Eelgrass Habitats on the Us West Coast

Total Page:16

File Type:pdf, Size:1020Kb

Eelgrass Habitats on the Us West Coast EELGRASS HABITATS ON THE U.S. WEST COAST: STATE OF THE KNOWLEDGE OF EELGRASS ECOSYSTEM SERVICES AND EELGRASS EXTENT Kate Sherman1 and Lisa A. DeBruyckere2 1 Pacifc States Marine Fisheries Commission. 205 Spokane St. SE, Portland, Oregon 97202. 2 Creative Resource Strategies, LLC. 6159 Rosemeadow Lane NE, Salem, Oregon 97317. Reference: Sherman, K., and L.A. DeBruyckere. 2018. Eelgrass habitats on the U.S. West Coast. State of the Knowledge of Eelgrass Ecosystem Services and Eelgrass Extent. A publication prepared by the Pacifc Marine and Estuarine Fish Habitat Partnership for The Nature Conservancy. 67pp. photo © Brent Hughes ACKNOWLEDGEMENTS We would like to thank the many experts and Dave Fox (Oregon Department of Fish and Wildlife), stakeholders who provided data and information, Sarah Beesley (Yurok Tribal Fisheries Program), Jennifer EELGRASS HABITATS ON THE U.S. WEST COAST: participated in webinars and surveys, or reviewed a Gilden (Pacifc Fishery Management Council), Adriana draft of this report. Their contributions ensure that this Morales (U.S. Forest Service), John Netto (U.S. Fish and STATE OF THE KNOWLEDGE OF EELGRASS ECOSYSTEM summary of the present state of scientifc knowledge Wildlife Service), and Lisa Phipps (Tillamook Estuaries of ecosystem services and extent of eelgrass habitats Partnership). SERVICES AND EELGRASS EXTENT in Washington, Oregon, and California will be an The Nature Conservancy staf essential tool for use in estuarine restoration and conservation projects to sustain healthy fsh and Gway Kirchner, Jena Carter, and Bryan DeAngelis invertebrate populations. NOAA Fisheries West Coast Region staf Reviewers included: Bryant Chesney and Eric Chavez. PMEP’s Science and Data Committee We additionally thank the following people for Bill Pinnix (U.S. Fish and Wildlife Service), Correigh providing datasets that are included in this inventory Greene (NOAA Fisheries), Dayv Lowry (Washington of eelgrass data: Lisa Ferrier (Washington Department Department of Fish and Wildlife), Eric Grossman (U.S. of Natural Resources), Suzanne Schull (Padilla Bay Geological Survey), Laura Brophy (Estuary Technical National Estuarine Research Reserve), Pat Clinton Group – Institute for Applied Ecology), Scott Heppell (Environmental Protection Agency), Tony D’Andrea (Oregon State University), Steve Rumrill (Oregon (Oregon Department of Fish and Wildlife), Andrew Department of Fish and Wildlife), Van Hare (Pacifc Weltz and Paulo Serpa (California Department of Fish States Marine Fisheries Commission), Walter Heady and Wildlife), Jenni Schmitt (South Slough National (The Nature Conservancy), Beth Sanderson (NOAA Estuarine Research Reserve), Ann Kitajima (Morro Bay Fisheries), Kevin O’Connor (Central Coast Wetlands National Estuary Program), and Charlie Endris (Elkhorn Group), and Brett Holycross (Pacifc States Marine Slough National Estuarine Research Reserve), Bryant Fisheries Commission). Chesney (NOAA Fisheries), and Eric Grossman (U.S. Geological Survey). Andy Lanier and Tanya Haddad PMEP’s Steering Committee (Oregon Department of Land Conservation and Doris Small (Washington Department of Fish and Development), and Allison Bailey (Sound GIS), provided Wildlife), Andy Lanier (Oregon Department of Land additional review of the data processing methods. Conservation and Development), John Stadler (NOAA We would also like to thank Bryan Pestone (NOAA Fisheries), Fran Recht (Pacifc States Marine Fisheries Fisheries) for assisting with data processing and to Commission), Korie Schaefer (NOAA Fisheries), John Adrienne Harris and Katie O’Grady (Adrienne Harris Bragg (South Slough National Estuarine Research Consulting) for additional contributions to the content Reserve), Bradley Bales (Pacifc Birds Joint Venture), of this report. Stan Allen (Pacifc States Marine Fisheries Commission), EELGRASS HABITATS ON THE U.S. WEST COAST: EELGRASS ECOSYSTEM SERVICES AND EELGRASS EXTENT ii EELGRASS HABITATS ON THE U.S. WEST COAST: STATE OF THE KNOWLEDGE OF EELGRASS ECOSYSTEM SERVICES AND EELGRASS EXTENT Kate Sherman1 and Lisa A. DeBruyckere2 1 Pacifc States Marine Fisheries Commission. 