sophie Cardinal,2 Christophe Praz,3 Eduardo A.B. Almeida,4 and Denis Michez5 1Department of Entomology, Cornell University, Ithaca, New York 14853; email: [email protected] 2Canadian National Collection of Insects, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada; email: [email protected] 3Institute of Biology, University of Neuchatel, Emile-Argand 11, 2009 Neuchatel, Switzerland; email: [email protected] 4Departamento de Biologia, FFCLRP-Universidade de Sao˜ Paulo, 14040-901 Ribeirao˜ Preto, Sao˜ Paulo, Brazil; email: [email protected] 5University of Mons, Laboratory of Zoology, 7000 Mons, Belgium; email: [email protected] Annu. Rev. Entomol. 2013. 58:57–78 Keywords First published online as a Review in Advance on Hymenoptera, Apoidea, bees, molecular systematics, sociality, parasitism, August 28, 2012 plant-insect interactions The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Our understanding of bee phylogeny has improved over the past fifteen years 10.1146/annurev-ento-120811-153633 as a result of new data, primarily nucleotide sequence data, and new methods, by Universidade de Sao Paulo (USP) on 02/26/13. For personal use only. Copyright c 2013 by Annual Reviews. primarily model-based methods of phylogeny reconstruction. Phylogenetic All rights reserved Annu. Rev. Entomol. 2013.58:57-78. Downloaded from www.annualreviews.org studies based on single or, more commonly, multilocus data sets have helped ∗ Corresponding author resolve the placement of bees within the superfamily Apoidea; the relation- ships among the seven families of bees; and the relationships among bee subfamilies, tribes, genera, and species.
    [Show full text]
  • Hymenoptera: Apoidea)
    Journal of Insect Science (2017) 17(4): 89; 1–10 doi: 10.1093/jisesa/iex060 Research article Survey of Hatching Spines of Bee Larvae Including Those of Apis mellifera (Hymenoptera: Apoidea) Jerome G. Rozen, Jr., 1,2 Corey Shepard Smith,1 and James H. Cane3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024 ([email protected], [email protected]), 2Corresponding author, e-mail: [email protected], and 3USDA–ARS Bee Biology and Sytematics Laboratory, Pollinating Insect Research Unit, Utah State University, Logan, UT 84322-5310 ([email protected]) Subject Editor: Sean ODonnell Received 24 March 2017; Editorial decision 9 June 2017 Abstract This article explores the occurrence of hatching spines among bee taxa and how these structures enable a larva on hatching to extricate itself from the egg chorion. These spines, arranged in a linear sequence along the sides of the first instar just dorsal to the spiracles, have been observed and recorded in certain groups of solitary and cleptoparasitic bee taxa. After eclosion, the first instar remains loosely covered by the egg chorion. The fact that this form of eclosion has been detected in five families (Table 1 identifies four of the families. The fifth family is the Andrenidae for which the presence of hatching spines in the Oxaeinae will soon be announced.) of bees invites speculation as to whether it is a fundamental characteristic of bees, or at least of solitary and some clep- toparasitic bees. The wide occurrence of these spines has prompted the authors to explore and discover their presence in the highly eusocial Apis mellifera L.
