Sweet Corn Sentinel Monitoring for Lepidopteran Field-Evolved
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bt Resistance Implications for Helicoverpa Zea (Lepidoptera
Environmental Entomology, XX(X), 2018, 1–8 doi: 10.1093/ee/nvy142 Forum Forum Bt Resistance Implications for Helicoverpa zea (Lepidoptera: Noctuidae) Insecticide Resistance Downloaded from https://academic.oup.com/ee/advance-article-abstract/doi/10.1093/ee/nvy142/5096937 by guest on 26 October 2018 Management in the United States Dominic D. Reisig1,3 and Ryan Kurtz2 1Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, 207 Research Station Road, Plymouth, NC 27962, 2Agricultural & Environmental Research, Cotton Incorporated, 6399 Weston Parkway, Cary, NC 27513, and 3Corresponding author, e-mail: [email protected] Subject Editor: Steven Naranjo Received 19 June 2018; Editorial decision 27 August 2018 Abstract Both maize and cotton genetically engineered to express Bt toxins are widely planted and important pest management tools in the United States. Recently, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) has developed resistance to two toxin Bt maize and cotton (Cry1A and Cry2A). Hence, growers are transitioning to three toxin Bt cotton and maize that express both Cry toxins and the Vip3Aa toxin. H. zea susceptibility to Vip3Aa is threatened by 1) a lack of availability of non-Bt refuge crop hosts, including a 1–5% annual decline in the number of non-Bt maize hybrids being marketed; 2) the ineffectiveness of three toxin cultivars to function as pyramids in some regions, with resistance to two out of three toxins in the pyramid; and 3) the lack of a high dose Vip3Aa event in cotton and maize. We propose that data should be collected on current Cry-resistant H. -
Data Sheet on Helicoverpa
EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Helicoverpa zea IDENTITY Name: Helicoverpa zea (Boddie) Synonyms: Heliothis zea (Boddie) Bombyx obsoleta Fab. Phalaena zea (Boddie) Heliothis umbrosus Grote Taxonomic position: Insecta: Lepidoptera: Noctuidae Common names: American bollworm, corn earworm, tomato fruitworm, New World bollworm (English) Chenille des épis du maïs (French) Amerikanischer Baumwollkapselwurm (German) Notes on taxonomy and nomenclature: The taxonomic situation is complicated and presents several problems. Hardwick (1965) reviewed the New World corn earworm species complex and the Old World African bollworm (Noctuidae), most of which had previously been referred to as a single species (Heliothis armigera or H. obsoleta), and pointed out that there was a complex of species and subspecies involved. Specifically he proposed that the New World H. zea (first used in 1955) was distinct from the Old World H. armigera on the basis of male and female genitalia. And he described the new genus Helicoverpa to include these important pest species, Some 80 or more species were formerly placed in Heliothis (sensu lato) and Hardwick referred 17 species (including 11 new species) to Helicoverpa on the basis of differences in both male and female genitalia. Within this new genus the zea group contains eight species, and the armigera group two species with three subspecies. See also Hardwick (1970). Because the old name of Heliothis for the pest species (four major pest species and three minor) is so well established in the literature, and since dissection of genitalia is required for identification, there has been resistance to the name change (e.g. -
(Bacillus Thuringiensis) Maize
Decomposition processes under Bt (Bacillus thuringiensis) maize: Results of a multi-site experiment Jérôme Cortet, Mathias Andersen, Sandra Caul, Bryan Griffiths, Richard Joffre, Bernard Lacroix, Christophe Sausse, Jacqueline Thompson, Paul Krogh To cite this version: Jérôme Cortet, Mathias Andersen, Sandra Caul, Bryan Griffiths, Richard Joffre, et al.. Decomposition processes under Bt (Bacillus thuringiensis) maize: Results of a multi-site experiment. Soil Biology and Biochemistry, Elsevier, 2006, 38 (1), pp.195-199. 10.1016/j.soilbio.2005.04.025. hal-03218784 HAL Id: hal-03218784 https://hal.archives-ouvertes.fr/hal-03218784 Submitted on 5 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Decomposition processes under Bt (Bacillus thuringiensis) maize: Results of a multi-site experiment Je´roˆme Cortet, Mathias N. Andersen, Sandra Caul, Bryan Griffiths, Richard Joffre, Bernard Lacroix, Christophe Sausse, Jacqueline Thompson, Paul Henning Krogh correspondance: [email protected] Abstract The effects of maize expressing the Bacillus thuringiensis Cry1Ab protein (Bt maize) on decomposition processes under three different European climatic conditions were assessed in the field. Farming practices using Bt maize were compared with conventional farming practices using near-isogenic non-Bt maize lines under realistic agricultural practices. -
