University of California, San Diego

Total Page:16

File Type:pdf, Size:1020Kb

University of California, San Diego UNIVERSITY OF CALIFORNIA, SAN DIEGO Separating environmental effects from fishing impacts on the dynamics of fish populations of the Southern California region A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Chih-hao Hsieh Committee in charge: Professor George Sugihara, Co-Chair Professor Mark D. Ohman, Co-Chair Professor David M. Checkley, Jr. Professor Phil A. Hastings Professor John R. Hunter Professor Arthur J. Miller Professor Kaustuv Roy 2006 Copyright Chih-hao Hsieh, 2006 All rights reserved The dissertation of Chih-hao Hsieh is approved, and it is acceptable in quality and form for publication on microfilm: ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ Co-Chair ________________________________________________ Co-Chair University of California, San Diego 2006 iii To Chang-tai Shih, who brought me on board science, and pointed me in the direction of life. iv TABLE OF CONTENTS Signature Page ……………………………………………………………………...……iii Dedication ……………………………………………………………………….….……iv Table of Contents ……………………………………………………….……….….…….v List of Figures ………………………………………………………………….….……vii List of Tables ………………………………………………………………….….……...ix Acknowledgements …………………………………………………………….….……..xi Vita, Publication, and Fields of Study...……………………………………….….…….xiv Abstract of the Dissertation …………………………………………………….….…...xvi Chapter 1. Introduction to the Dissertation ...…….…....……..……………….….….……1 Introduction …………………………………………….……………………...….…...2 Thesis outline ………………………………………….……………………...….……7 Tables ………………………………………………….……………………...….…..11 Figures ……………………………………………….……………………...…...…...14 References ………………………………………….……………………...…...….…17 Chapter 2. A comparison of long-term trends and variability in populations of larvae of exploited and unexploited fishes in the Southern California region: a community approach ..……………………………………………………………………………..…22 Abstract ………………………………………….………………………...…...….…23 Introduction …………………………………….………………………...…...….…..24 Methods ………………………………………….………………………...…...….…25 Results ………………………………………….………………………...….....….…30 Discussion …………………………………….………………………...….....….…..39 Acknowledgements …………………………….………………………...….....….…46 References…………………………………….………………………...….....….…...46 Appendix …………………………………….………………………...….....….…....49 Supplementary references ……………………………………………………………51 Chapter 3. Fishing elevates variability in the abundance of exploited species: long-term evidence that fishing magnifies uncertainty in a changing environment …………..…...63 Abstract ………………………………………….………………………...…...….…64 Main Text …………………………………….……………...…………...…...….….65 v Methods ……………...……………….……….………………………...…...…….…71 Tables ………………………………………….………………………...…...….…...74 Figures ……………………………………….………………………...…...….….….76 References ……………………………………….……….……………...…...………79 Appendix ……………………………………….………………………...…...……...82 Supplementary references …………………………………………………………..101 Chapter 4. Climatic and fishing effects on shifts in spawning distribution of marine fishes .…………………………………………………………………………………..108 Abstract ………………………………………….………………………...…...…...109 Introduction ………………………………………….………………………...……110 Methods ………………………………………….………………………...…...…...112 Results ………………………………………….………………………...…...….…117 Discussion ………………………………………….………………………....….…118 Tables ………………………………………….………………………...…...….….123 Figures ………………………………………….………………………...…...….…126 References ……………………...………………….………………..…...…...….….132 Appendix ……………………...………………….………………..…...…...….…...136 Chapter 5. Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean .………….………………..…...…...….….…145 Abstract ………...………………….………………..…...…...………………...…...146 Main Text ……...………………….………………..…...…...………………...…....146 Methods ……...………………….………………..…...…...………………...….…..149 References ……...………………….………………..…...….….……………...…....149 Acknowledgements ………………….………………......….….……………...…....150 Chapter 6. Synthesis and perspectives: Coping with uncertainty and nonlinearity in fisheries management ………….……….………………..….…...………………...…...151 Figures ………...………………….…….…………..…...…...………………...…....160 References ……...………………….…….…………..…...…...……..………...…....162 Appendix ……...………………….…….…………..…...…...……..………...…..…166 Supplementary references …………………………………………………………..170 vi LIST OF FIGURES Chapter 1 1.1. The current state of world marine fishery resources as estimated by FAO for the year 2004 ……………………………………………………….………..………...14 1.2. Environmental variability associated with the southern California bight marine ecosystem ……………………………………………………….……….….….….15 1.3. An example showing that larval abundance is a good indicator of adult spawning biomass ……………………………………………………….……….….….……16 Chapter 2 2.1. Maps showing CalCOFI sampling stations and frequency ….…….….…....…….27 2.2. Abundance time series of fish species ………………………...………..….…….31 3.2. Comparisons of exploited and unexploited species living in the same habitat .