Direct Proof and Counterexample I:Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Section 2.1: Proof Techniques
Section 2.1: Proof Techniques January 25, 2021 Abstract Sometimes we see patterns in nature and wonder if they hold in general: in such situations we are demonstrating the appli- cation of inductive reasoning to propose a conjecture, which may become a theorem which we attempt to prove via deduc- tive reasoning. From our work in Chapter 1, we conceive of a theorem as an argument of the form P → Q, whose validity we seek to demonstrate. Example: A student was doing a proof and suddenly specu- lated “Couldn’t we just say (A → (B → C)) ∧ B → (A → C)?” Can she? It’s a theorem – either we prove it, or we provide a counterexample. This section outlines a variety of proof techniques, including direct proofs, proofs by contraposition, proofs by contradiction, proofs by exhaustion, and proofs by dumb luck or genius! You have already seen each of these in Chapter 1 (with the exception of “dumb luck or genius”, perhaps). 1 Theorems and Informal Proofs The theorem-forming process is one in which we • make observations about nature, about a system under study, etc.; • discover patterns which appear to hold in general; • state the rule; and then • attempt to prove it (or disprove it). This process is formalized in the following definitions: • inductive reasoning - drawing a conclusion based on experi- ence, which one might state as a conjecture or theorem; but al- mostalwaysas If(hypotheses)then(conclusion). • deductive reasoning - application of a logic system to investi- gate a proposed conclusion based on hypotheses (hence proving, disproving, or, failing either, holding in limbo the conclusion). -
Formal Logic Lecture 2
Faculty of Philosophy Formal Logic Lecture 2 Peter Smith Peter Smith: Formal Logic, Lecture 2 1 Outline Validity again Systematicity and formality Modality and the invalidity principle The counterexample method Peter Smith: Formal Logic, Lecture 2 2 Valid deductions as absolutely watertight inferences I Consider this inference Every good philosopher knows some logic. No post-modernist knows any logic. Jacques is a post-modernist. So: Jacques isn't a good philosopher. Who knows whether the premisses are true or false? But if the premisses are true, the conclusion has to be true too. I The inferential move in this argument from premisses to conclusion is absolutely watertight. There is not even a remote chance, there's no possibility at all, that the premisses are true and the conclusion false. I Such an inference, we said, is deductively valid. I It is conventional to call a (one-step) argument valid if its inferential move is valid. An argument which is valid and has true premisses is called sound. Validity again Logicians' deductions vs Sherlock's deductions I The detective gathers evidence, and `deduces' who did the dastardly deed. I But this (normally) is not a valid deduction in the logician's sense. The detective's account of the murder may fit the facts and strike us as obviously the best explanation. But the best (= most plausible, most likely) explanation doesn't have to be the only one that is logically consistent with the facts. I So the `deduction' from the evidential facts to the detective's proposed explanation isn't absolutely guaranteed to be truth-preserving, i.e. -
Logic and Proof Release 3.18.4
Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................ -
Beyond Direct Proof in the Approach to the Culture of Theorems: a Case Study on 10-Th Grade Students’ Difficulties and Potential Fiorenza Turiano, Paolo Boero
