Design of Watershed Based Water Quality Monitoring the Case of Nitrate Pollution in the Aconcagua River, Chile

Total Page:16

File Type:pdf, Size:1020Kb

Design of Watershed Based Water Quality Monitoring the Case of Nitrate Pollution in the Aconcagua River, Chile Design of Watershed Based Water Quality Monitoring The Case of Nitrate Pollution in the Aconcagua River, Chile Dissertation Zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) Vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von Diplom Chemiker Lars Ribbe (M.Eng.) geboren am 28.06.1968 in Bremen Februar 2008 Gutachter: 1. Prof. Dr. Wolfgang Albert Flügel (Friedrich-Schiller-Universität Jena) -------------------------------------------------------------------------------------------- 2. Prof. Dr. Hartmut Gaese (Fachhochschule Köln) --------------------------------------------------------------------------------------------- Tag der öffentlichen Verteidigung: 7.5.2008 Design of Watershed Based Water Quality Monitoring The Case of Nitrate Pollution in the Aconcagua River, Chile Dissertation For the academic degree of Doctor rerum naturalium (Dr. rer. nat.) Friedrich-Schiller-University Jena Faculty of Chemistry and Earth Sciences Author: Dipl.Chem. Lars Ribbe (M.Eng) February 2008 Preface The research which led to the present dissertation has been realized between 2004 and 2007 under the umbrella of the university cooperation between the Catholic University of Valparaíso, Chile and Cologne University of Applied Sciences, Germany. Both universities provided valuable support in terms of funding and personnel to render the research possible. In addition, the support of the German Ministry of Education and Science (BMBF) is appreciated as they provided support to the project for mobility and consumables. In particular, I would like to thank Prof. Dr. Hartmut Gaese for his incessant personal and institutional support and Prof. Dr. Eduardo Salgado for the invaluable help on the Chilean side throughout the study. I am very grateful to have had Prof. Dr. Wolfgang-Albert Flügel as the main supervisor during this research and appreciated his critical and very helpful review and recommendations throughout the work leading to this thesis. Through him and through his research team at the Friedrich-Schiller-University I had the chance to become acquainted with new and fascinating aspects of integrated river basin modelling and management. In addition, there are other institutions and persons that generously supported the field work, above all the Chilean Water Service (DGA). DGA-Santiago provided the bulk of the required data on hydrology, water quality and GIS. The regional DGA in Quillota supported the sampling in the Pocochay sub-watershed. Personally, I would like to thank Mesenia Atenas, Monica Pardo, Cristian Nuñez and Francisco Riestra (Department of Water Conservation and Protection) and Ana Maria Gangas, María Angélica Alegría and Victoria Pozo (Department of Studies) for their kind support and advice. At the Catholic University of Valparaiso I thank Paula Delgado for supporting sampling and for discussing sampling design in the Pocochay stream and for organising the agricultural survey in the Pocochay sub-watershed study together with Sebastian Rivera. Finally, I would like to thank Maxime Souvignet regarding tremendous support in many technical aspects and on the revision of the text, Santiago Penedo, Rui Pedroso, and Alexandra Nauditt for the review and support in all aspects during the final phase of compiling the thesis. Content List of Tables ........................................................................................................i List of Figures ...................................................................................................... ii List of Acronyms ................................................................................................. iv Abstract .............................................................................................................. v Zusammenfassung (Summary in German) .............................................................. vi 1. Introduction.................................................................................................1 2. Background .................................................................................................3 2.1. Significance of Monitoring ....................................................................................3 2.1.1. Relation between Monitoring and the Decision Making Process................................................3 2.1.2. Definitions and Types of Monitoring.....................................................................................6 2.1.3. Conclusions......................................................................................................................8 2.2. Review of Monitoring Network Design ....................................................................8 2.2.1. Introduction .....................................................................................................................8 2.2.2. Monitoring Frequency ......................................................................................................11 2.2.3. Monitoring Locations .......................................................................................................14 2.2.4. Variability of Water Quality Parameters .............................................................................16 2.2.5. Shortcomings of Monitoring Design Methods ......................................................................17 2.3. Research Problem ............................................................................................. 18 2.4. Objectives ....................................................................................................... 