Modifications, Methods for Analysis, and Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Modifications, Methods for Analysis, and Mass Spectrometry University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2013 Functional Regulation of Dual Specificity Phosphatases: Modifications, Methods for Analysis, and Mass Spectrometry Christopher Bonham University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Bonham, Christopher, "Functional Regulation of Dual Specificity Phosphatases: Modifications, Methods for Analysis, and Mass Spectrometry" (2013). Electronic Theses and Dissertations. 4942. https://scholar.uwindsor.ca/etd/4942 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Functional Regulation of Dual Specificity Phosphatases: Modifications, Methods for Analysis, and Mass Spectrometry Christopher A. Bonham A Dissertation submitted to the Faculty of Graduate Studies through the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada. 2013 © 2013 Christopher A. Bonham Functional Regulation of Dual Specificity Phosphatases: Modifications, Methods for Analysis, and Mass Spectrometry Christopher A. Bonham APPROVED BY: ______________________________________________ N.K. Tonks, External Program Examiner Cold Spring Harbor Laboratory ______________________________________________ L.A. Porter Department of Biological Sciences ______________________________________________ S. Pandey Department of Chemistry and Biochemistry ______________________________________________ B. Mutus Department of Chemistry and Biochemistry ______________________________________________ P.O. Vacratsis, Advisor Department of Chemistry and Biochemistry September 13, 2013 DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION I. Co-Authorship Declaration I hereby declare that this thesis incorporates material that is result of joint research, as follows: Chapter 3 - Collaboration of Christopher A. Bonham with Adam Faccenda as co-first authors, and Dr. Xueji Zhang, under the supervision of Dr. Panayiotis O. Vacratsis and Dr. Bulent Mutus from the University of Windsor. A.F. synthesized the gold nanoparticles, performed nitric oxide analysis, SDS-PAGE and sample preparation. C.A.B. performed all MS experiments including sample preparation for mass spectrometry (MS) and differential labeling [Scheme 2] sample preparation and analysis. C.A.B., A.F., and B.M. wrote and prepared the manuscript. C.A.B. and A.F. performed revisions and edits. P.O.V. and X.Z. provided experimental insights. Chapter 4 - Collaboration of Christopher A. Bonham with Dr. Aaron J. Steevensz as co- first authors, and Quidi Geng, under the supervision of Dr. Panayiotis O. Vacratsis from the University of Windsor. C.A.B. and P.O.V. were principal investigators of the research and co-corresponding authors. C.A.B. designed all experimental hypotheses. C.A.B. and A.J.S. performed all experiments, A.J.S. prepared mercury-immobilized affinity chromatography resin. C.A.B., A.J.S. and Q.G. performed mass spectrometry analysis. C.A.B. wrote and prepared the manuscript, A.J.S. and Q.G. prepared the figures. P.O.V. provided experimental insights and edited the manuscript. Chapter 6 - Collaboration of Christopher A. Bonham with Norah E. Franklin as co-first authors, and Besa Xhabija, under the supervision of Dr. Panayiotis O. Vacratsis from the University of Windsor. C.A.B. designed, isolated, purified and characterized α-pSer58 MTMR2 antibody. C.A.B. and N.E.F. optimized and performed in vitro kinase assays respectively. C.A.B. optimized siRNA of ERK1/2 conditions, performed knock-down immunoblot (IB) experiments and endogenous serum starve immunoprecipitation (IP) and IBs. B.X. performed siRNA and serum starve immunfluorescence (IFA). N.E.F. iii performed MAPK inhibition IPs, IBs and IFAs. C.A.B. performed hydrogen-deuterium exchange mass spectrometry experiments, epitope availability IPs and IBs, and PH- GRAM domain deletion IFAs. P.O.V., C.A.B. and N.E.F. wrote the manuscript, C.A.B. and B.X. performed revision experiments, writing and editing. I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly acknowledged the contribution of other researchers to my thesis, and have obtained written permission from each of the co-author(s) to include the above material(s) in my thesis. I certify that, with the above qualification, this thesis, and the research to which it refers, is the product of my own work. II. Declaration of Previous Publication This thesis includes four original papers that have been previously published/submitted for publication in peer-reviewed journals, as follows: Thesis Chapter Publication title/full citation Publication status Chapter 2 Bonham, C.A. & Vacratsis, P.O., Redox Published regulation of the dual specificity phosphatase human YVH1 through disulfide bond formation, J. Biol. Chem. 284 (2009) 22853-22864. Chapter 3 ‡Faccenda, A., ‡Bonham, C.A., Vacratsis, P.O., Published Zhang, X., Mutus, B., Gold