Beyond direct proof in the approach to the culture of theorems: a case study on 10-th grade students’ difficulties and potential Fiorenza Turiano, Paolo Boero To cite this version: Fiorenza Turiano, Paolo Boero. Beyond direct proof in the approach to the culture of theorems: a case study on 10-th grade students’ difficulties and potential. Eleventh Congress of the European Society for Research in Mathematics Education, Utrecht University, Feb 2019, Utrecht, Netherlands. hal-02398527 HAL Id: hal-02398527 https://hal.archives-ouvertes.fr/hal-02398527 Submitted on 7 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Beyond direct proof in the approach to the culture of theorems: a case study on 10-th grade students’ difficulties and potential Fiorenza Turiano1 and Paolo Boero2 1I. I. S. Arimondi – Eula, Savigliano, Italy; [email protected] 2University of Genoa, Italy; [email protected] In this paper, we aim to contribute to the discussion on the students’ cognitive processes inherent in proof by contradiction in geometry, particularly as concerns the role played by images. We will present an episode from a one-year experimental pathway in Euclidean geometry designed to develop the culture of theorems in 10th grade: in crucial moments of proof by contradiction, we observed some students’ gestures and reasoning aimed to restore the harmony between visual and conceptual aspects, which had been broken by conflicts due to specific features of that proof in geometry. -
Proofs and Mathematical Reasoning
Proofs and Mathematical Reasoning University of Birmingham Author: Supervisors: Agata Stefanowicz Joe Kyle Michael Grove September 2014 c University of Birmingham 2014 Contents 1 Introduction 6 2 Mathematical language and symbols 6 2.1 Mathematics is a language . .6 2.2 Greek alphabet . .6 2.3 Symbols . .6 2.4 Words in mathematics . .7 3 What is a proof? 9 3.1 Writer versus reader . .9 3.2 Methods of proofs . .9 3.3 Implications and if and only if statements . 10 4 Direct proof 11 4.1 Description of method . 11 4.2 Hard parts? . 11 4.3 Examples . 11 4.4 Fallacious \proofs" . 15 4.5 Counterexamples . 16 5 Proof by cases 17 5.1 Method . 17 5.2 Hard parts? . 17 5.3 Examples of proof by cases . 17 6 Mathematical Induction 19 6.1 Method . 19 6.2 Versions of induction. 19 6.3 Hard parts? . 20 6.4 Examples of mathematical induction . 20 7 Contradiction 26 7.1 Method . 26 7.2 Hard parts? . 26 7.3 Examples of proof by contradiction . 26 8 Contrapositive 29 8.1 Method . 29 8.2 Hard parts? . 29 8.3 Examples . 29 9 Tips 31 9.1 What common mistakes do students make when trying to present the proofs? . 31 9.2 What are the reasons for mistakes? . 32 9.3 Advice to students for writing good proofs . 32 9.4 Friendly reminder . 32 c University of Birmingham 2014 10 Sets 34 10.1 Basics . 34 10.2 Subsets and power sets . 34 10.3 Cardinality and equality . -
Groups of Piecewise Projective Homeomorphisms
Groups of piecewise projective homeomorphisms Nicolas Monod1 Section de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland Edited by Gregory A. Margulis, Yale University, New Haven, CT, and approved February 5, 2013 (received for review October 22, 2012) The group of piecewise projective homeomorphisms of the line The main result of this article is the following, for which we provides straightforward torsion-free counterexamples to the so- introduce a method for proving amenability. called von Neumann conjecture. The examples are so simple that many additional properties can be established. Theorem 1. The group H(A) is nonamenable if A ≠ Z. The next result is a sequacious generalization of the corre- free groups | paradoxical decomposition | von Neumann problem sponding theorem of Brin–Squier (16) about piecewise affine transformations, and we claim no originality. n 1924, Banach and Tarski (1) accomplished a rather para- Idoxical feat. They proved that a solid ball can be decomposed Theorem 2. The group H does not contain any nonabelian free sub- fi group. Thus, H(A) inherits this property for any subring A < R. into ve pieces, which are then moved around and reassembled = R in such a way as to obtain two balls identical to the original one Thus, already H H( ) itself is a counterexample to the von Neumann conjecture. Writing H(A) as the directed union of its (1). This wellnigh miraculous duplication was based on Haus- fi dorff’s (2) 1914 work. nitely generated subgroups, we deduce Corollary 3. In his 1929 study of the Hausdorff–Banach–Tarski paradox, Corollary 3. -
The Mertens Conjecture