205 Spokane St. SE, Portland, Oregon 97202. 2 Creative Resource Strategies, LLC. 6159 Rosemeadow Lane NE, Salem, Oregon 97317. photo © Dayv Lowry EXECUTIVE SUMMARY Eelgrass, a type of marine fowering plant, can serve consulted with U.S. West Coast eelgrass experts (see as a biological indicator of ecosystem health and is acknowledgements). To avoid duplicating prior eforts, threatened by numerous human activities. Eelgrass we relied on summary or synthesis documents when populations along the U.S. West Coast are genetically available, and then expanded on them, using more unique; therefore, conservation and restoration of focused references that were associated with the goals these habitats should be guided by information gained of this report. from these populations. This report was commissioned A companion geodatabase of eelgrass data was also by The Nature Conservancy to provide a synthesis of the compiled illustrating presence/absence and, where state of scientifc knowledge of U.S. West Coast estuary able, current and historic extent of eelgrass in 444 eelgrass habitats and the ecosystem services they estuaries along the U.S. West Coast. This information provide. The Pacifc Marine and Estuarine Fish Habitat was organized into four ecoregions: (1) Salish Sea, (2) Partnership (PMEP) synthesized the literature relevant Washington, Oregon, Northern California Coast, (3) for the U.S. West Coast and standardized existing Central California, and (4) Southern California Bight. geospatial data on the current and historic extent of These regions and designations align with boundaries eelgrass for Zostera spp. We investigated the role of used by PMEP and the Pacifc Fisheries Management 444 U.S. West Coast estuaries in providing eelgrass Council as well as The Nature Conservancy’s Marine habitat and compiled our fndings in a geodatabase. Ecoregions of the World. Data collection relied on a This report synthesizes information on: 1) Presence data call; no new feld studies were conducted for and extent of eelgrass along the U.S. West Coast, 2) this project. To view the data online visit http://www. Ecosystem services provided by eelgrass habitats, 3) pacifcfshhabitat.org/data/. Important and emerging threats to eelgrass habitats in Overall, we found that eelgrass occurs in 162 (36 U.S. West Coast estuaries, 4) Knowledge and data gaps, percent) of 444 U.S. West Coast estuaries. A total and 5) Management strategies to conserve and restore of 24 percent of the 444 estuaries either did not eelgrass habitats and their ecosystem functions along have eelgrass or were not suitable for eelgrass. The the U.S. West Coast. remaining 40 percent of the estuaries had no eelgrass To compile information on extent of eelgrass (Zostera data. We documented current or historic presence of spp.) and services provided by eelgrass, we reviewed eelgrass in the following ecoregions: nearly 550 peer-reviewed articles and reports and Salish Sea ecoregion—98 of 166 estuaries. EELGRASS HABITATS ON THE U.S. WEST COAST: EELGRASS ECOSYSTEM SERVICES AND EELGRASS EXTENT v Washington/Oregon/Northern California Coastal extent of eelgrass (using a consistent methodology) ecoregion—24 of 110 estuaries. makes it difcult to quantitatively measure eelgrass habitat loss. As a result, identifying and monitoring Central California coast ecoregion—18 of 107 specifc threats to eelgrass habitat is challenging