….42 Chapter 3 3.1. Relationships between CVs and life history traits for exploited and unexploited species separately ………………………...……….….……………………....……76 3.2. CVs of exploited and unexploited species associated with geographic distributions, habitats, and spawning modes …………...……….….……………………....…….77 3.3. Long-term declining trends in the average age and length of exploited species ....78 Chapter 4 4.1. Map showing the spatial pattern of CalCOFI stations ……………….…....…….126 4.2. Schematic illustrating spatial analyses of change in distribution domain of fishes ….……………...……….….………………………………………....……127 4.3. An example showing the relationship between mean latitudes and mean SSTs and distribution-centers …………………………....……….….……………………..128 vii 4.4. Magnitudes and direction of changes in distribution from the cold and to the warm period for fish species …………………...……….….………………….………..129 4.5. Comparison of life history traits of shifting and non-shifting species …….….....130 4.6. A model illustrating the “fisheries acting as a noise filter” hypothesis …...….....131 Chapter 5 5.1. Examples of the simplex projection method …….….………………..…..……...147 5.2. Examples of the S-map method for the four time series from Figure 5.1 ……....147 Chapter 6 6.1. Spawner-recruitment data for fishes ……...……….….………………..…..…....160 6.2. Frequency of maternal effects on fish early life history traits ……………..……161 viii LIST OF TABLES Chapter 1 1.1. Indicators to detect fishing effects on a population, assemblage, or ecosystem ….11 Chapter 2 2.1. Summary of criteria used in the “expert-knowledge classification system” to determine fish assemblages ………………………………………..……….………26 2.2. Larval vertical distributions compiled from the literature ………..………..…..…29 2.3. Number of taxa and percentage of the fished, bycatch, and unfished in the three primary assemblages before and after taxonomic aggregation …..………..……….30 2.4. Correlation matrices for oceanic, coastal-oceanic, and coastal assemblages …….35 2.5. Average larval abundances in the cold (1951-1976) and warm (1976-1998) periods and selected environmental variables in the regression model for each taxon ….…40 2.6. A comparison between the larval recurrent groups and the assemblages described by the “expert-knowledge classification system” ……………………….….…...…43 2.7. The long-term average spatial coefficient of variation of larval fish abundances for the species used in the pair-wise comparisons ……………………..……….…...…46 Chapter 3 3.1. Life history traits and ecological traits of fish species ……………..………......…74 Chapter 4 4.1. Statistically significant regressions of the effects of temperature on mean latitudes and boundaries, and significant changes in spatial domain ………..……….….….123 4.2. The contingency table showing numbers of shifting and non-shifting species in each order ……….……..…………………………...………………………….….124 ix 4.3. Results of logistic regressions showing effects of ecological traits and fishing on whether fish species are responsive to temperature ………...……..……….….….125 Chapter 5 5.1. Analyses of key North Pacific physical time series ….…...……..…….….….….148 5.2. Analyses of key North Pacific biological time series ………...……..…….…….148 x ACKNOWLEDGEMENTS An incredible number of people have helped during my study at Scripps by providing mentorship, friendship, assistance, and support. I am particularly grateful to people who have contributed to CalCOFI: ideas, sampling, species identifying, data management, and many other aspects. I would like to thank my committee members for their guidance and support. George Sugihara and Mark Ohman, my advisors and the greatest combination, helped me to bring math and biology together. David Checkley and Phil Hastings taught me many things about fish. Art Miller and Kaustuv Roy provided great comments on analytical approaches. I would especially like to thank John Hunter, who introduced me the fisheries problems and the CalCOFI larval fish data. Without his insights, patience, and encouragement, this thesis would not have been possible. Although not formal members of my doctoral committee, Roger Hewitt, Bill Watson, and Christian Reiss provided great mentorship on fish and fisheries. Roger provided accesses to various resources in the Southwest Fisheries Science Center, NOAA. Bill answered my every question regarding fish. Christian helped shape
Recommended publications
  • Fishery Bulletin/U S Dept of Commerce National Oceanic