nanoparticle enrichment method for identifying S-nitrosylation and S-glutathionylation sites in proteins, J. Am. Chem. Soc. 132 (2010) 11392-11394. ‡Co-authorship iv Chapter 4 ‡†Bonham, C.A., ‡Steevensz, A.J., Geng, Q., Published †Vacratsis, P.O., Investigating Redox Regulation of Protein Tyrosine Phosphatases using Low pH Thiol Labeling and Enrichment Strategies Coupled to MALDI-TOF Mass Spectrometry, Methods (2013) August 23, [epub ahead of print] http://dx.doi.org/10.1016/j.ymeth.2013.08.014. ‡Co-authorship, †Co-corresponding authorship Chapter 6 ‡Franklin, N.E., ‡Bonham, C.A., Xhabija, B., Published Vacratsis, P.O., Differential phosphorylation of the phosphoinositide-3-phosphate MTMR2 regulates its association with early endosomal subtypes, J. Cell Sci. 126 (2013) 1333-1344. ‡Co-authorship I certify that I have obtained a written permission from the copyright owner(s) to include the above published material(s) in my thesis. I certify that the above material describes work completed during my registration as graduate student at the University of Windsor. I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis. I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution. v ABSTRACT Protein tyrosine phosphatases (PTPs) are a diverse family of signaling molecules capable of dynamic modes of post-translational regulation. Using a combination of chemical labeling and enrichment, targeted structural mass spectrometry (MS), and immunochemistry, we have discovered unique regulatory mechanisms among two members of the Class I PTP sub-group, VH1-like dual specificity phosphatases (DUSPs). Human YVH1 (hYVH1 or DUSP12) was found to be reversibly regulated by a variety of cellular oxidants, resulting in concomitant enzymatic inactivation and zinc ejection through the formation of disulfide bonds. This was one of the first accounts of PTP oxidation outside of the active site cleft, and of disulfide exchange reactions among PTPs to prevent irreversible oxidation of the active site. Furthermore, using gold nanoparticles and mercury-immobilized metal affinity chromatography, we developed novel methods for studying PTP thiol-oxidation, which can be readily applied to alternative redox- regulated biomolecules and systems biology applications. Similarly, we have optimized the development of a library of multifaceted, low pH thiol-labeling and enrichment reagents for application in quantitative analysis of biological thiols by MS. Additionally, we have uncovered a mechanism which may participate in regulating sub-cellular localization of the lipid phosphatase myotubularin related-protein 2 (MTMR2). Specifically, we have evidence that dephosphorylation of MTMR2 Ser58 increases accessibility of key residues within a putative lipid-binding domain, which may lead to its stabilized localization to substrate-rich endosomes. Here, MTMR2 depletes phosphatidylinositol 3-phosphate (PI(3)P) substrate molecules, causing mis-localization of resident PI(3)P-binding
Recommended publications
  • Myotubularin-Related Protein (MTMR) 9 Determines the Enzymatic Activity, Substrate Specificity, and Role in Autophagy of MTMR8
    Myotubularin-related protein (MTMR) 9 determines the enzymatic activity, substrate specificity, and role in autophagy of MTMR8 Jun Zoua,1, Chunfen Zhangb,1,2, Jasna Marjanovicc, Marina V. Kisselevab, Philip W. Majerusb,d,2, and Monita P. Wilsonb,2 aDepartment of Pathology and Immunology, bDivision of Hematology, Department of Internal Medicine, and dDepartment of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110; and cDivision of Basic and Pharmaceutical Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110 Contributed by Philip W. Majerus, May 1, 2012 (sent for review February 24, 2012) The myotubularins are a large family of inositol polyphosphate myotubularin proteins (16–21). One mechanism that regulates 3-phosphatases that, despite having common substrates, subsume the myotubularins is the formation of heterodimers between unique functions in cells that are disparate. The myotubularin catalytically active and inactive proteins. The interaction between family consists of 16 different proteins, 9 members of which different myotubularin proteins has a significant effect on en- possess catalytic activity, dephosphorylating phosphatidylinositol zymatic activity. For example, the association of myotubularin 3-phosphate [PtdIns(3)P] and phosphatidylinositol 3,5-bisphos- (MTM1) with MTMR12 results in a threefold increase in the 3- phate [PtdIns(3,5)P2] at the D-3 position. Seven members are in- phosphatase activity of MTM1, alters the subcellular localiza- active because they lack the conserved cysteine residue in the tion of MTM1 from the plasma membrane to the cytosol, and CX5R motif required for activity. We studied a subfamily of homol- attenuates the filopodia formation seen with MTM1 overex- ogous myotubularins, including myotubularin-related protein 6 pression (21, 22).
