For Flight Shuttle Mission

Total Page:16

File Type:pdf, Size:1020Kb

For Flight Shuttle Mission Cleared Boeing engineers help resolve problem that stalled March for flight shuttle mission By Ed Memi and industry team to determine what went wrong. “We learned the poppet broke due to high cycle stronauts who flew the Hubble Space fatigue, meaning a tremendous number of cycles are Telescope repair mission last month boarded incurred over a very short time. We suspected there Aa safer Space Shuttle Atlantis, thanks in part to might have been a hidden crack not caught by the some Boeing “detectives.” They helped NASA resolve inspection procedures in use at the time,” said control valve concerns that arose during the Space Mohammed Jebril, a Boeing space shuttle main Shuttle Endeavour’s STS-126 mission last November. propulsion system engineer. As engineers worked to resolve problems with the “To mitigate the issue, we now make sure—through gaseous hydrogen flow control valves that pressurize multiple inspection techniques—that we’re using the space shuttle’s hydrogen fuel tank, the subse- poppets that have no hidden cracks,” Jebril said. quent STS-119 mission was delayed several times. The analysis provided by Boeing was right on the The 5-inch valves, located in the aft of the space mark. When engineers looked at the three replacement shuttle orbiter, are part of its main propulsion system. flow control valves that flew on the subsequent There are three valves, each dedicated to one of the STS-119 mission in March, they saw no evidence of shuttle’s three main engines. The valves' function is cracking, resolving any lingering concerns about the to regulate the flow of gaseous hydrogen from the valves for the Hubble mission. main engines to the external fuel tank so the tank “It was challenging work to solve this complex can then deliver liquid hydrogen to the engines at issue,” Frazer said. “It was a great team effort across the correct pressure. NASA, United Space Alliance [the space shuttle During the November mission, gaseous hydrogen operations contractor and a joint venture between flowed from one of the shuttle’s engines at a Boeing and Lockheed Martin], Boeing and higher-than-normal rate. To compensate, the our suppliers. other two gaseous hydrogen flow control valves “There is still plenty of follow-on work to ensure automatically reduced the amount of their flow to we use only the best flow control valves and that prevent any problems during the ascent. problems are mitigated,” Frazer said. “But it’s a After the orbiter landed, Boeing engineers great feeling to deal with an issue this complex, one discovered the culprit. On the suspect line, a that we hadn’t previously faced, and come up with a poppet—similar to a pop-up on a sprinkler head solution that allows us to continue to fly safely.” n that regulates water flow—was cracked, and a small piece was missing. [email protected] “Our folks noticed there was a pressure differential on this flow control valve during the STS-126 launch,” said John Frazer, Boeing subsystem manager for the space shuttle main propulsion system. Engineers and shuttle managers were PHOTO: Boeing engineers played a leading role in concerned because the flow control valves serve a critical troubleshooting the failure of a gaseous hydrogen flow control function in pressurizing the fuel tank during ascent. Boeing valve on a recent space shuttle flight. The valve regulates the flow engineers in Houston, Kennedy Space Center, Fla., and of gaseous hydrogen from the main engines to the external fuel Huntington Beach, Calif., worked closely with a larger NASA tank so the tank can deliver liquid hydrogen to the engines at the correct pressure. RYAN SMITH/BOEING JUNE 2009 / BOEING FRONTIERS BOEING FRONTIERS / INTEGRATED DEFENSE SYSTEMS 35.
