1 Toward a New Grand Theory of Development? Connectionism

Total Page:16

File Type:pdf, Size:1020Kb

1 Toward a New Grand Theory of Development? Connectionism Toward a New Grand Theory of Development? Connectionism and Dynamic Systems Theory Re-Considered J.P. Spencer, M. S. C. Thomas, & J. McClelland (Editors). To be published by Oxford University Press. Contributors and Book Structure Part I: Overview Introduction: Spencer, Thomas & McClelland Chapter 1: Jay McClelland—overview of connectionist approaches [Note: Rough draft only] Chapter 2: Gregor Schöner—overview of dynamic systems approaches Part II: Case Studies Chapter 3: Karl Newell, Liu & Mayer-Kress Chapter 4: Whit Tabor Chapter 5: John Spencer, Jeff Johnson & John Lipinski [Note: Outline only] Chapter 6: Matthew Schlesinger Chapter 7: Yuko Munakata & Bruce Morton Chapter 8: Linda Smith [Note: Abstract only] Chapter 9: Daniela Corbetta Chapter 10: Han van der Maas & Maartje Raijmakers Chapter 11: Denis Mareschal, Robert Leech & Rick Cooper Chapter 12: Bob McMurray, Jessica Horst & Larissa Samuelson Part III: Reactions from the “outside” Chapter 13: Guy Van Orden & Heidi Kloos Chapter 14: Lisa Oakes, Nora Newcombe & Jodie Plumert Chapter 15: Tim Johnston & Bob Lickliter Part IV: Reactions from the “inside” Chapter 16: Jay McClelland Chapter 17: Gregor Schöner Chapter 18: Kim Plunkett Chapter 19: Michael Thomas & Fiona Richardson Chapter 20: Paul van Geert & Kurt Fischer Conclusion: Thomas, Spencer & McClelland 1 McClelland and Vallabha 7/23/2006 Page 1 Connectionist Models of Development: Mechanistic Dynamical Models with Emergent Dynamical Properties James L. McClelland and Gautam Vallabha The symbolic paradigm of cognitive modeling, championed by Minsky and Papert, Newell and Simon, and other pioneers of the 1950’s and 1960’s, remains very much alive and well today. Yet an alternative paradigm, first championed in the 1950’s by Rosenblatt, in which cognitive processes are viewed as emergent functions of a complex stochastic dynamical system, has continued to have adherents. A cooling of interest in such approaches in the 1960’s did not deter Grossberg (1973, 1976) or James Anderson (1973), and the approach emerged again full force in the 1980’s. By the end of that decade, many others had begun to explore the implications of this paradigm for development (McClelland, 1989; Plunkett and Marchman, 19??). A parallel and closely related movement, emerging from the physical sciences, also began to gain adherents during the same decade (Schoner & Kelso, 1988) and began to attract the interest of developmental psychologists in the early 1990s (Thelen and Smith, 19??). The present chapter represents our attempt to underscore the common ground between connectionist and dynamical systems approaches. Central to both is the emergent nature of system-level behavior and changes to such behavior through development. Essential to this exploration of emergentism is a framework that allows consideration of the dynamics of state variables over time. Mechanistic vs Emergent dynamics In what follows, we will distinguish between mechanistic and emergent dynamics. This distinction parallels a distinction offered in their seminal article on dynamical systems by Schoner and Kelso (1988; Schoner, this volume). Importantly, for both connectionist models and the models of the type investigated by Schoner and Kelso (1988), the dynamical systems involved can be described at two different levels: A macroscopic or emergent level, and a microscopic of mechanistic level. This differentiates both McClelland and Vallabha 7/23/2006 Page 2 approaches from some others in which the focus has been restricted to a descriptive characterization on the macroscopic dynamics. For connectionist models, the state evolutions at the emergent, macroscopic, or systems level are determined by several things, among them the mechanistic microdynamics specified by the modeler and used in simulations. Other crucial factors are the network architecture and the ensemble of experiences on which the network is trained. These state evolutions exhibit emergent properties congruent with those postulated by Dynamical Systems Theory (DST), as articulated by Schoner and Kelso (1988, Schoner, this volume). To give a few examples: The cascade model (McClelland, 1979) describes the time-evolution of activation across the units in a linear, feed-forward network in terms of a simple differential equation: Δai/dt = λ(ai – neti) In words, the change in activation of a unit is driven by the difference between its current activation and the net input it receives from other units. The purpose of the model was to explore the consequences for overall system behavior of changes in parameters of these equations at the mechanistic or microstructural level. The analysis reveal, for example, that changes in the rate constants at two different layers in a cascaded, feedforward network had additive effects on reaction time at the systems level. More complex equations are often used in other models (e.g., Grossberg, 1976) Δai/dt = αE(M-ai) + γI(ai-m) + γ(ai-r) Grossberg’s formulation separates the excitatory input E and the