    [Show full text]
  • Myotubularin-Related Phosphatase 5 Is a Critical Determinant of Autophagy in Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.20.453106; this version posted July 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Myotubularin-related phosphatase 5 is a critical determinant of autophagy in neurons Jason P. Chua*1,8, Karan Bedi2,3,4, Michelle T. Paulsen2,4, Mats Ljungman2,4, Elizabeth M. H. Tank1, Erin S. Kim1, Jennifer M. Colón-Mercado7, Michael E. Ward7, Lois S. Weisman5,6, and Sami J. Barmada*1,8 1Department of Neurology, University of Michigan, Ann Arbor, MI, USA 2Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA 3Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA 4Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA 5Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA 6Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 7National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA 8Lead contact *Correspondence: [email protected] (J.P.C.), [email protected] (S.J.B.) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.20.453106; this version posted July 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Autophagy is a conserved, multi-step process of capturing proteolytic cargo in autophagosomes for lysosome degradation. The capacity to remove toxic proteins that accumulate in neurodegenerative disorders attests to the disease-modifying potential of the autophagy pathway.
    [Show full text]
  • Genes Retina/RPE Choroid Sclera
    Supplementary Materials: Genes Retina/RPE Choroid Sclera Fold Change p-value Fold Change p-value Fold Change p-value PPFIA2 NS NS 2.35 1.3X10-3 1.5 1.6X10-3 PTPRF 1.24 2.65X10-5 6.42 7X10-4 1.11 1X10-4 1.19 2.65X10-5 NS NS 1.11 3.3X10-3 PTPRR 1.44 2.65X10-5 3.04 4.7X10-3 NS NS Supplementary Table S1. Genes Differentially Expressed Related to Candidate Genes from Association. Genes selected for follow up validation by real time quantitative PCR. Multiple values for each gene indicate multiple probes within the same gene. NS indicates the fold change was not statistically significant. Gene/SNP Assay ID rs4764971 C__30866249_10 rs7134216 C__30023434_10 rs17306116 C__33218892_10 rs3803036 C__25749934_20 rs824311 C___8342112_10 PPFIA2 Hs00170308_m1 PTPRF Hs00160858_m1 PTPRR Hs00373136_m1 18S Hs03003631_g1 GAPDH Hs02758991_g1 Supplementary Table S2. Taqman® Genotyping and Gene Expression Assay Identification Numbers. SNP Chimp Orangutan Rhesus Marmoset Mouse Rat Cow Pig Guinea Pig Dog Elephant Opossum Chicken rs3803036 X X X X X X X X X X X X X rs1520562 X X X X X X rs1358228 X X X X X X X X X X X rs17306116 X X X X X X rs790436 X X X X X X X rs1558726 X X X X X X X X rs741525 X X X X X X X X rs7134216 X X X X X X rs4764971 X X X X X X X Supplementary Table S3. Conservation of Top SNPs from Association. X indicates SNP is conserved.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Molecular and Genetic Medicine
    Bertazzi et al., J Mol Genet Med 2015, 8:2 Molecular and Genetic Medicine http://dx.doi.org/10.4172/1747-0862.1000116 Review Article Open Access Myotubularin MTM1 Involved in Centronuclear Myopathy and its Roles in Human and Yeast Cells Dimitri L. Bertazzi#, Johan-Owen De Craene# and Sylvie Friant* Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, France #Authors contributed equally to this work. *Corresponding author: Friant S, Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, 67084 Strasbourg, France, E-mail: [email protected] Received date: April 17, 2014; Accepted date: July 21, 2014; Published date: July 28, 2014 Copyright: © 2014 Bertazzi DL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Mutations in the MTM1 gene, encoding the phosphoinositide phosphatase myotubularin, are responsible for the X-linked centronuclear myopathy (XLCNM) or X-linked myotubular myopathy (XLMTM). The MTM1 gene was first identified in 1996 and its function as a PtdIns3P and PtdIns(,5)P2 phosphatase was discovered in 2000. In recent years, very important progress has been made to set up good models to study MTM1 and the XLCNM disease such as knockout or knockin mice, the Labrador Retriever dog, the zebrafish and the yeast Saccharomyces cerevisiae. These helped to better understand the cellular function of MTM1 and of its four conserved domains: PH-GRAM (Pleckstrin Homology-Glucosyltransferase, Rab-like GTPase Activator and Myotubularin), RID (Rac1-Induced recruitment Domain), PTP/DSP (Protein Tyrosine Phosphatase/Dual-Specificity Phosphatase) and SID (SET-protein Interaction Domain).