Twenty-Five Pests You Don't Want in Your Garden
Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves. -
Studies on the Fermentation of Bacillus Thuringiensis Var Israelensis
STUDIES ON THE FERMENTATION OF BACILLUS THURINGIENSIS VAR ISRAELENSIS by DERMOT PEARSON School of Biological Sciences National Institute of Higher Education Du blin SuDmitted for the Degree of Doctor of Philosophy June, 19ö5 COrfTENTS Section Page i INTRODUCTION 1 1.1 PREFACE 2 1.2 BIOLOGICAL INSECTICIDES 4 1.2.1 Insect Classification 6 1.3 ORGANISMS USED IN BIOLOGICAL INSECTICIDES lU 1.3.1 Viruses in Insect Control 1U 1.3.2 Fungi in Insect Control 14 1.3.3. Nematodes in Insect Control 18 1.3.4 Protozoans in Insect Control - 2U 1.3.5 Bacteria in Insect Control 22 1.3.5.1 Bacillus popillae as a microbial insecticide 25 1.3.5.2 Bacillus sphaericus as a microbial insecticide 28 1.3.5.3. Bacillus thuringiensis as amicrooial insecticide 31 1.4 BACILLUS THURI1MGIENSIS 34 1.4.1 Bacteriology 34 1.4.2 Classification and Taxonomy 35 1.4.2.1 Tecnniques used in the taxonomy of B. thuringiensis, ana nomenclature recommendations . 36 1.4.2.2 SuD-groups of B. thuringiensis based on flagellar antigens 37 1.4.3 Toxins Produced by B. thuringiensis 38 1.4.3.1 Note on classification of toxins produced by bacteria 38 1.4.3.2 Alpha-exotoxin, phospholi pase C, lecithinase 4U 1.4.3.3 Beta-exotoxin or thuringiensin 40 1.4.3.4 Gamma-exotoxin 41 Section Page 1.4.3. b Parasporal crystal toxin 43 1.4.4 Genetics of B. thuringiensis 43 1.4.4.1 Plasmid analysis 43 1.4.4.2 Genetic transfer systems and crystal protein gene cloning 44 l . -
Construction of Bacillus Thuringiensis Simulant Strains Suitable for Environmental Release
ENVIRONMENTAL MICROBIOLOGY crossm Construction of Bacillus thuringiensis Simulant Strains Suitable for Downloaded from Environmental Release Sangjin Park,a,b Changhwan Kim,b Daesang Lee,b Dong Hyun Song,b Ki Cheol Cheon,b Hong Suk Lee,b Seong Joo Kim,b Jee Cheon Kim,b Sang Yup Leea,c,d Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for http://aem.asm.org/ the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Koreaa; The 5th R&D Institute, Agency for Defense Development (ADD), Daejeon, Republic of Koreab; BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Koreac; BioInformatics Research Center, KAIST, Daejeon, Republic of Koread ABSTRACT For a surrogate bacterium to be used in outdoor studies, it is important to consider environmental and human safety and ease of detection. Recently, Bacil- Received 14 January 2017 Accepted 24 lus thuringiensis, a popular bioinsecticide bacterium, has been gaining attention as a February 2017 Accepted manuscript posted online 3 on July 22, 2018 by University of Queensland Library surrogate bacterium for use in biodefense. In this study, we constructed simulant March 2017 strains of B. thuringiensis with enhanced characteristics for environmental studies. Citation Park S, Kim C, Lee D, Song DH, Cheon Through transposon mutagenesis, pigment genes were inserted into the chromo- KC, Lee HS, Kim SJ, Kim JC, Lee SY. 2017. some, producing yellow-colored colonies for easy detection. To prevent persistence Construction of Bacillus thuringiensis simulant strains suitable for environmental release. Appl of spores in the environment, a genetic circuit was designed to produce a spore Environ Microbiol 83:e00126-17. -
Division of Labour and Terminal Differentiation in a Novel Bacillus Thuringiensis Strain
The ISME Journal (2015) 9, 286–296 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Division of labour and terminal differentiation in a novel Bacillus thuringiensis strain Chao Deng1,2,3, Leyla Slamti2,3, Ben Raymond4, Guiming Liu5, Christelle Lemy2,3, Myriam Gominet6, Jingni Yang1, Hengliang Wang7, Qi Peng1, Jie Zhang1, Didier Lereclus2,3 and Fuping Song1 1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; 2INRA, UMR1319 Micalis, La Minie`re, 78280 Guyancourt, France; 3AgroParisTech, UMR Micalis, F-78352 Jouy-en-Josas, France; 4Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot SL57PY, UK; 5CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; 6Institut Pasteur, CNRS URA 2172, Unite´ de Biologie des Bacte´ries