Industrial Hygiene Technical Report Appendix

Total Page:16

File Type:pdf, Size:1020Kb

Industrial Hygiene Technical Report Appendix INDUSTRIAL HYGIENE TECHNICAL REPORT APPENDIX INTERPRETATION OF RESULTS SURVEY STRATEGY special media for collecting specific gases and vapors and AND SAMPLING METHODS must be used by the manufacturer’s expiration date. Air Monitoring Sampling media was placed in the breathing zone of the workers for the duration of their exposure unless Exposure monitoring was conducted using standard otherwise noted. The active sampling devices were validated industrial hygiene sampling and analytical calibrated prior to and immediately following the methods. Employees for monitoring were selected by the monitoring period using a primary calibration device contact in order to provide a good representative of the to verify the air volume for each sample collected. The various duties and processes in the plant. Air monitoring passive sampling devices were handled as specified by is routinely conducted to evaluate employees’ full-shift the manufacturer and sealed as appropriate for analyses. time-weighted average exposures. Short-term or ceiling The samples were submitted to The Hartford’s Risk limit exposures may also be evaluated. See Interpretation Engineering Laboratory which is fully accredited by The of Results below. American Industrial Hygiene Association (AIHA). Air monitoring methods can include active and passive sampling techniques. Active sampling methods use a Noise Monitoring calibrated battery operated pump attached with a hose Individual noise exposures were measured with 3M to draw air through specific collection media that is Edge noise dosimeters attached to each worker’s collar positioned in the worker’s breathing zone to represent near the ear. The dosimeters were calibrated using a 3M personal exposure. At times the collection media may AC-300 calibrator immediately before and after use. The be positioned in the general area nearby but not on the dosimeters are programmed to provide data that could be workers at breathing zone height (about 5 feet above the compared to the OSHA Action Level, and OSHA PEL. floor). This is referred to as an area sample and does not represent a personal exposure. Noise monitoring data represents full-shift time-weighted average exposures unless otherwise indicated. A summary of Passive sampling methods involve the use of a self- the monitoring results can be found in the Noise Dosimeter contained device that uses the principle of diffusion to Data Summary Tables. Area sound level measurements collect the sample. Diffusion is the mechanism of natural were collected with a calibrated 3M SD 200 Sound Level movement of gas and vapor molecules from an area of high Meter to supplement the noise dosimeter results. These concentration to an area of lower concentration. There is measurements can be found in the Sound Level Meter no need to calibrate a passive device. These devices have data sheet. 1 The Buck’s Got Your Back® AIR CONTAMINANT The OELs discussed above are established as 8 hour EVALUATION CRITERIA time-weighted average values (TWA), 15 minute short- term exposure limits (TLV-STEL), and ceiling limits Air contaminant results are compared with applicable (C). More than one OEL may apply to an airborne Occupational Exposure Limits (OELs). The OSHA contaminant. Permissible Exposure Limits (PEL), the American Conference of Governmental Industrial Hygienists Where more than one sample for an air contaminant (ACGIH) Threshold Limit Values® (TLV) and the was collected for an individual or area or when an National Institute for Occupational Safety and Health exposure to the air contaminant as for less than a full Recommended Exposure Limits (NIOSH RELs) are the shift, a time-weighted average (TWA) was calculated most widely accepted OELs in the United States. OSHA’s for comparison to the applicable OEL. The formula permissible exposure limits (PELs) are mandatory below was used to calculate the TWA: legal limits that all employers are required to comply with under penalty of law. Some states have their TWA = C1(T1) +C2 (T2)+ …Cn(Tn) own occupational safety and health regulations that T1 + T2+…Tn supersede the federal OSHA standards. Because of the complexity of changing a regulatory limit to conform to TWA = Time Weighted Average 8 hours (480 minutes) current scientific knowledge, many of the OSHA PELs C(n) = Contaminant concentration for sample n (n = 1,2….n) may not represent the best risk management choice to T(n) = Time in minutes for sample n (n =1, 2….n) prevent occupational illnesses. The ACGIH TLV® and the NIOSH REL are advisory limits that are not legally enforceable. However, OSHA may enforce them for air MIXTURES contaminants that do not have a PEL. When two or more hazardous substances have a similar toxicological effect on the same target organ or The ACGIH is a private, not-for-profit, non-governmental system their combined effect, rather than that of either scientific association, which establishes guidelines individually, should be given primary consideration. for use by industrial hygienists in making decisions In absence of information to the contrary, different regarding safe levels of exposure to various hazards substances should be considered as additive where the found in the workplace. health effect and