    [Show full text]
  • A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
    CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort.
    [Show full text]
  • Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke
    Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke University Date: May 1 st 2009 Approved: ___________________________ Dr. Patrick J. Casey, Supervisor ___________________________ Dr. Perry J. Blackshear ___________________________ Dr. Anthony R. Means ___________________________ Dr. Christopher B. Newgard ___________________________ Dr. John D. York Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 ABSTRACT Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke University Date: May 1 st 2009 Approved: ___________________________ Dr. Patrick J. Casey, Supervisor ___________________________ Dr. Perry J. Blackshear ___________________________ Dr. Anthony R. Means ___________________________ Dr. Christopher B. Newgard ___________________________ Dr. John D. York An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 Copyright by Dahlia Doughty Shenton 2009 Abstract The dual specificity protein tyrosine phosphatases comprise the largest and most diverse group of protein tyrosine phosphatases and play integral roles in the regulation of cell signaling events. The dual specificity protein tyrosine phosphatases impact multiple
    [Show full text]
  • Deciphering the Functional and Molecular Differences Between MTM1 and MTMR2 to Better Understand Two Neuromuscular Diseases Matthieu Raess
    Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases Matthieu Raess To cite this version: Matthieu Raess. Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases. Genomics [q-bio.GN]. Université de Strasbourg, 2017. English. NNT : 2017STRAJ088. tel-03081300 HAL Id: tel-03081300 https://tel.archives-ouvertes.fr/tel-03081300 Submitted on 18 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE (ED 414) Génétique Moléculaire, Génomique, Microbiologie (GMGM) – UMR 7156 & Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 – INSERM U 964 THÈSE présentée par : Matthieu RAESS soutenue le : 13 octobre 2017 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Aspects moléculaires et cellulaires de la biologie Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases. THÈSE dirigée par : Mme FRIANT Sylvie Directrice de recherche, Université de Strasbourg & Mme COWLING Belinda Chargée de recherche, Université de Strasbourg RAPPORTEURS : Mme BOLINO Alessandra Directrice de recherche, Institut San Raffaele de Milan M.
    [Show full text]
  • MTMR9 (N-15): Sc-48244
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . MTMR9 (N-15): sc-48244 BACKGROUND SOURCE Myotubularin and the myotubularin-related proteins belong to a highly con - MTMR9 (N-15) is an affinity purified goat polyclonal antibody raised against a served family of eukaryotic phosphatases that utilize inositol phospholipids, peptide mapping near the N-terminus of MTMR9 of human origin. rather than phosphoproteins, as substrates. MTMR9 (myotubularin-related protein 9), also known as C8orf9, is a 549 amino acid protein that belongs to PRODUCT the protein-tyrosine phosphatase family and non-receptor class myotubularin Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide subfamily. Localizing to the cytoplasm, MTMR9 is expressed in many tis - and 0.1% gelatin. sues, including brain. MTMR9 interacts with MTMR6, MTMR7 and MTMR8. As opposed to other members of the myotubularin-related protein family, Blocking peptide available for competition studies, sc-48244 P, (100 µg MTMR9 does not contain a dual-specificity phosphatase domain, and is a peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). probable pseudophosphatase. Containing a double-helical motif similar to the SET interaction domain, MTMR9 may function in the control of cell APPLICATIONS pro liferation. MTMR9 (N-15) is recommended for detection of MTMR9 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range REFERENCES 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1. Laporte, J., et al. 1998. Mutations in the MTM1 gene implicated in X- linked 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range myotubular myopathy.