    ROLE OF LARVAL STAGES IN SYSTEMATIC INVESTIGATIONS OF MARINE TELEOSTS: THE MYCTOPHIDAE, A CASE STUDYl H. GEOFFREY MOSER AND ELBERT H. AHLSTROM2 ABSTRACT The lanternfish family Myctophidae is the most speciose and widespread family ofmid-water fishes in the world ocean. As presently recognized it contains about 30 genera and 300 nominal species. Their larvae are highly prominent in the plankton and make up about 50% ofall larvae taken in open-ocean plankton tows. Our studies of myctophid larvae, on a worldwide basis, have demonstrated that characters of the larval stages oflanternfishes are ofgreat utility in systematic analysis. The genera and species can be recognized on the basis ofeye and body shape, the shape and length ofthe gut, and pigmentpattern and by the sequence of photophore development. In this paper the larvae of 55 species representing 24 genera are illustrated and used to demonstrate the usefulness oflarvae in understanding the relation­ ships of species within genera. Charactersofthe larvae provide insight into generic affinities oflanternfish, allowing us to construct an evolutionary scheme of tribes and subfamilies that differs in some aspects from those proposed on the basis of adult characters. The concept of using larval characters in combination with adult characters to delineate phylogenetic lines in myctophids is discussed, as is our view of evolutionary strategy in the family. A major facet ofcomprehensive systematic inves­ played a large role in the taxonomy of anguil­ tigations is the search for functionally unrelated liform fishes (Castle, 1969) partly because of the characters. Whether the independence of these conspicuousness ofeel leptocephali and partly be­ characters is actual or merely apparent, they con­ cause ofthe unavailability ofadults ofmany ofthe stitute useful elements in the analysis ofsystema­ families.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Euteleost Tree of Life – Web Module Summative Evaluation Report
    Euteleost Tree of Life – Web Module Summative Evaluation Report Submitted to: University of Kansas Submitted by: July 2013 Julia Hazer Adam Moylan 595 Market Street Suite 2570 • San Francisco, CA 94105-2802 • 415.544.0788 • FAX 415.544.0789 www.rockman.com Table of Contents Introduction.............................................................................................................................................1 Methodology............................................................................................................................................2 Phase 1: Background Survey & Web Module Activities ............................................................................ 2 Phase 2: Focus Group Discussion........................................................................................................................ 5 Participant Background Information .............................................................................................6 Demographics ............................................................................................................................................................. 6 Prior Science Performance and Attitudes....................................................................................................... 6 Prior Evolutionary Tree Knowledge.................................................................................................................. 7 Findings.....................................................................................................................................................9
    [Show full text]
  • Order MYCTOPHIFORMES NEOSCOPELIDAE Horizontal Rows
    click for previous page 942 Bony Fishes Order MYCTOPHIFORMES NEOSCOPELIDAE Neoscopelids By K.E. Hartel, Harvard University, Massachusetts, USA and J.E. Craddock, Woods Hole Oceanographic Institution, Massachusetts, USA iagnostic characters: Small fishes, usually 15 to 30 cm as adults. Body elongate with no photophores D(Scopelengys) or with 3 rows of large photophores when viewed from below (Neoscopelus).Eyes variable, small to large. Mouth large, extending to or beyond vertical from posterior margin of eye; tongue with photophores around margin in Neoscopelus. Gill rakers 9 to 16. Dorsal fin single, its origin above or slightly in front of pelvic fin, well in front of anal fins; 11 to 13 soft rays. Dorsal adipose fin over end of anal fin. Anal-fin origin well behind dorsal-fin base, anal fin with 10 to 14 soft rays. Pectoral fins long, reaching to about anus, anal fin with 15 to 19 rays.Pelvic fins large, usually reaching to anus.Scales large, cycloid, and de- ciduous. Colour: reddish silvery in Neoscopelus; blackish in Scopelengys. dorsal adipose fin anal-fin origin well behind dorsal-fin base Habitat, biology, and fisheries: Large adults of Neoscopelus usually benthopelagic below 1 000 m, but subadults mostly in midwater between 500 and 1 000 m in tropical and subtropical areas. Scopelengys meso- to bathypelagic. No known fisheries. Remarks: Three genera and 5 species with Solivomer not known from the Atlantic. All Atlantic species probably circumglobal . Similar families in occurring in area Myctophidae: photophores arranged in groups not in straight horizontal rows (except Taaningichthys paurolychnus which lacks photophores). Anal-fin origin under posterior dorsal-fin anal-fin base.