inhibitory input I, and lets each drive the activation up or down by an amount proportional to the distance from the current activation to the maximum M or minimum m; also operating is a restoring force driving the activation of units back toward rest r; each force has its own strength parameter (α, β, and γ). A similar function was used in the interactive activation model (McClelland and Rumelhart, 1981). In his seminal work in the 1970’s Grossberg examined in detail the McClelland and Vallabha 7/23/2006 Page 3 conditions under which these microdynamic equations gave rise to stable emergent behaviors such as attractors and various other important emergent structures (Grossberg, 1978). But these equations simple express the dynamics of a connectionist network as it responds to an input in real time. Typically, such equations are used to model activation processes that are assumed to be complete in under a second, such as, for example, the process involved in settling on a perceptual interpretation of a visual input, such as a line drawing or a word. But hidden in the equations, as presented thus far, are other dynamical variables that really form the heart of these models: their connections. For example, the net input in our first equation above represents the sum, over all connections projecting to a given receiving unit r, of the activation of the unit sending the projection, s, times the weight to r from s: netr = Σs wrs as And similarly the E and I in Grossberg’s equation are essentially the sum of the excitatory inputs (mediated by excitatory connections) and inhibitory inputs (mediated my inhibitory connections). While some units receive direct stimulation from the outside world, most units receive their input from other units, and thus, what determines their activation is the the values of their incoming connection weights. According to the connectionist approach to cognitive development, it is largely the time evolution of the strengths of the connection weights that governs the process of change over developmental time. Connectionist ‘learning rules’ are essentially differential equations that describe the changes of these connections. For example Linsker suggested that the connection weight to a receiving neuron r from a sending neuron s might obey a Hebbian-type learning rule: dwrs/dt = ε(ar – Θr) (as – Θs) – βwrs Here ar and as are the activations of the receiving and sending units, β is a constant regulating a tendency for weights to decay toward 0, ε is the learning rate, and Θr and Θs McClelland and Vallabha 7/23/2006 Page 4 are critical values that may themselves be adaptive (another word for ‘governed by mechanistic differential equations indicating how the variables change as a function of their own or other variables’). As with activation functions, many variations have been proposed for connectionist learning rules. What is crucial for the moment is that the time- evolution of the connections in the system --- the parameters which essentially determine both the outcome and the time-course of processing --- are themselves defined in terms of differential equations. The emergent results of these connection dynamics are emergent cognitive structures such as feature detectors, phonetic and other types of categories, and behavioral competencies, as well as emergent dynamical trajectories of change in such properties. Within PDP approaches to development, the mechanistic and emergent dynamical properties of connectionist models are relevant at two time scales. On a short time scale, connection weights are usually treated as fixed, contributing along with the architecture of the system and the specified mechanistic dynamics of the activation process to the emergent time-course and outcome of a single act of information processing and/or behavior, such as reaching to one of two locations in which an object may have been hidden by an experimenter. On a longer time scale, connection dynamics within the same system are relevant to the gradual change in the way the system responds to inputs over developmental time, usually measured in months or years. Many connectionist models simplify the activation dynamics in ways that may be misleading about the underlying theory. For example, in most connectionist models of past-tense verb inflection or single word reading, an input pattern is propagated forward through one or more layers of connection weights (and 0 or more hidden layers of units) to an output layer. This output represents the asymptotic state that would be achieved in an identical cascaded feedforward network or even a recurrent network (see Plaut et al, 1996, for an explicit comparison of one-pass feedforward and recurrent versions of the a network for single- word reading). Likewise, while intrinsic variability is assumed always to be at work in processing (McClelland, 1991, 1993), it is often left out of specific models for simplicity. A similar approach is often taken in simple recurrent networks (Elman, 1990), which can be viewed as chunking time into relatively large-scale, discrete units, and setting the state for the next discrete unit based on the state of the one before.