on a estuaries as well as areas of the nearshore from coastwide scale. Monterey Bay southward. Numerous reports document existing and emerging Southern California Bight—22 of 61 estuaries threats to eelgrass. We identifed 19 threats specifc and throughout the mainland nearshore and the to the U.S. West Coast. Four were identifed in all Channel Islands. four ecoregions: increased sedimentation, coastal development, sea level rise, and sea temperature Summary information on presence by ecoregion is changes. Previous reviews of ecosystem service provided in the table below. values of eelgrass beds have focused on a particular Although this report builds on past efforts to estuary or a specifc service. This report details the summarize coastwide extent of eelgrass, we remain information provided in the literature based on limited in the ways we can accurately use this four ecosystem service categories — supporting, information for regional analysis. Data collection regulating, provisioning, and cultural and amenity dates, methods for data collection, and data post- services. For all ecosystem services reviewed, a key processing methods vary across estuaries and challenge remains that few studies capture the value datasets, making it challenging to compare data of these services quantitatively. across the U.S. West Coast. Although we can more Based on our fndings, we recommend the following easily determine presence/absence of eelgrass from management strategies to conserve and restore existing data, determining adequate eelgrass extent eelgrass habitats and their ecosystem functions: is limited by lack of data. Limited monitoring on the Washington, Oregon, Southern California Ecoregion Salish Sea Central California Northern California Bight Estuaries with eelgrass 59% 21% 17% 36% present (%) Estuaries with eelgrass 6% 17% 39% 49% absent/unsuitable habitat (%) Estuaries with no data (%) 35% 50% 44% 15% Nearshore eelgrass? Present NA Present Present Zostera marina, Zostera pacifca Zostera marina, Zostera marina,
Recommended publications
  • Review of Selected California Fisheries for 2013
    FISHERIES REVIEW CalCOFI Rep., Vol. 55, 2014 REVIEW OF SELECTED CALIFORNIA FISHERIES FOR 2013: COASTAL PELAGIC FINFISH, MARKET SQUID, GROUNDFISH, HIGHLY MIGRATORY SPECIES, DUNGENESS CRAB, BASSES, SURFPERCH, ABALONE, KELP AND EDIBLE ALGAE, AND MARINE AQUACULTURE CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE Marine Region 4665 Lampson Ave. Suite C Los Alamitos, CA 90720 [email protected] SUMMARY ings of northern anchovy were 6,005 t with an ex-vessel In 2013, commercial fisheries landed an estimated revenue of greater than $1.0 million. When compared 165,072 metric tons (t) of fish and invertebrates from to landings in 2012, this represents a 141% and 191% California ocean waters (fig. 1). This represents an increase in volume and value, respectively. Nearly all increase of almost 2% from the 162,290 t landed in 2012, (93.6%; 5,621.5 t) of California’s 2013 northern anchovy but still an 11% decrease from the 184,825 t landed catch was landed in the Monterey port area. Landings of in 2011, and a 35% decline from the peak landings of jack mackerel remained relatively low with 892 t landed; 252,568 t observed in 2000. The preliminary ex-vessel however, this represents a 515% increase over 2012 land- economic value of commercial landings in 2013 was ings of 145 t. $254.7 million, increasing once again from the $236 mil- Dungeness crab ranked as California’s second largest lion generated in 2012 (8%), and the $198 million in volume fishery with 14,066 t landed, an increase from 2011 (29%). 11,696 t landed in 2012, and it continued to dominate as Coastal pelagic species (CPS) made up four of the the highest valued fishery in the state with an ex-vessel top five volume fisheries in 2013.