    [Show full text]
  • Morphology of the Male Reproductive System and Spermatozoa in Centris
    Micron 43 (2012) 695–704 Contents lists available at SciVerse ScienceDirect Micron j ournal homepage: www.elsevier.com/locate/micron Review Morphology of the male reproductive system and spermatozoa in Centris Fabricius, 1804 (Hymenoptera: Apidae, Centridini) a,d b c b d,∗ Luiz Fernando Gomes , Juliana P. Badke , Uyrá Zama , Heidi Dolder , José Lino-Neto a Departamento de Biologia, Instituto Federal de Educac¸ ão, Ciência e Tecnologia do Maranhão-IFMA, Maranhão, Brazil b Departamento de Biologia Celular, Universidade de Campinas-UNICAMP, São Paulo, Brazil c Departamento de Biologia, Universidade Federal de Ouro Preto-UFOP, Minas Gerais, Brazil d Departamento de Biologia Geral, Universidade Federal de Vic¸ osa-UFV, Minas Gerais, Brazil a r t i c l e i n f o a b s t r a c t Article history: The genera Centris and Epicharis constitute the Centridini and are widely distributed in the Neotropical Received 19 September 2011 region. Centris is also found in the southern portion of the Neartic region, although both genera are more Received in revised form 26 January 2012 abundant in the humid tropical regions. To describe the structure of the male reproductive system and Accepted 27 January 2012 spermatozoa, light and transmission electron microscopy were used. The male reproductive system of Centris sp. is formed by a pair of testes, a pair of deferent ducts, a pair of seminal vesicles, a pair of accessory Keywords: glands and an ejaculatory duct connected to the external genitalia, the aedeagus. In this species, testes and Bees the pre-vesicular deferens ducts as well as the seminal vesicles are encapsulated in a single conjunctive Ultrastructure capsule, the scrotal membrane.
    [Show full text]
  • ZOOL 260-2008 Léo C. Rocha-Filho
    ZOOLOGIA 26 (2): 299–304, June, 2009 New host records of Aglaomelissa duckei and a compilation of host associations of Ericrocidini bees (Hymenoptera: Apidae) Léo C. Rocha-Filho 1; Élder F. Morato 2 & Gabriel A. R. Melo 3, 4 1 Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. 14040-901 Ribeirão Preto, São Paulo, Brasil. 2 Departamento de Ciências da Natureza, Universidade Federal do Acre. Campus, 69915-900 Rio Branco, Acre, Brasil. 3 Laboratório de Biologia Comparada de Hymenoptera, Departamento de Zoologia, Universidade Federal do Paraná. Caixa Postal 19020, 81531-980 Curitiba, Paraná, Brasil. 4 Corresponding author. E-mail: [email protected] ABSTRACT. For the first time, confirmed host records are reported for the monotypic Ericrocidini genus Aglaomelissa Snelling & Brooks, 1985. Aglaomelissa duckei (Friese, 1906) emerged from trap-nests of Centris (Heterocentris) analis (Fabricius, 1804) and C. (Heterocentris) terminata Smith, 1874 from two sites in the Brazilian Amazonian region. The parasitism ratio caused by A. duckei was high, varying from 80 to 100% of the brood cells in a single trap-nest. Also, a compilation of the known host records for the species of Ericrocidini is presented and host-parasite associations are discussed. Host associations are known for seven of the 11 genera and about 17 of the 42 species of the tribe, involving a total of 34 confirmed or putative host species of Centridini bees. All species of the tribe are known to attack only nests of Centris Fabricius, 1804, except Mesoplia rufipes (Perty, 1833) that also parasitizes nests of Epicharis Klug, 1807.
    [Show full text]
  • Phylogenetic Systematics and the Evolution of Nesting
    PHYLOGENETIC SYSTEMATICS AND THE EVOLUTION OF NESTING BEHAVIOR, HOST-PLANT PREFERENCE, AND CLEPTOPARASITISM IN THE BEE FAMILY MEGACHILIDAE (HYMENOPTERA, APOIDEA) A Thesis Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Jessica Randi Litman January 2012 ! ! ! ! ! ! ! ! © 2012 Jessica Randi Litman ! PHYLOGENETIC SYSTEMATICS AND THE EVOLUTION OF NESTING BEHAVIOR, HOST-PLANT PREFERENCE, AND CLEPTOPARASITISM IN THE BEE FAMILY MEGACHILIDAE (HYMENOPTERA, APOIDEA) Jessica Randi Litman, Ph.D. Cornell University 2012 Members of the bee family Megachilidae exhibit fascinating behavior related to nesting, floral preference, and cleptoparasitic strategy. In order to explore the evolution of these behaviors, I assembled a large, multi-locus molecular data set for the bee family Megachilidae and used maximum likelihood-, Bayesian-, and maximum parsimony-based analytical methods to trace the evolutionary history of the family. I present the first molecular-based phylogenetic hypotheses of relationships within Megachilidae and use biogeographic analyses, ancestral state reconstructions, and divergence dating and diversification rate analyses to date the antiquity of Megachilidae and to explore patterns of diversification, nesting behavior and floral preferences in the family. I find that two ancient lineages of megachilid bees exhibit behavior and biology which reflect those of the earliest bees: they are solitary, restricted to deserts, build unlined