The Mertens conjecture Herman J.J. te Riele∗ Title of c Higher Education Press This book April 8, 2015 and International Press ALM ??, pp. ?–? Beijing-Boston Abstract The Mertens conjecture states that |M(x)|x−1/2 < 1 for x > 1, where M(x) = P1≤n≤x µ(n) and where µ(n) is the M¨obius function defined by: µ(1) = 1, µ(n) = (−1)k if n is the product of k distinct primes, and µ(n)=0 if n is divisible by a square > 1. The truth of the Mertens conjecture implies the truth of the Riemann hypothesis and the simplicity of the complex zeros of the Riemann zeta function. This paper gives a concise survey of the history and state-of-affairs concerning the Mertens conjecture. Serious doubts concerning this conjecture were raised by Ingham in 1942 [12]. In 1985, the Mertens conjecture was disproved by Odlyzko and Te Riele [23] by making use of the lattice basis reduction algorithm of Lenstra, Lenstra and Lov´asz [19]. The best known results today are that |M(x)|x−1/2 ≥ 1.6383 and there exists an x< exp(1.004 × 1033) for which |M(x)|x−1/2 > 1.0088. 2000 Mathematics Subject Classification: Primary 11-04, 11A15, 11M26, 11Y11, 11Y35 Keywords and Phrases: Mertens conjecture, Riemann hypothesis, zeros of the Riemann zeta function 1 Introduction Let µ(n) be the M¨obius function with values µ(1) = 1, µ(n) = ( 1)k if n is the product of k distinct primes, and µ(n) = 0 if n is divisible by a square− > 1. -
Recursive Formulas Related to the Summation of the Mobius¨ Function
The Open Mathematics Journal, 2008, 1, 25{34 25 RECURSIVE FORMULAS RELATED TO THE SUMMATION OF THE MOBIUS¨ FUNCTION MANUEL BENITO AND JUAN L. VARONA Abstract. For positive integers n, let µ(n) be the M¨obiusfunction, and M(n) its sum Pn M(n) = k=1 µ(k). We find some identities and recursive formulas for computing M(n); in particular, we present a two-parametric family of recursive formulas. 1. Introduction The well-known M¨obiusfunction µ(n) is defined, for positive integers n, as 8 < 1 if n = 1; µ(n) := (−1)k if n is a product of k different prime numbers, : 0 if there exists a prime p such that p2 divides n (see [1, Chapter 2]). Then, for every real number x ≥ 0, the summation of the M¨obius function is defined by taking bxc X M(x) = M(bxc) := µ(k): k=1 In what follows, and as usually, we refer to M(x) as the Mertens function, although, before F. Mertens (who used it in 1897, see [2]), T. J. Stieltjes already had introduced this function in his attempts to prove the Riemann Hypothesis (see [3, Lettre 79, p. 160{164], dated in 1885). The behaviour of M(x) is rather erratic and difficult of analyze, but it is very important in analytic number theory. In 1912, J. E. Littlewood [4] proved that the Riemann Hypothesis is equivalent to this fact: (1) jM(x)j = O(x1=2+"); when x ! 1; for every " > 0; in relation to this subject, see also [5]. -
[Math.NT] 6 May 2001 Number Neeti H Imn Yohss Eaddb Aya H M the As Many by Regarded Hypothesis, Riemann the in Interest ABSTRACT
An Elementary Problem Equivalent to the Riemann Hypothesis Jeffrey C. Lagarias (May 5, 2001 version) n 1 ABSTRACT. The problem is: Let Hn = j be the n-th harmonic number. Show, for each jP=1 n ≥ 1, that d ≤ Hn + exp(Hn) log(Hn), Xd|n with equality only for n = 1. AMS Subject Classification (2000): Primary 11M26, Secondary 11A25 Keywords: Riemann hypothesis, colossally abundant numbers 1. Introduction We consider the following problem. n 1 Problem E. Let Hn = j . Show that, for each n ≥ 1, jP=1 d ≤ Hn + exp(Hn) log(Hn), (1.1) Xd|n with equality only for n = 1. The function σ(n) = d|n d is the sum of divisors function, so for example σ(6) = 12. The number Hn is called the n-thP harmonic number by Knuth, Graham and Patashnik [9, Sect. 6.3], who detail various properties of harmonic numbers. The ‘E’ in Problem E might stand for either ‘easy’ or ‘elementary’. Perhaps ‘H’ for ‘hard’ arXiv:math/0008177v2 [math.NT] 6 May 2001 would be a better letter to use, since our object is to show the following equivalence. Theorem 1.1 Problem E is equivalent to the Riemann hypothesis. The Riemann hypothesis, stated by Riemann [17] in 1859, concerns the complex zeros of the Riemann zeta function. The Riemann zeta function ζ(s) is defined by the Dirichlet series ∞ ζ(s)= n−s, nX=1 which converges for ℜ(s) > 1, and it has an analytic continuation to the complex plane with one singularity, a simple pole with residue 1 at s = 1. -
Must Hypothetical Counterexamples Be Possible?