Recommended publications
  • The Boeing Company 2012 Annual Report at Boeing, We Aspire to Be the Strongest, Best and Best-Integrated Aerospace- Based Company in the World— for Today and Tomorrow
    The Boeing Company 2012 Annual Report At Boeing, we aspire to be the strongest, best and best-integrated aerospace- based company in the world— for today and tomorrow. The Boeing Company Contents Boeing is the world’s largest aerospace Operational Summary 1 company and leading manufacturer Message From Our Chairman 2 of commercial airplanes and defense, space and security systems. The top The Executive Council 7 U.S. exporter, Boeing supports airlines and U.S. and allied government cus- Financial Results 8 tomers in more than 150 countries. Our Form 10-K 9 products and tailored services include commercial and military aircraft, satel- Selected Programs, lites, weapons, electronic and defense Products and Services 122 systems, launch systems, advanced Shareholder Information 129 information and communication sys- Cover photo: The liquid tems, and performance-based logistics Board of Directors 130 hydrogen–powered high- and training. With corporate offices in Company Officers 130 altitude long-endurance Chicago, Boeing employs more than Phantom Eye unmanned 174,000 people across the United aircraft system States and in 70 countries. In addition, Photo above: The new our enterprise leverages the talents of 737 MAX—designed for hundreds of thousands of skilled people maximum efficiency, reliabil- working for Boeing suppliers worldwide. ity and customer appeal Financial Highlights U.S. dollars in millions except per share data 2012 2011 2010 2009 2008 Revenues 81,698 68,735 64,306 68,281 60,909 Net earnings 3,900 4,018 3,307 1,312 2,672 Earnings per share* 5.11 5.33 4.46 1.87 3.65 Operating margins 7.7% 8.5% 7.7% 3.1% 6.5% Operating cash flow 7,508 4,023 2,952 5,603 (401) Contractual backlog 372,355 339,657 303,955 296,500 323,860 Total backlog† 390,228 355,432 320,826 315,558 351,926 * Represents diluted earnings per share from continuing operations.
    [Show full text]
  • Space Shuttle Solid Rocket Motor Plume Pressure and Heat Rate Measurements
    2012 New Orleans Conferences Space Shuttle Solid Rocket Motor Plume Pressure and Heat Rate Measurements Journal: 2012 New Orleans Conferences Manuscript ID: Draft luMeetingID: 2227 Date Submitted by the Author: n/a Contact Author: Struchen, Leah http://mc.manuscriptcentral.com/aiaa-mfd12 Page 1 of 23 2012 New Orleans Conferences Space Shuttle Solid Rocket Motor Plume Pressure and Heat Rate Measurements Wulf von Eckroth, Ph.D.,1 Leah Struchen,2 Tom Trovillion, Ph.D.,3 Rafael Perez, Ph.D.,4 and Shaun Nerolich5 United Space Alliance, LLC., Kennedy Space Center, FL, 32780 and Chris Parlier6 NASA, Kennedy Space Center, FL, 32899 The Solid Rocket Booster (SRB) Main Flame Deflector (MFD) at Launch Complex 39A was instrumented with sensors to measure heat rates, pressures, and temperatures on the final three Space Shuttle launches. Because the SRB plume is hot and erosive, a robust Tungsten Piston Calorimeter was developed to compliment measurements made by off-the- shelf sensors. Witness materials were installed and their melting and erosion response to the Mach 2 / 4000°F / 4-second duration plume was observed. The data show that the specification used for the design of the MFD thermal protection system over-predicts heat rates by a factor of 3 and under-predicts pressures by a factor of 2. These findings will be used to baseline NASA Computational Fluid Dynamics (CFD) models and develop innovative MFD designs for the Space Launch System (SLS) before this vehicle becomes operational in 2017. Nomenclature KSC = Kennedy Space Center FEM = Finite Element Model MSFC = Marshall Space Flight Center PSD = power spectral density USA = United Space Alliance, LLC.
    [Show full text]
  • STS-134 Press
    CONTENTS Section Page STS-134 MISSION OVERVIEW ................................................................................................ 1 STS-134 TIMELINE OVERVIEW ............................................................................................... 9 MISSION PROFILE ................................................................................................................... 11 MISSION OBJECTIVES ............................................................................................................ 13 MISSION PERSONNEL ............................................................................................................. 15 STS-134 ENDEAVOUR CREW .................................................................................................. 17 PAYLOAD OVERVIEW .............................................................................................................. 25 ALPHA MAGNETIC SPECTROMETER-2 .................................................................................................. 25 EXPRESS LOGISTICS CARRIER 3 ......................................................................................................... 31 RENDEZVOUS & DOCKING ....................................................................................................... 43 UNDOCKING, SEPARATION AND DEPARTURE ....................................................................................... 44 SPACEWALKS ........................................................................................................................