    [Show full text]
  • Comprehensive Phylogeny of Apid Bees Reveals the Evolutionary Origins and Antiquity of Cleptoparasitism
    Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism Sophie Cardinala,1, Jakub Strakab, and Bryan N. Danfortha aDepartment of Entomology, Cornell University, Ithaca, NY 14853; and bDepartment of Zoology, Charles University in Prague, CZ-12844 Prague 2, Czech Republic Edited by Gene E. Robinson, University of Illinois at Urbana-Champaign, Urbana, IL, and approved August 5, 2010 (received for review May 6, 2010) Apidae is the most speciose and behaviorally diverse family of vision nests, they lack pollen-collecting structures, and they are often bees. It includes solitary, eusocial, socially parasitic, and an excep- heavily armored relative to pollen-collecting species. Convergent tionally high proportion of cleptoparasitic species. Cleptoparasitic evolution in cleptoparasitic bees has been well-documented (17, 18), bees, which are brood parasites in the nests of other bees, have making it difficult to differentiate between features that are similar long caused problems in resolving the phylogenetic relationships because of shared ancestry versus convergence. In the phylogenetic within Apidae based on morphological data because of the analysis on which the present classification of Apidae is based (19), tendency for parasites to converge on a suite of traits, making it characters that were considered a priori to have arisen convergently difficult to differentiate similarity caused by common ancestry from in cleptoparasites were excluded, effectively biasing the results to convergence. Here, we resolve the evolutionary history of apid a conclusion of multiple, independent parasitic origins. cleptoparasitism by conducting a detailed, comprehensive molecu- In this paper, we resolve the phylogenetic relationships of the lar phylogenetic analysis of all 33 apid tribes (based on 190 species), apid tribes and reconstruct the evolutionary history of cleptopar- including representatives from every hypothesized origin of clep- asitism within apids by conducting a comprehensive phylogenetic toparasitism.
    [Show full text]
  • 1 Xii-30-2013 Jerome G. Rozen
    1 XII-30-2013 JEROME G. ROZEN, JR. Rozen, Jr., J.G. 1951. A preliminary comparative study of the male genitalia of Andrenidae (Hymenoptera, Apoidea). Journal of the Kansas Entomological Society 24: 142–150. Rozen, Jr., J.G. 1952. Collecting brachycistidine females. Pan-Pacific Entomologist 23: 91–92. Rozen, Jr., J.G. 1952. A new species of Nomadopsis (Hymenoptera, Andrenidae). Journal of the Kansas Entomological Society 25: 144–147. Rozen, Jr., J.G. 1954. Morphological description of the larva of Oreopasites vanduzeei Cockerell (Hymenoptera: Anthophoridae). Pan-Pacific Entomologist 30: 203–207. Rozen, Jr., J.G., and C.D. MacNeill. 1957. Biological observations on Exomalopsis (Anthophorula) chionura Cockerell, including a comparison of the biology of Exomalopsis with that of other anthophorid groups. Annals of the Entomological Society of America 50: 522–529. Rozen, Jr., J.G. 1957. External morphological description of the larva of Exomalopsis chionura Cockerell, including a comparison with other anthophorids (Hymenoptera: Apoidea). Annals of the Entomological Society of America 50: 469–475. Rozen, Jr., J.G. 1958. Biological notes on Eucrada humeralis (Melsheimer) (Anobiidae). Coleopterist Bulletin 11: 53–54. Rozen, Jr., J.G. 1958. The external anatomy of the larva of Nacerdes melanura (Linnaeus) (Coleoptera: Oedemeridae). Annals of the Entomological Society of America 51: 222–229. Rozen, Jr., J.G. 1958. Monographic study of the genus Nomadopsis Ashmead (Hymenoptera: Andrenidae). University of California Publications in Entomology 15: 1–202. Sailer, R.I., and J.G. Rozen, Jr. 1958. A study of the comparative effects of various dosages of Malathion, Methoxychlor, and DDT on the arthropod fauna of a Connecticut forest.