19 2.5. Methodology .................................................................................................... 20 3. Nitrate Processes and Modelling.................................................................... 22 3.1. Environmental Behaviour of Nitrate ..................................................................... 22 3.1.1. Significance of Nitrate Pollution in Surface Waters...............................................................22 3.1.2. Nitrogen Pathways to Surface Waters ................................................................................23 3.1.3. Factors influencing Nitrogen Export from Irrigated Areas .....................................................25 3.1.4. Nitrogen impacts from Point Sources.................................................................................28 3.1.5. Nitrogen Processes in Surface Waters................................................................................28 3.2. Modelling Nitrate in Watersheds .......................................................................... 30 3.3. Conceptual Model to Develop Long Term Nitrate Concentrations .............................. 31 3.3.1. Nitrogen Inputs to River Reaches......................................................................................32 3.3.2. Watershed Hydrology ......................................................................................................35 4. Aconcagua Watershed Analysis ..................................................................... 39 4.1. Introduction to the Study Area............................................................................ 39 4.2. Watershed Description....................................................................................... 41 4.2.1. Location and General Description of the Watershed .............................................................41 4.2.2. Climate and Hydrology ....................................................................................................43 4.2.3. Land Use .......................................................................................................................56 4.2.4. Water Uses ....................................................................................................................62 4.2.5. Nitrogen Sources of Pollution............................................................................................68 4.2.6. Reported River Water Quality Data....................................................................................75 4.2.7. Conclusions....................................................................................................................77 5. Pocochay Sub-watershed Analysis................................................................. 78 5.1. Land and Fertilizer Use ...................................................................................... 79 5.1.2. Fertilizer Applications ......................................................................................................81 5.2. Water Quality and Discharge Measurements ......................................................... 82 5.2.1. Monitoring Points ............................................................................................................82 5.2.2. Measurement Methods.....................................................................................................82 5.2.3. Nitrogen Loads and Export Coefficients..............................................................................83 5.2.4. Interpretation of Results ..................................................................................................86 6. Modelling Nitrate Variability in the Aconcagua River ......................................... 87 6.1. Model Set up and Inputs .................................................................................... 88 6.1.1. Determine
Recommended publications
  • Html 9 Water Discharge from a Treatment Plant
    Esval S.A. Sustainability Report 2009 ABOUT THIS REPORT Compliance with the Principles on 3. Workshop with representatives Reporting Content of neighbor committees, organized This is Esval’s second Sustainability Report, into Communal Associations (UNCOs) which outlines its economic, social and The content of this report was defined in the region, for which the Company environmental performance in a balanced considering the principles of the GRI standard invited all the UNCO leaders to a way, pursuant to the criteria and requirements on relevance or materiality, sustainability working breakfast meeting. With the laid down by the Global Reporting Initiative context and stakeholder inclusiveness. help of a consultant team, the attendees (GRI) in its G3/2006 guidelines for drawing up were asked about the degree of sustainability reports1. importance they gave to each of the 1. Benchmark of sustainability content items of the report published reports of national water utilities. This The content of this report only refers to Esval’s the previous year. 21 representatives concept identified the main issues and operations in the Valparaíso Region and the of communal organizations attended this aspects reported by the industry and best January 1 through December 31, 2009 period, workshop. reporting practice. unless expressly indicated otherwise. For better understanding, the figures and data are shown All the participants also had the opportunity compared to the years 2007 and 2008. 2. Analysis of press articles. The aim of raising other issues of interest that were not was to find out the significant issues for reported on in the 2008 report or about which In regard to the data reported the previous year, the Company and industry from a public they would like to have more information.