Recommended publications
  • Synergetic Environments Form, Social Behavior, and Coordination
    Synergetic Environments Form, Social Behavior, and Coordination “In the most general sense, computation is the process of storing, transmitting, and transforming information from one form to another” (Santa Fe Institute). ARCH 6307/4050/6050, IT IS 6010, ITCS 5010 Wednesdays 6:00pm-8:45pm, Storrs 255 School of Architecture, UNC Charlotte Prof Dr. Dimitrios Papanikolaou / [email protected] Office hours: Wednesdays 10am-12pm by appointment Office: Storrs 146 Premise The seminar critically reviews the evolution and design principles of systems of urban and territorial intelligence, from the ancient networks of optical telegraphy to today’s internet of things. Through discussions, we will examine technologies, systems, and mechanisms for turning information into decision and action in large scales; we will question the role of the physical environment, resource scarcity, and human behavior in shaping equilibrium conditions; we will investigate the role of data, modeling, and simulation in exploring dynamics of urban systems; and we will critically speculate where the design field of urban computing might be heading in the future. Objectives By the end of the course, students will develop a broad yet critical understanding of what urban intelligence is, how it can be constructed, and what limits it may reach, from a sociotechnical and a systemic perspective. Topics include: Theory and technologies of computation, information, communication, and human factors in relation to the built environment; systems theory; cybernetics; 1 ARCH 4050/6050 FALL 2017, SoA, UNC Charlotte urban dynamics; ecology; social cooperation; collective intelligence; game theory; mechanism design; as well as applications in mobility, resource allocation, sustainability, and energy. Method The course combines discussions, lectures, and workshops.
    [Show full text]
  • Paul Smolensky
    Vita PAUL SMOLENSKY Department of Cognitive Science 11824 Mays Chapel Road 239A Krieger Hall Timonium, MD 21093-1821 Johns Hopkins University (667) 229-9509 Baltimore, MD 21218-2685 May 5, 1955 (410) 516-5331 Citizenship: USA [email protected] cogsci.jhu.edu/directory/paul-smolensky/ DEGREES Ph.D. in mathematical physics, Indiana University, 1981. M.S. in physics, Indiana University, 1977. A.B. summa cum laude in physics, Harvard University, 1976. PROFESSIONAL POSITIONS Partner Researcher, Microsoft Research Artificial Intelligence, Redmond WA, Dec. 2016−present. Krieger-Eisenhower Professor of Cognitive Science, Johns Hopkins University, 2006–present. Full Professor, Department of Cognitive Science, Johns Hopkins University, 1994–2006. Chair, Department of Cognitive Science, Johns Hopkins University, Jan. 1997−June 1998 (Acting), July 1998−June 2000 Professor, Department of Computer Science, University of Colorado at Boulder, Full Professor, 1994–95 (on leave, 1994–95). Associate Professor, 1990–94. Assistant Professor, 1985–90. Assistant Research Cognitive Scientist (Assistant Professor – Research), Institute for Cognitive Science, University of California at San Diego, 1982–85. Visiting Scholar, Program in Cognitive Science, University of California at San Diego, 1981–82. Adjunct Professor, Department of Linguistics, University of Maryland at College Park, 1994–2010. Assistant Director, Center for Language and Speech Processing, Johns Hopkins University, 1995–2008. Director, NSF IGERT Training Program, Unifying the Science of Language, 2006−2015. Director, NSF IGERT Training Program in the Cognitive Science of Language, 1999−2006. International Chair, Inria Paris (National Institute for Research in Computer Science and Automation), 2017−2021. Visiting Scientist, Inserm-CEA Cognitive Neuroimaging Unit, NeuroSpin Center, Paris, France, 2016.