    [Show full text]
  • The Boeing Company 2002 Annual Report
    The Boeing Company 200220022002 AnnualAnnualAnnual ReportReportReport Vision 2016: People working together as a global enterprise for aerospace leadership. Strategies Core Competencies Values Run healthy core businesses Detailed customer knowledge Leadership Leverage strengths into new and focus Integrity products and services Large-scale system integration Quality Open new frontiers Lean enterprise Customer satisfaction People working together A diverse and involved team Good corporate citizenship Enhancing shareholder value The Boeing Company Table of Contents Founded in 1916, Boeing evokes vivid images of the amazing products 1 Operational Highlights and services that define aerospace. Each day, more than three million 2 Message to Shareholders passengers board 42,300 flights on Boeing jetliners, more than 345 8 Corporate Essay satellites put into orbit by Boeing launch vehicles pass overhead, and 16 Corporate Governance 6,000 Boeing military aircraft stand guard with air forces of 23 countries 18 Commercial Airplanes and every branch of the U.S. armed forces. 20 Integrated Defense Systems We are the leading aerospace company in the world and a top U.S. 22 Boeing Capital Corporation exporter. We hold more than 6,000 patents, and our capabilities and 24 Air Traffic Management related services include formulation of system-of-systems solutions, 26 Phantom Works advanced information and communications systems, financial services, 28 Connexion by BoeingSM homeland security, defense systems, missiles, rocket engines, launch 30 Shared Services Group systems and satellites. 32 Financials But Boeing is about much more than statistics or products, no matter 88 Selected Products, how awe-inspiring. It’s also about the enterprising spirit of our people Programs and Services working together to provide customers the best solutions possible.
    [Show full text]
  • The International Space Station and the Space Shuttle
    Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17.
    [Show full text]
  • Broad Agency Announcement 04-02 - Human and Robotic Technology - Awards List
    Broad Agency Announcement 04-02 - Human and Robotic Technology - Awards List Control Project Lead Phase 1 Phase 2 Cost Number Project Title Organization Address Cost ($M) ($M) Total Cost ($M) Project Team Members 1815 600-kW High Thrust Hall Thruster Aerojet General Redmond, WA 3.31 29.35 32.66 NASA-GRC, Colorado Power Electronics, Mide Tech. Corp., System Corp. 98073-9709 Lockheed Martin Corp., Rober M. Hadley Company, Aegis Tech. Group, Lucas Machining, ProCam, Delta Hi-Tech Inc., Olypic Tool & Engineering, Advanced Tech. Co., Tayco, Idaho Labs, Falcon, President Titanium, Rhenium Alloys, Eagle Alloys 2573 Solar Electric Propulsion Direct Drive Aerojet General Redmond, WA 2.37 13.71 16.08 NASA-MSFC, NASA-GRC, Lockheed Martin Corp., SAIC, VACCO Demonstrator Corp. 98073-9709 1450 SmallTug: Miniature Flight Experiment Andrews Space, Seattle, WA 98104 2.67 15.89 18.56 NASA-JPL, SpaceDev Inc, Auburn Univ., INTECH Inc Demonstrating Cislunar Cargo Tug Inc. Technologies 2582 Next Generation Wiring Materials ASRC Aerospace Greenbelt, MD 1.51 9.87 11.39 NASA-KSC, NASA-ARC, NASA-JSC, Thermax Inc., Dept. of the Corporation 20770-6302 Air Force (Wright-Patterson AFB), U.S. Dept. of Trans. - Fed. Aviation Admin., Crosslink Polymer Research, ELORET Corp., Florida Institute of Tech. 1377 Adaptive Point-of-Load DC-to-DC BAE Systems Manassas, VA 1.66 8.33 9.99 NASA-GSFC, NASA-JPL, Univ. of Tenn., Smart Data Solutions, Converter (APOL) 20110-4122 RTI 1461 RAD6000 System-on-a-Chip BAE Systems Manassas, VA 2.79 10.16 12.95 NASA-GSFC, NASA-JPL, Univ. of Tenn., Smart Data Solutions Microcontroller 20110-4122 1660 150nm Extreme Temp Technology and BAE Systems Manassas, VA 2.60 11.90 14.50 NASA-JPL, NASA-GSFC, Vaderbilt Univ., Univ.