Pathoge`nes a` Gram positif, Paris, France and 7Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China A major challenge in bacterial developmental biology has been to understand the mechanisms underlying cell fate decisions. Some differentiated cell types display cooperative behaviour. Cooperation is one of the greatest mysteries of evolutionary biology and microbes have been considered as an excellent system for experimentally testing evolution theories. Bacillus thuringiensis (Bt) is a spore-forming bacterium, which is genetically closely related to B. anthracis, the agent of anthrax, and to B. cereus, an opportunistic human pathogen. The defining feature that distinguishes Bt from its relatives is its ability to produce crystal inclusions in the sporulating cells. -
Derived Insect Control Proteins
CONSENSUS DOCUMENT ON SAFETY INFORMATION ON TRANSGENIC PLANTS EXPRESSING BACILLUS THURINGIENSIS - DERIVED INSECT CONTROL PROTEINS U.S. Environmental Protection Agency Unclassified ENV/JM/MONO(2007)14 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 19-Jul-2007 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Un ENV/JM/MONO(2007) THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY cl assi fi ed 14 CONSENSUS DOCUMENT ON SAFETY INFORMATION ON TRANSGENIC PLANTS EXPRESSING BACILLUS THURINGIENSIS - DERIVED INSECT CONTROL PROTEINS Eng lis h - O JT03230400 r . Eng lish Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format ENV/JM/MONO(2007)14 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 1, Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results (1995) No. 2, Analysis of Information Elements Used in the Assessment of Certain Products of Modern Biotechnology (1995) No. 3, Report of the OECD Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology (1995) No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No. 5, Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection (1996) No. 6, Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas (1997) No. 7, Consensus Document on the Biology of Brassica napus L. (Oilseed Rape) (1997) No. 8, Consensus Document on the Biology of Solanum tuberosum subsp. -
Bacillus Thuringiensis Cry1ab Delta-Endotoxin Protein and The
Bacillus thuringiensis Cry1Ab Delta-Endotoxin Protein and the Genetic Material Necessary for Its Production (via Elements of Vector pZO1502) in Event Bt11 Corn (OECD Unique Identifier: SYN-BTØ11-1)(006444) & Bacillus thuringiensis Vip3Aa20 Insecticidal Protein and the Genetic Material Necessary for Its Production (via Elements of Vector pNOV1300) in Event On This Page I. Use Sites, Target Pests, and Application Methods II. Science Assessment III. Terms and Conditions of the Registration IV. Additional Contact Information Summary The Environmental Protection Agency (EPA) has conditionally registered a plant-incorporated protectant (PIP) product containing Syngenta Seeds, Incorporated’s (hereafter referred to as Syngenta) new active ingredient, Bacillus thuringiensis Vip3Aa20 insecticidal protein and the genetic material necessary for its production (via elements of vector pNOV1300) in Event MIR162 maize (Organization for Economic Cooperation and Development [OECD] Unique Identifier: SYN-IR162-4). This new product, Bt11 x MIR162 corn (expressing previously registered Cry1Ab and Vip3Aa20, respectively), is intended for commercial distribution and use. The Agency has determined that the use of this pesticide is in the public interest and that it will not cause any unreasonable adverse effects on the environment during the time of conditional registration. The registrant for this product is Syngenta. On August 6, 2008, a tolerance exemption under 40 Code of Federal Regulations (CFR) Part 174 became effective for Vip3Aa proteins, when used as plant-incorporated protectants, in or on corn and cotton (40 CFR § 174.501). The exemption from the requirement of a tolerance for residues of Vip3Aa proteins is inclusive of the Vip3Aa20 insecticidal protein and its use in corn. -
Tarsi of Male Heliothine Moths Contain Aldehydes and Butyrate Esters As Potential Pheromone Components