    [Show full text]
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • The Balance of Nutrient Losses and Gains in Seaccrass Meadows M
    MARINE ECOLOGY PROGRESS SERIES Vol. 71: 85-96, 1991 Published March 28 Mar. Ecol. Prog. Ser. REVIEW The balance of nutrient losses and gains in seaccrass meadows M. A. ~emminga',P. G. ~arrison~,F. van ~ent' ' Delta Institute for Hydrobiological Research, Vierstraat 28,4401 EA Yerseke. The Netherlands Dept of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, British Columbia, Canada V6T 2B1 ABSTRACT: Seagrasses abound in the dynamic environment of shallow marine waters. From the often high annual biomass production it can be deduced that seagrass meadows have high requirements for inorganic nutrients, although the nutrient demands will be met to some extent by internal recycling. A series of processes lead to nutrient losses from the seagrass bed. Export of leaves and leaf fragments with currents, leaching losses from photosynthetically active leaves and from senescent and dead plant material, and nutrlent transfer by mobile foraging animals, are processes speclfic to seagrass meadows; in addition, the nutrient losses are aggravated by 2 processes con~monlyoccurring in marine sedirnents: denitrification and diffusion of nutrients from the sediments to the overlying water column. The persistence in time of most seagrass meadows points to an existing balance between nutrient losses and gains. Three processes may contribute to the replenishment of nutrients: nitrogen-fixation, sedimentation and nutrient uptake by the leaves. Nitrogen-fixation undoubtedly is important, but continued biomass production requires other nutrients as well. Crucial contributions, therefore, must come from sedimenta- tion and/or leaf uptake. The concept of the seagrass meadow as an open system, with nutrient fluxes from and to the system varylng in time, allows for imbalances between nutrient losses and gains.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Ecological Indicators for Assessing and Communicating Seagrass Status and Trends in Florida Bay§ Christopher J
    Ecological Indicators 9S (2009) S68–S82 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Ecological indicators for assessing and communicating seagrass status and trends in Florida Bay§ Christopher J. Madden a,*, David T. Rudnick a, Amanda A. McDonald a, Kevin M. Cunniff b, James W. Fourqurean c a Everglades Division, South Florida Water Management District, 8894 Belvedere Rd., West Palm Beach, FL 33411, USA b R.C.T. Engineering, Inc., 701 Northpoint Parkway, West Palm Beach, FL 33407, USA c Dept. of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA ARTICLE INFO ABSTRACT Article history: A suite of seagrass indicator metrics is developed to evaluate four essential measures of seagrass Received 23 April 2008 community status for Florida Bay. The measures are based on several years of monitoring data using the Received in revised form 20 January 2009 Braun-Blanquet Cover Abundance (BBCA) scale to derive information about seagrass spatial extent, Accepted 11 February 2009 abundance, species diversity and presence of target species. As ecosystem restoration proceeds in south Florida, additional freshwater will be discharged to Florida Bay as a means to restore the bay’s hydrology Keywords: and salinity regime. Primary hypotheses about restoring ecological function of the keystone seagrass Florida Bay community are based on the premise that hydrologic restoration will increase environmental variability Seagrass and reduce hypersalinity. This will create greater niche space and permit multiple seagrass species to co- Status Indicators exist while maintaining good environmental conditions for Thalassia testudinum, the dominant climax Thalassia seagrass species.