    [Show full text]
  • Debris Flows Occurrence in the Semiarid Central Andes Under Climate Change Scenario
    geosciences Review Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario Stella M. Moreiras 1,2,* , Sergio A. Sepúlveda 3,4 , Mariana Correas-González 1 , Carolina Lauro 1 , Iván Vergara 5, Pilar Jeanneret 1, Sebastián Junquera-Torrado 1 , Jaime G. Cuevas 6, Antonio Maldonado 6,7, José L. Antinao 8 and Marisol Lara 3 1 Instituto Argentino de Nivología, Glaciología & Ciencias Ambientales, CONICET, Mendoza M5500, Argentina; [email protected] (M.C.-G.); [email protected] (C.L.); [email protected] (P.J.); [email protected] (S.J.-T.) 2 Catedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza M5528AHB, Argentina 3 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8320000, Chile; [email protected] (S.A.S.); [email protected] (M.L.) 4 Instituto de Ciencias de la Ingeniería, Universidad de O0Higgins, Rancagua 2820000, Chile 5 Grupo de Estudios Ambientales–IPATEC, San Carlos de Bariloche 8400, Argentina; [email protected] 6 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad de La Serena, Coquimbo 1780000, Chile; [email protected] (J.G.C.); [email protected] (A.M.) 7 Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile 8 Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47404, USA; [email protected] * Correspondence: [email protected]; Tel.: +54-26-1524-4256 Citation: Moreiras, S.M.; Sepúlveda, Abstract: This review paper compiles research related to debris flows and hyperconcentrated flows S.A.; Correas-González, M.; Lauro, C.; in the central Andes (30◦–33◦ S), updating the knowledge of these phenomena in this semiarid region.
    [Show full text]
  • Where Does the Chilean Aconcagua River Come From? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments
    water Article Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments Sebastián Andrés Crespo 1,* ,Céline Lavergne 2,3 , Francisco Fernandoy 4 , Ariel A. Muñoz 1, Leandro Cara 5 and Simón Olfos-Vargas 1 1 Instituto de Geografía, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile; [email protected] (A.A.M.); [email protected] (S.O.-V.) 2 Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2581782, Chile; [email protected] 3 HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 234000, Chile 4 Laboratorio de Análisis Isotópico (LAI), Facultad de Ingeniería, Universidad Andrés Bello, Viña del Mar 2531015, Chile; [email protected] 5 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Mendoza 5500, Argentina; [email protected] * Correspondence: [email protected] Received: 1 August 2020; Accepted: 12 September 2020; Published: 21 September 2020 Abstract: The Aconcagua river basin (Chile, 32 ◦S) has suffered the effects of the megadrought over the last decade. The severe snowfall deficiency drastically modified the water supply to the catchment headwaters. Despite the recognized snowmelt contribution to the basin, an unknown streamflow buffering effect is produced by glacial, periglacial and groundwater inputs, especially in dry periods. Hence, each type of water source was characterized and quantified for each season, through the combination of stable isotope and ionic analyses as natural water tracers. The δ18O and electric conductivity were identified as the key parameters for the differentiation of each water source.