    [Show full text]
  • Cleptoparasite Bees, with Emphasis on the Oilbees Hosts
    Acta biol. Colomb., Vol. 14 No. 2, 2009 107 - 114 CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Abejas cleptoparásitas, con énfasis en las abejas hospederas coletoras de aceite ISABEL ALVES-DOS-SANTOS1, Ph. D. 1Departamento de Ecologia, IBUSP. Universidade de São Paulo, Rua do Matão 321, trav 14. São Paulo 05508-900 Brazil. [email protected] Presentado 1 de noviembre de 2008, aceptado 1 de febrero de 2009, correcciones 7 de julio de 2009. ABSTRACT Cleptoparasite bees lay their eggs inside nests constructed by other bee species and the larvae feed on pollen provided by the host, in this case, solitary bees. The cleptoparasite (adult and larvae) show many morphological and behavior adaptations to this life style. In this paper I present some data on the cleptoparasite bees whose hosts are bees specialized to collect floral oil. Key words: solitary bee, interspecific interaction, parasitic strategies, hospicidal larvae. RESUMEN Las abejas Cleptoparásitas depositan sus huevos en nidos construídos por otras especies de abejas y las larvas se alimentan del polen que proveen las hospederas, en este caso, abejas solitarias. El cleptoparásito (adulo y larva) muestra muchas adaptaciones morfológicas y comportamentales para este estilo de vida. En este manuscrito presento datos sobre abejas cleptoparásitas cuyos hospederos son abejas especializadas en recolectar aceite floral. Palabras clave: abejas solitarias, interacción interespecífica, estrategias parasíticas, larva assassina. INTRODUCTION Usually the image of bees is associated to an insect visiting flowers to collect pollen. The sampled pollen will be deposited into a cell within the nest constructed by the bee to their offspring. Then, the young will feed on this provision and develop inside the nest, protected from the external world.
    [Show full text]
  • Detection Avoidance in Brood Parasitic Bees Royalsocietypublishing.Org/Journal/Rstb Jessica R
    Under the radar: detection avoidance in brood parasitic bees royalsocietypublishing.org/journal/rstb Jessica R. Litman Muse´um d’histoire naturelle de Neuchaˆtel, Terreaux 14, 2000 Neuchaˆtel, Switzerland JRL, 0000-0003-2481-5709 Review Brood parasitism is a specialized form of parasitism in which the offspring Cite this article: Litman JR. 2019 Under the of a parasite develops on the food provisions gathered by a host species for radar: detection avoidance in brood parasitic its own young. Obligate brood parasitic lineages have lost the ability to acquire provisions for their young and thus rely entirely on the location of bees. Phil. Trans. R. Soc. B 374: 20180196. an appropriate host to serve as a food-provider. Solitary bees provide http://dx.doi.org/10.1098/rstb.2018.0196 some of the most fascinating examples of brood parasitism in animals. Most solitary bees build and provision their own nests. Some, however, Accepted: 9 December 2018 usurp the nests of other species of bees. These brood parasites, or ‘cuckoo’ bees, deposit their eggs on the pollen provisions collected by a host bee for her own offspring. The provisions stored by the host bee are not sufficient One contribution of 18 to a theme issue ‘The to sustain the development of both the host’s larva and that of the brood coevolutionary biology of brood parasitism: parasite and the parasite must kill the offspring of its host in order to from mechanism to pattern’. obtain enough nourishment to complete its development. As a consequence, there is fierce competition between the host bee seeking to protect her nest from attack and the brood parasite seeking to avoid detection by the host Subject Areas: in order to successfully deposit her eggs in an appropriate nest.
    [Show full text]