    [Show full text]
  • Heteromeric Interactions, Subcellular Localisation and Endosome- Related Functions
    Research Article 2953 Systematic analysis of myotubularins: heteromeric interactions, subcellular localisation and endosome- related functions Óscar Lorenzo, Sylvie Urbé and Michael J. Clague* Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK *Author for correspondence (e-mail: [email protected]) Accepted 3 May 2005 Journal of Cell Science 119, 2953-2959 Published by The Company of Biologists 2006 doi:10.1242/jcs.03040 Summary The myotubularins are a large family of lipid phosphatases MTMs. We also report the capacity of several family with specificity towards PtdIns3P and PtdIns(3,5)P2. Each members to self-associate, including MTMR3 and of the 14 family members bears a signature phosphatase MTMR4. Subcellular localisation studies reveal a unique domain, which is inactive in six cases due to amino acid distribution of MTMR4 to endosomal structures, the major changes at the catalytic site. Fragmentary data have site of substrate lipid accumulation. All active MTMs we indicated heteromeric interactions between myotubularins, have tested (MTM1, MTMR2-MTMR4) reduce endosomal which have hitherto paired an active family member with PtdIns3P levels upon overexpression. Despite this, only an inactive one. In this study we have conducted a large- MTMR4 exerts any effect on EGF receptor trafficking and scale analysis of potential associations within the human degradation, which is more pronounced with a phosphatase myotubularin family, through directed two-hybrid inactive form of MTMR4 and requires an intact
    [Show full text]
  • For Peer Review 19 Rafael Pulido1,2, Andrew W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Human Molecular Genetics provided by UCL Discovery PTPs emerge as PIPs: protein tyrosine phosphatases with lipid-phosphatase activities in human disease Journal: Human Molecular Genetics Manuscript ID: Draft Manuscript ForType: 4 Invited Peer Review Article Review Date Submitted by the Author: n/a Complete List of Authors: Pulido, Rafael; Biocruces Health Research Institute, Molecular Signaling and Cancer Stoker, Andrew; Institute of Child Health, University College London, Neural Development Unit Hendriks, Wiljan; Radboud University Nijmegen Medical Centre, Department of Cell Biology Key Words: phosphatase, phosphorylation, hereditary disease, cancer Page 1 of 28 Human Molecular Genetics 1 2 3 4 5 6 7 8 9 10 PTPs emerge as PIPs: protein tyrosine phosphatases with lipid‐ 11 12 phosphatase activities in human disease 13 14 15 16 17 18 For Peer Review 19 Rafael Pulido1,2, Andrew W. Stoker3, Wiljan J.A.J. Hendriks4 20 21 22 23 1BioCruces Health Research Institute, 48903 Barakaldo, Spain 24 25 2 26 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain 27 28 3Neural Development Unit, Institute of Child Health, University College London, WC1N 1EH 29 30 London, UK 31 32 4Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud 33 University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands 34 35 36 37 38 Correspondence to: 39 40 Rafael Pulido; Biocruces Health Research Institute; Plaza Cruces s/n, 48903 Barakaldo, Spain. 41 Email: [email protected] 42 43 Wiljan J.A.J. Hendriks; Nijmegen Centre for Molecular Life Sciences, Radboud University 44 Nijmegen Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
    [Show full text]
  • Phosphatases Page 1
    Phosphatases esiRNA ID Gene Name Gene Description Ensembl ID HU-05948-1 ACP1 acid phosphatase 1, soluble ENSG00000143727 HU-01870-1 ACP2 acid phosphatase 2, lysosomal ENSG00000134575 HU-05292-1 ACP5 acid phosphatase 5, tartrate resistant ENSG00000102575 HU-02655-1 ACP6 acid phosphatase 6, lysophosphatidic ENSG00000162836 HU-13465-1 ACPL2 acid phosphatase-like 2 ENSG00000155893 HU-06716-1 ACPP acid phosphatase, prostate ENSG00000014257 HU-15218-1 ACPT acid phosphatase, testicular ENSG00000142513 HU-09496-1 ACYP1 acylphosphatase 1, erythrocyte (common) type ENSG00000119640 HU-04746-1 ALPL alkaline phosphatase, liver ENSG00000162551 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPPL2 alkaline phosphatase, placental-like 2 ENSG00000163286 HU-07767-1 BPGM 2,3-bisphosphoglycerate mutase ENSG00000172331 HU-06476-1 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 ENSG00000162813 HU-09086-1 CANT1 calcium activated nucleotidase 1 ENSG00000171302 HU-03115-1 CCDC155 coiled-coil domain containing 155 ENSG00000161609 HU-09022-1 CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae) ENSG00000079335 HU-11533-1 CDC14B CDC14 cell division cycle 14 homolog B (S. cerevisiae) ENSG00000081377 HU-06323-1 CDC25A cell division cycle 25 homolog A (S. pombe) ENSG00000164045 HU-07288-1 CDC25B cell division cycle 25 homolog B (S. pombe) ENSG00000101224 HU-06033-1 CDKN3 cyclin-dependent kinase inhibitor 3 ENSG00000100526 HU-02274-1 CTDSP1 CTD (carboxy-terminal domain,
    [Show full text]