    [Show full text]
  • Sustainable Water Footprint of Avocado Imported to Norway from Chile - Norwegian Retailer’S Information and Influence on Water Management
    Master’s Thesis 2020 30 ECTS The Faculty of Landscape and Society Sustainable water footprint of avocado imported to Norway from Chile - Norwegian retailer’s information and influence on water management Jonas Ådnøy Holmqvist International Environmental Studies Acknowledgments: I would like to thank my supervisor, Professor Espen Olav Sjaastad, for his guidance in academic design, resourceful input and patience. I would like to thank Rema 1000, Bama and Nature’s Pride for forthcomingly participating in this study and sharing openly. Gina is the one I owe the biggest thanks for keeping our family ship shape at all times and patiently made room for countless writing hours. 2 Sustainable water footprint of avocado imported to Norway from Chile - Norwegian retailer’s information and influence on water management Thesis summary This thesis investigates the control regimes of the enterprises constituting the value chain for avocado from producers in Chile to the Norwegian retailer Rema 1000. The Norwegian enterprises Rema 1000 and Bama together with Dutch Nature’s Pride constitute the value chain downstream of the producers. The effectiveness of the combined control regime of the downstream enterprises in ensuring sustainable water consumption in the production is evaluated. The thesis also describes the legal and administrative regime for water management in Chile and conclude that the regime and find that the effectiveness of the enterprises control regime is strongly influenced by the state’s water management. Climatic changes including the mega drought affecting Chile since 2010 is briefly described and is found to have significant impact on sustainability of industrial avocado production. By investigating the water footprint and the effects of the control regime this thesis seeks to analyse what Norweigan importers of avocado are doing to ensure sustainability in the production of exotic fruits and vegetables with a potentially large impact in the producing locations.
    [Show full text]
  • Water Resources in Chile: the Critical Relation Between Glaciers and Mining for Sustainable Water Management Recursos Hídricos
    Investig. Geogr. Chile, 46: 3-24 (2013) Water resources in Chile: The critical relation between glaciers and mining for sustainable water management Antonio Bellisario1 [email protected]; Francisco Ferrando2 fferrand@uchilefau. cl, Jason Janke3 [email protected] y ABSTRACT Rock glaciers and debris covered glaciers are often understudied in comparison to their uncovered glacial counterparts (in which stunning surface ice is clearly visible). However, rock glaciers and debris covered glaciers are more abundant, often cover a larger area, and will continue to supply a water resource once other glaciers have melted. The surface rock and weathered material cover on rock glaciers and debris covered glaciers acts as an insulator to protect internal ice. As a result, they maintain a reservoir of ice that will be released as water as the climate warms. In the Central Andes (31°–35° S), these catchments provide a valuable water source for nearby urban areas such as Santiago, Chile, which supports more than 6 million people. They also provide irrigation water for agriculture, supporting the burgeoning wine industry in Chile. However, rock glacier and debris covered glaciers are often misinterpreted as other landforms, and their water source is unrecognized by many. The objective of this research is to provide a methodology to inventory the extent of debris covered and rock glaciers in a catchment to estimate the amount of water contained within these landforms using GIS and remotely sensed data. This methodology could be used to better assess and sustainably manage the water resources in the Dry Andes in general and in the Aconcagua Basin in particular.
    [Show full text]
  • Flow and Climatic Variability on a Southamerican Mid-Latitude Basin: Río Aconcagua, Central Chile (33ºs)
    Boletín deFlow la Asociaciónand climatic de variability Geógrafos on aEspañoles Southamerican N.º 58 mid-latitude- 2012, págs. basin: 481-485 río Aconcagua, Central Chile (33ºS) I.S.S.N.: 0212-9426 FLOW AND CLIMATIC VARIABILITY ON A SOUTHAMERICAN MID-LATITUDE BASIN: RÍO ACONCAGUA, CENTRAL CHILE (33ºS) Carolina Martínez1, Alfonso Fernández1, Patricio Rubio2 1Departamento de Geografía, Universidad de Concepción. Chile 2Departamento de Geografía Física y Análisis Geográfico Regional. Universidad de Barcelona I. INTRODUCTION The exoreic hydrographic river basin of the Aconcagua River is one of the most important in semi-arid Chile because its drained surface area is 7.163 km2, equivalent to 45% of the Valparaíso Region, but also because a large part of the agricultural and industrial activities contributing to the Gross National Product take place near the mid-lower River basin. Consequently, water availability is an essential aspect of sustainable development, especially if the water demand for irrigation, industry, mining and domestic use is above 500 million m3 yearly in this same area where almost 30% of the regional population lives. The resources available to satisfy this water demand comes from surface and groundwater with an irrigation structure of 1230 channels and 53 dams, which are principally located in the lower basin. The present paper evaluated the flow behavior of the Aconcagua River Basin for the period 1961-2000 as well as its relations to climatic variability in central Chile, given that some studies have established a progressive diminishment of the snow cover that feeds the Andean mixed regime basins, such as the Aconcagua river Basin, and which is in agreement with other studies of world tendencies.