    [Show full text]
  • Letter to United Space Alliance
    October 18, 2005 United Space Alliance Attn: Office of General Counsel 1150 Gemini Houston, TX 77058 Dear General Counsel of United Space Alliance: The Project On Government Oversight (POGO) is overhauling and renewing its Federal Contractor Misconduct Database (www.pogo.org/db/index.cfm), a compilation of information from public resources regarding government contractors, including United Space Alliance. I have enclosed the findings relevant to United Space Alliance and am requesting verification or refutation of the data from you by Friday, November 4, 2005. Any response would be greatly appreciated, as the accuracy of this information is in the best interest of all parties. Out of fairness to United Space Alliance, please be assured that any response received by POGO will be posted on the website along with the data. Please note that the instance included involves a shared settlement in which the percentage of responsibility on the part of United Space Alliance is not known. The number has been split in half between the two defendants until the proper number can be affirmed. Changes to the database include: the addition of more current instances, removal of Superfund cleanup costs, and removal of information that could not be verified with official documents. Additionally, pending cases will still be included, but this information will be kept separate from the resolved cases and will not be included in any totals. If you have any questions, I can be reached at (202) 347-1122. Thank you for your time and consideration. Sincerely, Kevin L. Phelps Project Director Enclosure Instance of Misconduct 1. Case Name: N/A Date: 11/9/2000 Misconduct Type: Government Contract Fraud Contracting Party: Government Defense Court Type: Civil Amount: $1,012,500 Synopsis: Boeing and United Space Alliance agreed to pay a total of $825,000 and to give up their rights to $1.2 million in unpaid invoices to settle allegations of False Claims Acts violations, 31 U.S.C.
    [Show full text]
  • Quarterly Launch Report
    Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters. 1st Quarter 1997 U n i t e d S t a t e s D e p a r t me n t o f T r a n sp o r t a t i o n • F e d e r a l A v i a t io n A d m in i st r a t i o n A s so c i a t e A d mi n is t r a t o r f o r C o mm e r c ia l S p a c e T r a n s p o r t a t io n QUARTERLY LAUNCH R EPORT 1 1ST QUARTER 1997 R EPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources, including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or more of the following: • Internationally competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market), • Any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S. Code Title 49, Section 701, Subsection 9 (previously known as the Commercial Space Launch Act), and • Certain European launches of post, telegraph and telecommunications payloads on Ariane vehicles.
    [Show full text]
  • Molds Aboard the International Space Station
    Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR Stephen J. Vesper a*, Wing Wongb C. Mike Kuoc, Duane L. Piersond a National Exposure Research Laboratory (NERL), United States (US) Environmental Protection Agency, Cincinnati, OH; b Enterprise Advisory Services Inc., Houston, TX c WYLE Laboratories Inc., Houston, TX d Johnson Space Center, National Aeronautics and Space Administration, Houston, TX *Corresponding Author: Stephen Vesper, US EPA, 26 West M.L. King Ave., M.L. 314, Cincinnati, Ohio 45268. Phone: 513-569-7367; email: [email protected] Abstract Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA- based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Potential opportunistic pathogens Aspergillus flavus and A. niger and potential moderate toxin producers Penicillium chrysogenum and P. brevicompactum were noteworthy. No cells of the potential opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected. Keywords: International Space Station, mold specific quantitative PCR, Aspergillus 1 1. Introduction Since human space exploration began, microbes have traveled with us and are ubiquitous throughout the spacecraft. Previous studies have demonstrated that bacteria, including potential pathogens, were commonly isolated in the air, water, and on surfaces aboard the Mir Space Station [12] and the International Space Station (ISS) [1,6]. Biofilms were found in the water distribution lines on the Space Shuttle Discovery [5].
    [Show full text]
  • Orbiter Processing Facility
    National Aeronautics and Space Administration Space Shuttle: Orbiter Processing From Landing To Launch he work of preparing a space shuttle for the same facilities. Inside is a description of an flight takes place primarily at the Launch orbiter processing flow; in this case, Discovery. Complex 39 Area. TThe process actually begins at the end of each acts Shuttle Landing Facility flight, with a landing at the center or, after landing At the end of its mission, the Space Shuttle f at an alternate site, the return of the orbiter atop a Discovery lands at the Shuttle Landing Facility on shuttle carrier aircraft. Kennedy’s Shuttle Landing one of two runway headings – Runway 15 extends Facility is the primary landing site. from the northwest to the southeast, and Runway There are now three orbiters in the shuttle 33 extends from the southeast to the northwest fleet: Discovery, Atlantis and Endeavour. Chal- – based on wind currents. lenger was destroyed in an accident in January After touchdown and wheelstop, the orbiter 1986. Columbia was lost during approach to land- convoy is deployed to the runway. The convoy ing in February 2003. consists of about 25 specially designed vehicles or Each orbiter is processed independently using units and a team of about 150 trained personnel, NASA some of whom assist the crew in disembarking from the orbiter. the orbiter and a “white room” is mated to the orbiter hatch. The The others quickly begin the processes necessary to “safe” the hatch is opened and a physician performs a brief preliminary orbiter and prepare it for towing to the Orbiter Processing Fa- medical examination of the crew members before they leave the cility.