    [Show full text]
  • Saccular Otolith Mass Asymmetry in Adult Flatfishes 2581
    Journal of Fish Biology (2008) 72, 2579–2594 doi:10.1111/j.1095-8649.2008.01869.x, available online at http://www.blackwell-synergy.com Saccular otolith mass asymmetry in adult flatfishes D. V. LYCHAKOV*†,Y.T.REBANE‡, A. LOMBARTE§, M. DEMESTRE§ AND L. A. FUIMANk *Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St Petersburg, Thorez pr., 44, 194223, Russia, ‡Ioffe Physical Technical Institute of Russian Academy of Sciences, Politekhnicheskaya 26, St Petersburg 194021, Russia, §Departament de Recursos Marins Renovables, Institut de Cie`ncies del Mar-CMIMA (CSIC), Passeig Marıtim´ 37-49, 08003 Barcelona, Catalonia, Spain and kDepartment of Marine Science, University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373-1267, U.S.A. (Received 29 June 2007, Accepted 20 February 2008) A dimensionless measure of otolith mass asymmetry, w, was calculated as the difference between the masses of the right and left paired otoliths divided by average otolith mass. Saccular otolith mass asymmetry was studied in eight flatfish species (110 otolith pairs) and compared with data from a previously published study on roundfishes. As in the case of symmetrical fishes, the absolute value of w in flatfishes does not depend on fish length and otolith growth rate, although otolith mass and the absolute value of otolith mass difference are correlated with fish length. The values of w were between À0Á2 and þ0Á2in96Á4% of flatfishes studied. The mean Æ S.E. value of w in flatfishes was significantly larger than in standard bilaterally symmetrical marine fishes (‘roundfishes’), respectively 0Á070 Æ 0Á006 and 0Á040 Æ 0Á006.
    [Show full text]
  • Zostera Japonica and Zostera Marina) in Padilla Bay, Washington Annie Walser Western Washington University
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2014 A study of pore-water sulfide nda eelgrass (Zostera japonica and Zostera marina) in Padilla Bay, Washington Annie Walser Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Marine Biology Commons Recommended Citation Walser, Annie, "A study of pore-water sulfide nda eelgrass (Zostera japonica and Zostera marina) in Padilla Bay, Washington" (2014). WWU Graduate School Collection. 350. https://cedar.wwu.edu/wwuet/350 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. A STUDY OF PORE-WATER SULFIDE AND EELGRASS (ZOSTERA JAPONICA AND ZOSTERA MARINA) IN PADILLA BAY, WASHINGTON By Annie Walser Accepted in Partial Completion Of the Requirements for the Degree Master of Science Kathleen Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. David Shull Dr. Sylvia Yang Dr. John Rybczyk MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others.
    [Show full text]
  • Environmental DNA Reveals the Fine-Grained and Hierarchical
    www.nature.com/scientificreports OPEN Environmental DNA reveals the fne‑grained and hierarchical spatial structure of kelp forest fsh communities Thomas Lamy 1,2*, Kathleen J. Pitz 3, Francisco P. Chavez3, Christie E. Yorke1 & Robert J. Miller1 Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifes species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms ofers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fsh communities on temperate rocky reefs in southern California. eDNA provided a more‑detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species fltering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC.
    [Show full text]
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Seed Selection and Storage with Nano-Silver and Copper As
    www.nature.com/scientificreports OPEN Seed selection and storage with nano-silver and copper as potential antibacterial agents for the seagrass Zostera marina: implications for habitat restoration Shaochun Xu1,2,3, Yi Zhou1,2,4*, Shuai Xu1,2,3, Ruiting Gu1,2,3, Shidong Yue1,2,3, Yu Zhang1,2,3 & Xiaomei Zhang1,2,4 Globally, seagrass meadows are extremely important marine ecosystems that are disappearing at an alarming rate. Therefore, research into seagrass restoration has become increasingly important. Various strategies have been used in Zostera marina L. (eelgrass) restoration, including planting seeds. To improve the efciency of restoration by planting seeds, it is necessary to select high-quality seeds. In addition, a suitable antibacterial agent is necessary for wet storage of desiccation sensitive seeds to reduce or inhibit microorganism infection and seed decay. In the present study, an efcient method for selecting for high-quality eelgrass seeds using diferent specifc gravities of salt water was developed, and potential antibacterial agents (nano-silver and copper sulfate) for seed storage were assessed. The results showed that the highest proportion of intact seeds (72.91 ± 0.50%) was recorded at specifc gravities greater than 1.20. Therefore, specifc gravities greater than 1.20 can be used for selecting high-quality eelgrass seeds. During seed storage at 0 °C, the proportion of intact seeds after storage with nano-silver agent was over 90%, and also higher than 80% with copper sulfate agent, which was signifcantly higher than control treatments. The fndings revealed a potential selection method for high-quality seeds and long-term seed storage conditions for Z.