    [Show full text]
  • Secundaria De Calidad Para La Protección De Las Aguas Continentales En La Cuenca Del Río Aconcagua, Región De Valparaíso
    CENTRO NACIONAL DEL MEDIO AMBIENTE ESTUDIO PARA ACTUALIZACIÓN DE ANTECEDENTES TÉCNICOS PARA DESARROLLAR LA NORMA SECUNDARIA DE CALIDAD PARA LA PROTECCIÓN DE LAS AGUAS CONTINENTALES EN LA CUENCA DEL RÍO ACONCAGUA, REGIÓN DE VALPARAÍSO INFORME FINAL Versión 3 Solicitado por SEREMI Medio Ambiente, Región de Valparaíso Ministerio de Medio Ambiente Santiago de Chile Mayo de 2015 CENTRO NACIONAL DEL MEDIO AMBIENTE Actualización de antecedentes técnicos para desarrollar la norma secundaria de calidad para la protección de las aguas continentales en la cuenca del río Aconcagua, región de Valparaíso Equipo de Trabajo Rodrigo Ramos Alejandro Palma Valentina Escanilla Unidad de Biodiversidad, Centro Nacional del Medio Ambiente. Contraparte Técnica Dino Figueroa Secretaría Regional Ministerial del Medio Ambiente, Región de Valparaíso. Hernan Latuz Francisco Donoso Ministerio del Medio Ambiente. 2 CENTRO NACIONAL DEL MEDIO AMBIENTE Actualización de antecedentes técnicos para desarrollar la norma secundaria de calidad para la protección de las aguas continentales en la cuenca del río Aconcagua, región de Valparaíso Contenido RESUMEN EJECUTIVO .................................................................................................... 5 INTRODUCCIÓN ............................................................................................................... 7 Objetivo general ................................................................................................................. 9 Objetivos específicos ........................................................................................................
    [Show full text]
  • Spatial Distribution of Copper, Organic Matter and Ph in Agricultural Soils Affected by Mining Activities
    Journal of Soil Science and Plant Nutrition, 2011, 11 (3), 125-145 Spatial distribution of copper, organic matter and pH in agricultural soils affected by mining activities R. Aguilar1, C. Hormazábal1, H. Gaete2, A. Neaman1,3,* 1Laboratorio de Suelos y Análisis Foliar, Facultad de Agronomía, Pontificia Universidad Católica de Valpa- raíso, Casilla 4-D, Quillota, Chile. 2Departamento de Biología y Ciencias Ambientales, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile. 3Centro Regional de Estudios en Alimentos Saludables (CREAS), Región de Valparaíso. * Corresponding author: E-mail: alexander.nea- [email protected], Phone: 56-32-2274537, Fax: 56-32-2274570 Abstract The Aconcagua River Basin, located in north-central Chile, is an important agricul- tural region of the country. However, several copper mining industries are also lo- cated in this basin. A total of 103 topsoil samples were collected at varying distances from mining industries. There were no statistically significant differences between the sampling areas with regard to organic matter content and copper concentration. However, the sampling areas were significantly different with regard to soil pH. Soils of the Putaendo sampling area exhibited the lowest pH values (mean of 6.3), while the highest pH values (mean of 7.1) were measured in the Catemu – Chagres sampling area. In the sampling areas where mining activities were absent, the to- tal copper concentrations ranged from 70-155 mg kg-1. These concentrations are a result of the geological setting and/or of applications of copper-containing fungi- cides. High copper concentrations (above 700 mg kg-1, with a maximum of 4000 mg kg-1) were generally observed near mining activities or in areas where mining activities were located nearby and upstream.