MUST HYPOTHETICAL COUNTEREXAMPLES BE POSSIBLE? Hypothetical counterexamples are a mainstay in philosophical debate, perhaps the most common tactic in attempting to establish some philosophical position, across a wide range of subdisciplines. When tailoring these counterexamples, philosophers choose possible but usually non-actual situations. No one has seriously considered whether these counterexamples must actually be metaphysically possible situations, however. This paper argues that there is no theoretical reason to insist that counterexamples be possible, and speculates about some implications of this conclusion for various debates within philosophy, briefly that this discovery will be a boon to particularists in normative areas of philosophy. I. THE NATURE OF HYPOTHETICAL COUNTEREXAMPLES It is easy for seasoned philosophers to recall a long list of hypothetical counterexamples in the philosophical literature. In ethics, there are murderers at the door and Southern sheriffs.1 In epistemology, there are Gettier cases and reliable clairvoyants.2 In metaphysics, there are malfunctioning tele-transporters, people who fail to realize that a door is locked, and lumps and statues.3 Philosophers probably use hypothetical (rather than actual) counterexamples because there is no need to seek out and identify real-world objects, especially when such objects might be physically impossible with current technology, such as a tele-transporter. The other salient feature of 1 The ―murderer‖ objection may be due originally to Benjamin Constant. See I. Kant (tr. J. Ellington), Grounding for the Metaphysics of Morals, New York, NY: Hackett, [1785] 1993: 63-7. See also H. J. McCloskey, ―An Examination of Restricted Utilitarianism,‖ Philosophical Review 66 (1957), 466-485. 2 E. -
1 Difference-Making in Epistemology* Juan Comesaña Carolina Sartorio
Difference-Making in Epistemology* Juan Comesaña Carolina Sartorio University of Arizona 1. Introduction Difference-making is thought to play an important role in epistemology. It is quite common to suggest, for example, that for a belief to amount to knowledge the world has to make the relevant kind of difference to what is believed. It is also quite common to suggest that for a belief to be justified on the basis of some evidence the evidence must make the relevant kind of difference to what is believed. In this paper we put forth a novel difference-making constraint on evidence and justification–and therefore, given that knowledge entails justification, a constraint on knowledge as well. We motivate such a constraint by means of a parallel with the suggestion that causation is a difference-making relation. In particular, we argue that a recent account of how causes make a difference to their effects can be adapted to explain how evidence makes a difference to justified beliefs. We also show that the proposed difference-making constraint can shed new light on the problem of “easy knowledge.” 2. Difference-Making as Counterfactual Dependence When does a fact make a difference to another fact? This will happen, of course, when there is a difference-making relation between the facts. But what does it mean to say that a relation that holds between two facts is difference-making? One tempting answer employs the notion of counterfactual dependence: * For helpful comments and suggestions on earlier drafts of this paper we are grateful to a referee for Noûs, audiences at the University of Buenos Aires and the National Autonomous University of Mexico, Stewart Cohen, and, especially, Michael Titelbaum. -
Direct Proof
Direct Proof A direct proof uses the facts of mathematics, the rules of inference, and any special assumptions (premises or hypotheses) to draw a conclusion. In contrast, an indirect proof (or proof by contradiction) starts by assuming in addition the negation of the desired conclusion. When you reach a contradiction, you know that the negation of the conclusion must be false, so the conclusion must be true. We’ll consider direct proofs in this section and some that follow; proof by contradiction will be discussed later. Example. Prove that the product of two consecutive integers plus the larger of the two integers is a perfect square. For example, 5 and 6 are consecutive integers. Their product, plus the larger of the two, is 5 6+6 = 36, which is 62. · An example is not a proof. All my example has shown is that the statement is true for 5 and 6. It gives me no particular reason for believing that the statement will be true for 293841 and 293842. How can I represent two consecutive integers in symbolic form? Suppose n is the smaller of the two integers. Then the next integer after n is n + 1. Now I have names for my integers: n and n + 1. Next, I’ll translate the given statement into symbols. the product of two consecutive integers is a perfect square plus the larger of the two integers n (n +1)+(n +1) = aperfectsquare · the product of two consecutive integers plus the larger of the two integers is a perfect square n (n +1) + (n +1) = aperfectsquare · I could make a symbol for the right side — “m2”, for instance.