    [Show full text]
  • Recycled Fish Sculpture (.PDF)
    Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun.
    [Show full text]
  • Suborder STROMATEOIDEI CENTROLOPHIDAE Medusafishes (Ruffs, Barrelfish) by R.L
    click for previous page Perciformes: Stromateoidei: Centrolophidae 1867 Suborder STROMATEOIDEI CENTROLOPHIDAE Medusafishes (ruffs, barrelfish) by R.L. Haedrich, Memorial University, Newfoundland, Canada iagnostic characters: Medium-sized to large (50 to 120 cm) fishes with an elongate to deep body, some- Dwhat compressed but fairly thick; caudal peduncle deep and moderate in length. Snout blunt, longer than or about equal to eye diameter;mouth large, maxilla extending to at least below eye;supramaxilla present; small conical teeth in 1 row in jaws; no teeth on vomer, palatines or basibranchials; adipose tissue around eyes not conspicuously developed; preopercle margin usually denticulate, but spinulose in most small specimens and in Schedophilus; opercle thin, with 2 flat, weak points, the margin denticulate; 7 branchiostegal rays. A single continuous dorsal fin, its rays preceeded by 5 to 9 short, stout spines not graduating to rays (Hyperoglyphe) or 3 to 7 thin weaker spines that do graduate to rays (Schedophilus);anal fin with 3 spines not separated from rays; dorsal and anal fins never falcate, their bases unequal, dorsal longer than anal; pelvic fins inserting under pectoral fin base, attached to the abdomen by a thin membrane and fold- ing into a broad shallow groove; pectoral fins usually not prolonged, broad; caudal fin broad and not deeply forked. Scales moderate to small, usually cycloid (but with small cteni in Schedophilus medusophagus) and easily shed; head conspicuously naked and covered with small pores. Colour: generally uniformly dark green to grey, or brownish, with an indistinct vertical, or more usually horizontal, pattern of darker irregular stripes; eyes often golden.
    [Show full text]
  • Psenes Maculatus, and Psenes Cyanophrys (Nomeidae: Perciformes), from Korea
    Korean J. Ichthyol. 13(3), 195~200, 2001 First Record of the Two Driftfish, Psenes maculatus, and Psenes cyanophrys (Nomeidae: Perciformes), from Korea Jung-Goo Myoung, Sun-Hyung Cho, Jong Man Kim and Yong Uk Kim* Marine Resources Laboratory, KORDI Ansan P.O. Box 29, 425-600, Korea, *Department of Marine Biology, Pukyong National University, Busan, 608-737, Korea Psenes maculatus and P. cyanophrys of family Nomeidae were collected for the first time off the coast of Tongyeong, Kyongsangnam-do, Korea. Specimens were catched with drifting seaweed patches on June and July, 1998. Young Psenes maculatus has six black bands (‘⁄’ shape) on the body, and ‘Tti- mul-reung-dom’ is proposed as the Korean name. Psenes cyanophrys differs from P. pellucidus in having a compressed oval body shape scales on the check, and 16 longitudinal lines on the body. ‘Jul-mu-nui-mul- reung-dom’ is proposed as the Korean name. Key words : Nomeidae, Psenes maculatus, P. cyanophrys the coast of Tongyeong-si, Gyeongsangnam-do, Introduction Korea (Fig. 1). Specimens were measured by stereo microscope and caliper (1/10 mm). Counts Nomeidae have three genus such as Nomeus, and measurements follow Chyung (1977). The Cubiceps and Psenes and widely distributed in tropical-subtropical waters of Indian, Pacific and Atlantic Ocean (Abe, 1959; Ahlstrom et al., 1976; Masuda et al., 1984). In the Korean water, 3 species (Cubiceps squamiceps (Lloyd), Psenes pellucidus Lütken and Psenes arafurensis Günther) were recorded (The Korean Society of Systematic Zoology, 1997; Lee et al., 2000). Young Psenes maculatus and young P. cyanophrys live beneath of drifting seaweed patches or jellyfish and move to mid or bottom layer with growth (Haedrich, 1967; Nakabo, 2000).