    [Show full text]
  • Influence of Intensive Agriculture on Benthic Macroinvertebrate
    water Article Influence of Intensive Agriculture on Benthic Macroinvertebrate Assemblages and Water Quality in the Aconcagua River Basin (Central Chile) Pablo Fierro 1,* , Claudio Valdovinos 2, Carlos Lara 3 and Gonzalo S. Saldías 4,5 1 Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile 2 Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales, Universidad de Concepción, y Centro de Ciencias Ambientales (EULA), Universidad de Concepcion, Concepcion 4070386, Chile; [email protected] 3 Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; [email protected] 4 Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4051381, Chile; [email protected] 5 Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile * Correspondence: pablo.fi[email protected] Abstract: This study assessed natural variation in the macroinvertebrate assemblages (MIB) and water quality in one of the main basins with the largest agricultural activities in Chile (Aconcagua River Basin). We sampled throughout the annual cycle; nine sampling sites were established along Citation: Fierro, P.; Valdovinos, C.; the basin, classifying according to agricultural area coverage as least-disturbed, intermediate, and Lara, C.; Saldías, G.S. Influence of most-disturbed. We collected 56 macroinvertebrate taxa throughout the entire study area. Multi- Intensive Agriculture on Benthic variate analysis shows significant differences among the three disturbance categories in different Macroinvertebrate Assemblages and seasons, both water quality variables and the MIB structure. Distance-based linear model (DistLM) Water Quality in the Aconcagua River analysis for all seasons explained more than 95.9% of the macroinvertebrate assemblages, being Basin (Central Chile).
    [Show full text]
  • Las Ruinas Indígenas Del Cerro Mauco De Aconcagua the Indian Ruins of Cerro Mauco De Aconcagua
    137 Revista Historia UdeC, N° 22, vol.1, enero-junio 2015: 137-175 ISSN 0717-8832 Las ruinas indígenas del cerro Mauco de Aconcagua The indian ruins of cerro Mauco de Aconcagua Jaime Vera Villarroel RESUMEN Los restos de construcciones indígenas en el cerro Mauco de Aconcagua, Chile Central, han sido motivo de investigaciones desde 1852. Se hace un recuento de esas investigaciones, de las características geográficas y etnohistóricas de su entorno; de su relación con los sitios arqueológicos tardíos que lo rodean, de los vestigios reales encontrados en su cumbre sean materiales y documentales; de las diversas interpretaciones e hipótesis que se han elaborado para explicar la presencia de los vestigios indígenas, especialmente un primer fechado por TLC de cerámica tardía encontrada allí (1540±50 D.C.) y la directa relación del cerro con caciques identificados de Quillota del periodo histórico. Palabras claves: Incas, río Aconcagua, pucará, Chile Central, Picunche, Quillota ABSTRACT The remains of indigenous structures at Cerro Mauco de Aconcagua, Central Chile, have been the subject of research since 1852. Recounting the history of these investigations, geographical and etnohistorical features of their environment, are reviewed; their relationship with the late archaeological sites surrounding it, of real traces found at their summit physical and documentary; of the DIVERSE interpretations and hypotheses which have been developed to explain the presence of indigenous remains, especially A Recent date by TLC OF late pottery found there (1540 ± 50 AD.) and the direct relation BETWEEN the hill and Identified Quillotanos chiefs of the historical period. Keywords: Inca, Aconcagua river, pucará, Central Chili, Picunche, Quillota Recibido: enero de 2015 Aceptado: mayo de 2015 Introducción Cuan incompleto sería el relato del pasado del Cerro Mauco de Aconcagua, si solo contásemos con los pocos vestigios arqueológicos; las ruinas que representan un porcentaje muy reducido de la actividad total efectuada allí en el pasado.