    [Show full text]
  • STS-132 Mission Summary
    NASA Mission Summary National Aeronautics and Space Administration Washington, D.C. 20546 (202) 358-1100 STS-132 MISSION SUMMARY May 2010 SPACE SHUTTLE ATLANTIS Atlantis’ 12-day mission will deliver the Russian-built Mini Research Module-1 that will provide additional storage space and a new docking port for Russian Soyuz and Progress spacecraft. MRM-1, also known as Rassvet, which means dawn in Russian, will be permanently attached to the bottom port of the station’s Zarya module. MRM-1 will carry important hardware on its exterior including a radiator, airlock and a European robotic arm. Atlantis also will deliver addi- tional station hardware stored inside a cargo carrier. Three spacewalks are planned to stage spare components outside the station, including six spare batteries, a Ku-band antenna and spare parts for the Canadian Dextre robotic arm. Shuttle mission STS-132 is the final sched- uled flight for Atlantis . CREW Ken Ham Tony Antonelli (an-tuh-NEL-lee) Commander (Captain, U.S. Navy) Pilot (Commander, U.S. Navy) ● Veteran of one spaceflight, STS-124 pilot ● Veteran of one spaceflight, STS-119 pilot ● Age: 45, Born: Plainfield, N.J. ● Born: Detroit ● Married with two children ● Married with two children ● Logged 5,000+ hours in 40 different aircraft ● Logged 3,200+ hours in 41 different aircraft ● Call sign: Hock ● Interests include snow boarding and NASCAR Garrett Reisman (REESE-man) Michael Good Mission Specialist-1 Mission Specialist-2 (Col., U.S. Air Force, Ret.) ● Veteran flight engineer on Expedition 16 & 17 ● Veteran of one spaceflight, STS-125 ● Launched on STS-123; returned STS-124 ● Age: 47, Hometown: Broadview Heights, Ohio ● Age: 42, Hometown: Parsippany, N.J.
    [Show full text]
  • The Boeing Company 2014 Annual Report
    The Boeing Company 100 North Riverside Plaza Chicago, IL 60606-1596 Leading Ahead USA The Boeing Company 2014 Annual Report The Boeing Company Contents Boeing is the world’s largest aerospace Operational Highlights 1 company and leading manufacturer Message From Our Chairman 2 Engagement of commercial airplanes and defense, The Executive Council 8 space and security systems. The top U.S. exporter, Boeing supports airlines Form 10-K 9 and U.S. and allied government Non-GAAP Measures 122 customers in more than 150 countries. Our products and tailored services Selected Programs, Products and Services 123 include commercial and military air- craft, satellites, weapons, electronic Shareholder Information 132 and defense systems, launch systems, Board of Directors 133 advanced information and communica- Company Officers 134 tion systems, and performance-based logistics and training. With corporate offices in Chicago, Boeing employs more than 165,000 people across the United States and in more than 65 countries. In addition, our enterprise leverages the talents of hundreds of thousands of skilled people working for Boeing suppliers worldwide. Visit us at boeing. Visit us at boeing. com/investorrelations com/community to to view our annual view our Corporate reports and to find Citizenship Report additional information and other information about our financial about how Boeing is performance and working to improve Boeing business communities world- practices. wide. Cover image: Artist concept of Boeing’s CST-100, the next-generation Visit us at boeing. Visit us at boeing. human-rated space- com to learn more com/environment to craft for NASA’s Crew about Boeing and view our current Transportation Sys- how extraordinary Environment Report tem, shown approach- innovations in our and information on ing the International products and how the people of Space Station.
    [Show full text]