    [Show full text]
  • 8418B0e55972ecac157afb730f8
    Baltic Journal of Economic Studies Vol. 4, No. 2, 2018 DOI: https://doi.org/10.30525/2256-0742/2018-4-2-254-260 ANALYTIC OVERLOOK OF THE METHODOLOGY OF SYNERGETICS IN POSTNONCLASSICAL SCIENCE Viktor Yakimtsov1 Ukrainian National Forestry University, Ukraine Abstract. Purpose. This article reveals the main definitions of synergetics and methods that are being used in synergetic research. The differences-characteristics of classical, nonclassical, and postnonclassical science and their schematic illustration are described. There are criteria, by which the main methodological principles of synergetics are being chosen. The reasons that have caused an appearance of synergetics and its methodological apparatus and the framework of this apparatus are considered. The special aspects of nonlinearity of complicated systems, in our opinion, include the economic ones. Methodology. Such foreign and domestic scientists as Wiener N. (2003), Thom R. (1975, 1996), Prigogine I., Stengers I. (1986), Zang V.B. (1999), and Arnold V. (2004) have used methodological apparatus of synergetics in modern science. Methodologically synergetics is open for those new conceptions that are being formed in certain disciplines. Methodological principles of synergetics that cause the “colostral” principles are nonlinearity, nonclosure, and instability. The main principle – the rule of nonlinearity is a contravention of the principle of the super offer in the certain phenomenon (process): the result of adding the impacts on the system is not the adding these impacts’ results. The causes’ results cannot be added. This means that the result of adding the causes does not equal to the union of causes’ results. Results. For the synergy concept, the idea is typical that we see everything at once: the whole and its parts.
    [Show full text]
  • History of Cybernetics - R
    SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - History of Cybernetics - R. Vallee HISTORY OF CYBERNETICS R. Vallée Université Paris-Nord, France Keywords: Autopoiesis, cybernetics, entropy, feedback, information, noise, observation, variety. Contents 1. Origins of Cybernetics 1.1 Contemporary Initiators 1.2 Past Contributors 2. Basic Concepts 2.1 Foundations 2.1.1.Retroaction 2.1.2.Information 2.2 Other Important Concepts 2.2.1.Variety 2.2.2.Observers 2.2.3.Epistemology and Praxiology 2.2.4.Isomorphism and Multidisciplinarity 3. Links with Other Theories 4. Future of Cybernetics Appendix Glossary Bibliography Biographical Sketch Summary The most important initiator of cybernetics was Norbert Wiener (l894–1964) with his book “Cybernetics or Control and Communication in the Animal and the Machine”. The contribution of Warren S. McCulloch (1898–1969) may be compared to that of Wiener. Cybernetics UNESCOhas also had precursors such as– A. M.EOLSS Ampère who introduced the word cybernétique as well as B. Trentowski who did the same in Polish. H. Schmidt, S. Odobleja in the 1930s, and P. Postelnicu in the early 1940s recognized the general importance of the idea of negative feedback. SAMPLE CHAPTERS The basic concepts of cybernetics are negative feedback and information. A famous example of negative feedback is given by Watt’s governor, the purpose of which is to maintain the speed of the wheel of a steam engine, at a given value, despite perturbations. The theory of information, mainly due to Claude E. Shannon, gives a measure of the unexpectedness of a message carried by a signal. Other traits of cybernetics must be noted, such as the “principle of requisite variety” introduced by W.