    [Show full text]
  • '-?'; KG, IAEA-R-80Q-P Application of Isctopic Technique in the Hydrolog-Ical Study of the Aconcagua River Basin L Wqvember
    '-?'; KG, IAEA-R-80Q-P Application of isctopic technique in the hydrolog-ical study of the Aconcagua River Basin _l_Wqvember 1969 - 20 November 1972 F.Alamos C. Corporación de Fomento de la Producción Departamento de Recursos Hidráulicos Santiago, Chile June 1973 CORPORACIÓN DE FOMENTO DE LA PRODUCCIÓN CHILE /\/V<XA "ÜSC L;L TECKlC-.S lSOÍC.'lC. ,3 Lí>¡ JL, ¿JTUDIG HlJRüLOGICÜ DL Li--. CUhiKCA 2_,L RIO ACONCAGUA - CHILE" CONTRATO NS 809/R2/RB Investigación realizaba por el Departamento de Recursos Hidráulicos de la Corporación de Fomento de la Producción, Chile, con la cooperación técnica y financiera de la Internacional .atomic Energy Agency con sede en Viena, Austria. Investigador Principal : Fernando Alamos Cerda Investigadores Ayudantes: Fernando Rodríguez Roa "i Osamu Suzuki Soné Julio 1970 - Junio 1973 H ! ,t ! :¡J. CORPORACIÓN DE FOMENTO DE LA PRODUCCIÓN CHILE - I - Se hace una descripción breve de la hidrología del Valle del Aconcagua, Chile, en forma independiente para cada una de sus 4 secciones en cue está lecalmente dividi- do, "con el objeto de familiarizar al lector de las interre laciones entre aguas superficiales y subterráneas; también se dá una breve visión de los principales consumos del agua. üntre los objetivos de la investigación, pueden citarse: — medición cíe caudales turbulentos; — medición de caudales máximos o peaks, provocados por los deshielos; — determinación del origen de la recarga para los diferen- tes acuíferos existentes en el valle; — deternin¿.r dirección y velocidad del escurrimiento subte rraneo; — Formar personal familiarizado con el uso de radioisótopos en hidrología. Para la medición de caudales, se utilizó el Mé- todo ue Cuentas totales, desarrollado por .HULL, usándose un escalímetro y una sonda gamma Base.
    [Show full text]
  • Sustainability Report 2 3 Sustainability Report
    1 SUSTAINABILITY REPORT 2 3 SUSTAINABILITY REPORT Contents SUSTAINABILITY REPORT LETTER BY THE PRESIDENT 4 ABOUT THIS REPORT 6 0.1 OUR COMPANY 10 0.2 TAKING CARE OF OUR IMPACT IN THE ENVIRONMENT 26 0.3 CUSTOMER RELATIONS 44 0.4 OUR EMPLOYEES 58 0.5 COMMUNITY RELATION IN OUR REGION 70 0.6 2011 PERFORMANCE AND 2012 CHALLENGES 76 0.7 GRI INDEX AND GLOBAL IMPACT 78 INDEPENDENT VERIFICATION LETTER 92 Nowadays the investments are mainly aimed at renewing But we are at a turning point now. We decided to start Jorge4 Lesser García-Huidobro and extending the drinking water and sewer networks, implementing the Strategic Plan for 2012-2017, which 5 President of the Board of Directors and we have invested more than 60 billion Chilean pesos means generating value for the community and the since 1999. It is important to highlight that in 2011, the shareholders in order to reach a sustainable growth. company made investments for 17,288 billion Chilean We think that it is essential to grow, adding value for pesos in the Region of Valparaíso, from which 12,081 residential customers and increase non-residential billion Chilean pesos were aimed at producing and customers by delivering customized solutions. All of this, distributing drinking water, which reflects what was certainly, being cost competitive. mentioned above. SUSTAINABILITY REPORT In the medium term, our concern is to define and Another important point is that alongside the major implement the strategic priorities for the company, infrastructures, a community network was built, which including, among others, the continuous quality allowed direct communication not only with the improvement of the service we provide.
    [Show full text]