Entomology Publications Entomology 5-2016 Tarsi of Male Heliothine Moths Contain Aldehydes and Butyrate Esters as Potential Pheromone Components Man-Yeon Choi U.S. Department of Agriculture Seung-Joon Ahn Max Planck Institute for Chemical Ecology Kye-Chung Park Horticulture and Food Research Institute Robert Vander Meer U.S. Department of Agriculture Ring T. Cardé University of California, Riverside See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Population Biology Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/561. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tarsi of Male Heliothine Moths Contain Aldehydes and Butyrate Esters as Potential Pheromone Components Abstract The Noctuidae are one of the most speciose moth families and include the genera Helicoverpa and Heliothis. Females use (Z)-11-hexadecenal as the major component of their sex pheromones except for Helicoverpa assulta and Helicoverpa gelotopoeon, both of which utilize (Z)-9-hexadecenal. The minor compounds found in heliothine sex pheromone glands vary with species, but hexadecanal has been found in the pheromone gland of almost all heliothine females so far investigated. -
Bacillus Thuringiensis As a Specific, Safe, and Effective Tool for Insect Pest Control
J. Microbiol. Biotechnol. (2007), 17(4), 547–559 Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control ROH, JONG YUL, JAE YOUNG CHOI, MING SHUN LI, BYUNG RAE JIN1, AND YEON HO JE* Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea 1College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea Received: November 21, 2006 Accepted: January 2, 2007 Bacillus thuringiensis (Bt) was first described by Berliner The insecticidal bacterium Bt is a Gram-positive [10] when he isolated a Bacillus species from the Mediterranean bacterium that produces proteinaceous inclusions during flour moth, Anagasta kuehniella, and named it after the sporulation [53]. These inclusions can be distinguished as province Thuringia in Germany where the infected moth distinctively shaped crystals by phase-contrast microscopy. was found. Although this was the first description under The inclusions are composed of proteins known as crystal the name B. thuringiensis, it was not the first isolation. In proteins, Cry proteins, or δ-endotoxins, which are highly 1901, a Japanese biologist, Ishiwata Shigetane, discovered toxic to a wide variety of important agricultural and a previously undescribed bacterium as the causative health-related insect pests as well as other invertebrates. agent of a disease afflicting silkworms. Bt was originally Because of their high specificity and their safety for the considered a risk for silkworm rearing but it has become environment, crystal proteins are a valuable alternative the heart of microbial insect control. The earliest commercial to chemical pesticides for control of insect pests in production began in France in 1938, under the name agriculture and forestry and in the home. -
Diversity of Insects Under the Effect of Bt Maize and Insecticides Diversidade De Insetos Sob a Influência Do Milho Bt E Inseticidas
AGRICULTURAL ENTOMOLOGY / SCIENTIFIC ARTICLE DOI: 10.1590/1808-1657000062015 Diversity of insects under the effect of Bt maize and insecticides Diversidade de insetos sob a influência do milho Bt e inseticidas Marina Regina Frizzas1*, Charles Martins de Oliveira2, Celso Omoto3 ABSTRACT: The genetically modified maize to control RESUMO: O milho geneticamente modificado visando ao controle some caterpillars has been widely used in Brazil. The effect de lagartas tem sido amplamente utilizado no Brasil. Em estudo de of Bt maize and insecticides was evaluated on the diversity of campo realizado em Ponta Grossa (Paraná, Brasil), compararam-se, insects (species richness and abundance), based on the insect com base na diversidade (riqueza de espécies e abundância), os efeitos community, functional groups and species. This study was do milho Bt e do controle químico sobre a comunidade de insetos, conducted in genetically modified maize MON810, which grupos funcionais e espécies. A comunidade de insetos foi amostrada expresses the Cry1Ab protein from Bacillus thuringiensis Berliner, no milho geneticamente modificado MON810, que expressa a proteína and conventional maize with and without insecticide sprays Cry1Ab de Bacillus thuringiensis Berliner, e no milho convencional (lufenuron and lambda-cyhalothrin) under field conditions com e sem a aplicação de inseticidas (lufenuron e lambda-cialotrina). in Ponta Grossa (Paraná state, Brazil). Insect samplings were As amostragens foram realizadas por meio da coleta de insetos utili- performed by using pitfall trap, water tray trap and yellow sticky zando-se armadilha de queda, bandeja-d’água e cartão adesivo. Foram card. A total of 253,454 insects were collected, distributed coletados 253.454 insetos, distribuídos em nove ordens, 82 famílias among nine orders, 82 families and 241 species.