    [Show full text]
  • Synergetics - Hermann Haken
    SYSTEMS SCIENCE AND CYBERNETICS – Vol. I - System Theories: Synergetics - Hermann Haken SYSTEM THEORIES: SYNERGETICS Hermann Haken Institute for Theoretical Physics 1, Center of Synergetics,University of Stuttgart, D- 70550 Stuttgart. Keywords: Self-organization, complex systems, instability, order parameter, slaving principle, control parameter, structure, spatial structure, temporal structure, symmetry breaking, fluctuations, chaos, laser, fluids, chemical patterns, pattern recognition, medicine, psychology, evolution, information, mathematics, physics, economy, humanities, open systems Contents 1. Review of Subject Articles 2. Definition of Synergetics 3. Goals and General Approaches 4. Some Typical Examples 4.1 The Laser 4.2 The Convection Instability of Fluid Dynamics 4.3 An Example from Sociology and Linguistics 5. Basic Concepts 6. Applications to Science 6.1 Physics 6.2 Chemistry 6.3 Mechanical Engineering 6.4 Electrical Engineering 6.5 Biology 6.6 Psychology 7. Applications to Technology 7.1 Computer Science 7.2 Informatics 7.3 Telecommunication 8. Applications to Humanities 8.1 EconomyUNESCO – EOLSS 8.2 Sociology 8.3 Linguistics 8.4 Culture Including Art and Literature 8.5 Philosophy SAMPLE CHAPTERS 8.6 Epistemology 9. Mathematical Tools 10. Relations to Other Approaches Glossary Bibliography Biographical Sketch Summary ©Encyclopedia of Life Support Systems (EOLSS) SYSTEMS SCIENCE AND CYBERNETICS – Vol. I - System Theories: Synergetics - Hermann Haken S. has links to many fields of the natural sciences, to technology and to the humanities. The outstanding feature of S. is its goal to unearth common features in the macroscopic behavior of a great variety of otherwise quite different systems. As this article witnesses, this goal has been achieved by means of central concepts, such as instability, order parameters and the slaving principle.
    [Show full text]
  • The Road to Servomechanisms: the Influence of Cybernetics on Hayek From
    The Road to Servomechanisms: The Influence of Cybernetics on Hayek from The Sensory Order to the Social Order by Gabriel Oliva CHOPE Working Paper No. 2015-11 October 2015 The Road to Servomechanisms: The Influence of Cybernetics on Hayek from The Sensory Order to the Social Order Gabriel Oliva University of São Paulo [email protected] October 2015 Abstract: This paper explores the ways in which cybernetics influenced the works of F. A. Hayek from the late 1940s onward. It shows that the concept of negative feedback, borrowed from cybernetics, was central to Hayek’s attempt of giving an explanation of the principle to the emergence of human purposive behavior. Next, the paper discusses Hayek’s later uses of cybernetic ideas in his works on the spontaneous formation of social orders. Finally, Hayek’s view on the appropriate scope of the use of cybernetics is considered. Keywords: Cybernetics, F. A. Hayek, Norbert Wiener, Garrett Hardin, Ludwig von Bertalanffy. JEL Codes: B25, B31, C60 2 The Road to Servomechanisms: The Influence of Cybernetics on Hayek from The Sensory Order to the Social Order1 Gabriel Oliva When I began my work I felt that I was nearly alone in working on the evolutionary formation of such highly complex self-maintaining orders. Meanwhile, researches on this kind of problem – under various names, such as autopoiesis, cybernetics, homeostasis, spontaneous order, self-organisation, synergetics, systems theory, and so on – have become so numerous that I have been able to study closely no more than a few of them. (Hayek, 1988, p. 9) 1. Introduction It is widely recognized in the literature2 that the Austrian economist F.
    [Show full text]
  • Haken & Tschacher-2017-Prepublication Version
    How to modify psychopathological states? Hypotheses based on complex systems theory Hermann Haken* and Wolfgang Tschacher** *Institute for Theoretical Physics, University of Stuttgart, Germany [email protected] **University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland [email protected] corresponding author: Wolfgang Tschacher pre-publication version Abstract In our mathematical analysis based on the assumptions of complexity science, the emergence of a pattern is the result of a competition of modes, which each have a parameter value attached. In the context of visual pattern recognition, a specific connectionist system (the synergetic computer SC) was developed, which was derived from the assumptions of synergetics, a theory of complex systems. We adapted the processes of visual pattern recognition performed by the SC to a different context, psychopathology and therapeutic interventions, assuming these scenarios are analogous. The problem then becomes, under which conditions will a previously established psychopathological pattern not be restituted? We discuss several cases by using the equations of the SC. Translated to the psychopathological context, we interpret the mathematical findings and proofs in such a way that successful corrective interventions, e.g. by psychotherapy, should focus on one alternative pattern only. This alternative cognition-behavior-experience pattern is to be constructed individually by a therapist and a patient in the therapeutic alliance. The alternative pattern must be provided with higher valence (i.e. affective and motivational intensity) than possessed by the psychopathological pattern. Our findings do not support a linear symptom- oriented therapy approach based on specific intervention techniques, but rather a holistic approach. This is consistent with empirical results of psychotherapy research, especially the theory of common factors.