    [Show full text]
  • Venerupis Philippinarum)
    INVESTIGATING THE COLLECTIVE EFFECT OF TWO OCEAN ACIDIFICATION ADAPTATION STRATEGIES ON JUVENILE CLAMS (VENERUPIS PHILIPPINARUM) Courtney M. Greiner A Swinomish Indian Tribal Community Contribution SWIN-CR-2017-01 September 2017 La Conner, WA 98257 Investigating the collective effect of two ocean acidification adaptation strategies on juvenile clams (Venerupis philippinarum) Courtney M. Greiner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Marine Affairs University of Washington 2017 Committee: Terrie Klinger Jennifer Ruesink Program Authorized to Offer Degree: School of Marine and Environmental Affairs ©Copyright 2017 Courtney M. Greiner University of Washington Abstract Investigating the collective effect of two ocean acidification adaptation strategies on juvenile clams (Venerupis philippinarum) Courtney M. Greiner Chair of Supervisory Committee: Dr. Terrie Klinger School of Marine and Environmental Affairs Anthropogenic CO2 emissions have altered Earth’s climate system at an unprecedented rate, causing global climate change and ocean acidification. Surface ocean pH has increased by 26% since the industrial era and is predicted to increase another 100% by 2100. Additional stress from abrupt changes in carbonate chemistry in conjunction with other natural and anthropogenic impacts may push populations over critical thresholds. Bivalves are particularly vulnerable to the impacts of acidification during early life-history stages. Two substrate additives, shell hash and macrophytes, have been proposed as potential ocean acidification adaptation strategies for bivalves but there is limited research into their effectiveness. This study uses a split plot design to examine four different combinations of the two substratum treatments on juvenile Venerupis philippinarum settlement, survival, and growth and on local water chemistry at Fidalgo Bay and Skokomish Delta, Washington.
    [Show full text]
  • 2 3 Food Web Data Report Final 3June2008
    RMP Food Web Analysis; Data Report on Gut Contents of Four Fish Species Andrew Jahn 5 March 2008 1 Author contact information: Andrew Jahn [email protected] Cover images photographed by the author from gut content samples. Top left: Nippoleucon hinumensis (Asian cumacean). Top right: Synidotea sp. (Crustacea: Isopoda). Bottom left and right: Spinileberis sp. (Crustacea: Ostracoda). 2 EXECUTIVE SUMMARY Diet data (as average percentage by volume of contents) from moderate-sized samples (30 – 45) of four fish species (shiner perch, white croaker, topsmelt, and Mississippi silverside) were obtained from RMP and other available fish samples. In this study as well as in other information available for San Francisco Bay, all four species fed mainly on benthic crustaceans, with minor reliance on water-column prey. White croaker fed on larger organisms than the other three species, in apparent agreement with its usual placement at a higher trophic level in bioaccumulation models. Topsmelt and Mississippi silverside were most similar, such that the available diet information on these two species does not offer a ready explanation for their marked difference in tissue mercury content. Apparent spatial variation in the diet of all four species is confounded with differences in time of sampling and/or size of fish. Continued work on fish diets, along with direct measurement of contaminant levels in key prey and associated sediment, are promising approaches to understanding the linkage between sediment contamination and human and wildlife receptors. INTRODUCTION This data report is a contribution to the SFEI special study entitled "Development of a refined conceptual model for aquatic food webs in San Francisco Bay." The study proposed to address the following fundamental questions: 1.
    [Show full text]