    [Show full text]
  • Guide to the Coastal Marine Fishes of California
    STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft.
    [Show full text]
  • W. Indian Ocean)
    click for previous page NOM 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) NOMEIDAE Man-of-war fishes, also driftfishes Slender to deep, laterally compressed fishes (in Psenes the young may be quite deep-bodied becoming less so with growth); caudal peduncle deep, more than 5% of standard length. Adipose tissue around eyes developed in most species; opercular and preopercular margins entire or finely denticulate; opercle very thin, with 2 flat, weak spines; 6 branchiostegal rays; mouth small, the maxilla rarely extending to below eye, supramaxilla absent; jaw teeth small, uniserial conical or flattened and knife-like (in some Psenes); small teeth also present on vomer, palatines (roof of mouth), on the basibranchials and sometimes on tongue; pharyngeal sacs with toothed papillae in upper and lower sections, these papillae in about 5 broad longitudinal bands, their bases stellate, teeth seated on top of a central stalk. Two dorsal fins, the first with about 10 slender spines folding into a groove, the longest spine at least as long as the longest ray of the second dorsal fin; anal fin with 1 to 3 spines, not separated from the rays; second dorsal and anal fin bases approximately the same length and covered with scales; pectoral fins becoming long and wing-like with growth, their bases inclined about 45°; pelvic fins attached to abdomen by a thin membrane and folding into a narrow groove, the fins greatly produced and expanded in young Nomeus and some Psenes; caudal fin forked, the lobes often folded to overlap one another. Lateral line high, following dorsal profile and often not extending onto caudal peduncle.
    [Show full text]
  • Intra- and Inter-Annual Breeding Season Diet of Leach's Storm-Petrel (Oceanodroma Leucorhoa) at a Colony in Southern Oregon
    INTRA- AND INTER-ANNUAL BREEDING SEASON DIET OF LEACH'S STORM-PETREL (OCEANODROMA LEUCORHOA) AT A COLONY IN SOUTHERN OREGON by MICHELLE ANDRIESE SCHUITEMAN A THESIS Presented to the Department ofBiology and the Graduate School ofthe University ofOregon in partial fulfillment ofthe requirements for the degree of Master ofScience December 2006 11 "Intra- and Inter-annual Breeding Season Diet ofLeach's Storm-petrel (Oceanodroma leucorhoa) at a Colony in Southern Oregon" a thesis prepared by Michelle Andriese Schuiteman in partial fulfillment ofthe requirments for the Master ofScience degree in the Department ofBiology. This thesis has been approved and accepted by: Date Committee in Charge: Dr Alan Shanks, Chair Dr. Jan Hodder Dr. William Sydeman Accepted by: Dean ofthe Graduate School 111 © 2006 Michelle Schuiteman lV An Abstract ofthe Thesis of Michelle Andriese Schuiteman for the degree of Master ofScience in the Department ofBiology to be taken December 2006 Title: INTRA- AND INTER-ANNUAL BREEDING SEASON DIET OF LEACH'S STORM-PETREL (OCEANODROMA LEUCORHOA) AT A COLONY IN SOUTHERN OREGON The oceanic habitat varies on multiple spatial and temporal scales. Aspects ofthe ecology oforganisms that utilize this habitat can, in certain cases, be used as indicators of ocean conditions. In this study, diet ofthe Leach's storm-petrel (Oceanodroma leucorhoa) is examined to determine ifevidence ofchanging ocean conditions can be found in the diet. Regurgitations were collected from the birds in order to describe diet. Euphausiids and fish composed 80 - 90% ofthe diet in both years, with composition of each diametrically different between years. Other items found in samples included . hyperiid and gammariid amphipods, cephalopods, plastic pieces and a new species of Cirolanid isopod.
    [Show full text]