    [Show full text]
  • The Road to Servomechanisms: the Influence Of
    Running head: The Road to Servomechanisms THE ROAD TO SERVOMECHANISMS: THE INFLUENCE OF CYBERNETICS ON HAYEK FROM THE SENSORY ORDER TO THE SOCIAL ORDER Gabriel Oliva University of São Paulo ABSTRACT This paper explores the ways in which cybernetics influenced the works of F. A. Hayek from the late 1940s onward. It shows that the concept of negative feedback, borrowed from cybernetics, was central to Hayek’s attempt to explain the principle of the emergence of human purposive behavior. Next, the paper discusses Hayek’s later uses of cybernetic ideas in his works on the spontaneous formation of social orders. Finally, Hayek’s view on the appropriate scope of the use of cybernetics is considered. Keywords: Cybernetics, F. A. Hayek, Norbert Wiener, Garrett Hardin, Ludwig von Bertalanffy. JEL Codes: B25; B31; C60 The Road to Servomechanisms 2 When I began my work I felt that I was nearly alone in working on the evolutionary formation of such highly complex self-maintaining orders. Meanwhile, researches on this kind of problem – under various names, such as autopoiesis, cybernetics, homeostasis, spontaneous order, self-organisation, synergetics, systems theory, and so on – have become so numerous that I have been able to study closely no more than a few of them. (Hayek, 1988, p. 9) 1. INTRODUCTION Recently, the new approach of complexity economics has gained a significant number of followers. Some authors, such as Colander et al. (2004), claim that a “new orthodoxy” is gradually emerging inside the mainstream of economics and that this orthodoxy will be founded on the vision of the economy as a complex system.
    [Show full text]
  • Chapter 1 the BACKGROUND to SYSTEMICS
    Chapter 1 THE BACKGROUND TO SYSTEMICS 1.1 Introduction 1.2 What is Systemics? 1.3 A short, introductory history 1.4 Fundamental theoretical concepts 1.4.1 Set theory 1.4.2 Set theory and systems 1.4.3 Formalizing systems 1.4.4 Formalizing Systemics 1.5 Sets, structured sets, systems and subsystems 1.6 Other approaches 1.1 Introduction This book is devoted to the problems arising when dealing with emergent behaviors in complex systems and to a number of proposals advanced to solve them. The main concept around which all arguments revolve, is that of Collective Being. The latter expression roughly denotes multiple systems in which each component can belong simultaneously to different subsystems. Typical instances are swarms, flocks, herds and even crowds, social groups, sometimes industrial organisations and perhaps the human cognitive system itself. The study of Collective Beings is, of course, a matter of necessity when dealing with systems whose elements are agents, each of which is capable of some form of cognitive processing. The subject of this book could therefore be defined as "the study of emergent collective behaviors within assemblies of cognitive agents". 2 Chapter 1 Needless to say, such a topic involves a wide range of applications attracting the attention of a large audience. It integrates contributions from Artificial Life, Swarm Intelligence, Economic Theory, but also from Statistical Physics, Dynamical Systems Theory and Cognitive Science. It concerns domains such as organizational learning, the development or emergence of ethics (metaphorically intended as social software), the design of autonomous robots and knowledge management in the post-industrial society.
    [Show full text]
  • Buzsaki G. Rhythms of the Brain.Pdf
    Rhythms of the Brain György Buzsáki OXFORD UNIVERSITY PRESS Rhythms of the Brain This page intentionally left blank Rhythms of the Brain György Buzsáki 1 2006 3 Oxford University Press, Inc., publishes works that further Oxford University’s objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2006 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Buzsáki, G. Rhythms of the brain / György Buzsáki. p. cm. Includes bibliographical references and index. ISBN-13 978-0-19-530106-9 ISBN 0-19-530106-4 1. Brain—Physiology. 2. Oscillations. 3. Biological rhythms. [DNLM: 1. Brain—physiology. 2. Cortical Synchronization. 3. Periodicity. WL 300 B992r 2006] I. Title. QP376.B88 2006 612.8'2—dc22 2006003082 987654321 Printed in the United States of America on acid-free paper To my loved ones. This page intentionally left blank Prelude If the brain were simple enough for us to understand it, we would be too sim- ple to understand it.
    [Show full text]
  • Predicting and Facilitating the Emergence of Optimal Solutions for a Cooperative “Herding” Task and Testing Their Similitude to Contexts Utilizing Full-Body Motion
    Predicting and Facilitating the Emergence of Optimal Solutions for a Cooperative “Herding” Task and Testing their Similitude to Contexts Utilizing Full-Body Motion A dissertation submitted to the Division of Graduate Education and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Psychology of the McMicken College of Arts and Sciences by Patrick Nalepka M. A. University of Cincinnati, 2016 January, 2018 Committee Chair: Kevin Shockley, Ph.D. Committee: Michael J. Richardson, Ph.D. Anthony Chemero, Ph.D. Rachel W. Kallen, Ph.D. Paula Silva, Ph.D. ii Abstract Multi-agent activity is an emergent process, with the roles and responsibilities of individual actors a self-organized consequence of task-dynamic constraints and perturbations. The shepherding paradigm, first investigated by Nalepka, Kallen, Chemero, Saltzman, and Richardson, (2017), was directed towards exploring the emergence of stable multi-agent behavioral modes within dynamically changing task-environments. The task involved pairs of participants using their hands to contain a herd of autonomous and reactive “sheep” within a virtual game field projected on a tabletop display. Initially, all participants employed a search-and-recover (S&R) mode of behavior, moving from sheep-to-sheep to corral the herd to a target containment region in the center of the game field. However, a subset of dyads learned to coordinate their movements, forming an oscillating “wall” that contained the herd (termed coupled oscillatory containment)— a behavioral mode termed coupled oscillatory containment (COC)—which allowed dyads to achieve superior task performance. Experiment 1 investigated a potential control parameter to promote the emergence of COC behavior, as well as determine whether changes in oculomotor behavior might predict its emergence using recurrence quantification analysis (RQA).
    [Show full text]
  • Connective Environments 2
    ARCH7211: CONNECTIVE ENVIRONMENTS 2 DESIGN COMPUTATION STUDIO LAB Tue/Thu 10:00am-12:30pm DARTS and studio space. Course Instructor: Dr. Dimitris Papanikolaou / [email protected] / Urban Synergetics Lab / Office: Storrs 146 Teaching Assistant: Atefeh Mahdavi Goloujeh / [email protected] Course website: TBD Office Hours: Wed (by appointment). PREMISE The deeper information technology penetrates urban life, the more pressing is the urgency for architects, engineers, and planners not only to design more intelligent and participatory systems but also to understand their complex emerging behavior. During the past decades, the design of “smart” urban environments followed a command-and-control approach in which the city is seen as a commander for serving the needs of its users. Today, widespread expansion of computing, and simultaneous sharing of resources between people, makes this approach increasingly infeasible for the simple reason that the needs and wants of one individual may often conflict those of another. The course investigates design, engineering, and empirical assessment of participatory cyberphysical systems of common pool resources. We will look at how information, human behavior, and physical constraints, shape the capabilities of cyber- physical sociotechnical systems, and how novel interactive technologies and design strategies may enhance them. We envision a future in which coordination emerges collectively from how humans interact with data, with and through the physical environment. Towards this goal, students will prototype enabling hardware and software technologies to connect humans, objects and places; they will design control mechanisms across scales to drive human behavior towards desired collective outcomes; and they will test these ideas through strategic game experiments.
    [Show full text]