target organ system is the same. The The ACGIH defines Threshold Limit Values® (TLVs) following formula is used to calculate the mixture TLV®: as “the time-weighted average concentration for a C1 + C2 + …Cn normal 8-hour workday and a 40-hour workweek, to which nearly all workers may be readily exposed, day T1 T2 Tn after day, without adverse effect.” TLVs® are health C is the airborne concentration of the contaminant and based values established by committees representing T is the corresponding threshold limit. scientific opinion after review of existing published and peer-reviewed scientific literature. The ACGIH If the sum of exceeds unity, the threshold limit of the re-evaluates TLVs® when new scientific data indicates a mixture should be considered as being exceeded. new health risk. Revisions and additions are published annually. The Hartford encourages the best industrial hygiene practice is to maintain exposures below the most protective OEL. Ideally exposures should be kept at least below 50% of the most protective OEL in order to allow for daily fluctuations in airborne contaminant levels. This also provides a margin of safety to ensure compliance under changing conditions. 2 AIR EXTENDED WORK SHIFTS The 90 dBA threshold columns represent the OSHA Criterion Level (CL). The OSHA Criterion Level is the OSHA standards and the ACGIH Threshold Limit equivalent 8 hour TWA noise level of 90 dBA. When Values (TLVs®) are based on a standard eight hour noise exposures reach this level engineering controls work shift. During extended work shifts, the employees’ must be implemented to reduce noise exposure to a ‘dose’ is higher because the exposure time is longer level below 90 dBA (100% dose) if feasible. Mandatory and the elimination period (period between doses) is hearing protection is required when engineering shortened. Both of these factors can potentially place controls fail to reduce exposure to a level below the the employee at higher risk of an adverse health effect. Criterion Level. When the normal work shift is ten or twelve hours, there is less recovery time between shifts for employees. It Please note that other standards have been established is important that the 8 hour time-weighted average for occupational noise exposure. The National Institute exposures be adjusted where applicable to reflect the for Occupational Safety and Health (NIOSH) and the exposure for the extended work shift. One of the most American Conference of Governmental Industrial commonly used methods to accomplish this is the Hygienists (ACGIH) acknowledge that noise exposures “Brief and Scala” model referenced by the ACGIH. The over 85 dBA, as an 8 hour average are likely to produce adjustment is made using the following formula: permanent hearing loss in some employees after years of exposure. These exposure limits are based upon 8 24 – h RF = * dosimeter settings that are different than those used h 16 for OSHA compliance. Where RF = reduction factor; and The ACGIH threshold limit value (TLV®) and NIOSH h = hours worked per shift Recommended Exposure Limit (REL) are based upon a 3 dBA exchange rate, with an 80 dBA lower limit threshold (cut-off). The American Conference of OSHA PELs are legally enforceable standards and are not Governmental Industrial Hygienists has a published adjusted with the exception of standards that allow for threshold limit value (TLV®) for noise, which is 85 adjustment such as the lead standard. Air contaminants dBA, for an 8 hour time weighted average (TWA). This with acutely irritating properties and toxicity with Ceiling exposure limit is based upon dosimeter settings that limits only are not adjusted. TLVs® for nuisance dust such are different than those used for OSHA compliance. as particulates not otherwise specified (PNOS) that are a The ACGIH TLV® and the NIOSH REL are based upon mixture of non-toxic particulate matter and can generally a 3 dBA exchange rate, with an 80 dBA lower limit be controlled through the use of good housekeeping threshold (cut-off). It is also believed that there is a practices are also not adjusted. broad range of individual differences among people in the amount of hearing loss each would suffer as a result NOISE MONITORING AND EXPOSURE of identical exposures. For these reasons The Hartford EVALUATION CRITERIA recommends that employers give consideration to these Noise monitoring results were evaluated based on the exposure limits, when making determinations regarding OSHA Occupational Noise Standard, 29 CFR 1910.95. hearing conservation measures including requiring The OSHA noise standard defines an Action Level (AL) employees to wear hearing protection when the 8 hour as the equivalent 8 hour time-weighted average (TWA) average noise exposures meet and exceed 85 dBA. noise level of 85 dBA. The HC 80 dBA threshold columns represent the OSHA Action Level.
Recommended publications
  • Safety Data Sheet Acc
    Page 1/10 Safety Data Sheet acc. to OSHA HCS Printing date 03/24/2019 Version Number 2 Reviewed on 03/24/2019 * 1 Identification · Product identifier · Trade name: Acrylamide · Part number: RCC-203 · CAS Number: 79-06-1 · EC number: 201-173-7 · Index number: 616-003-00-0 · Application of the substance / the mixture Reagents and Standards for Analytical Chemical Laboratory Use · Details of the supplier of the safety data sheet · Manufacturer/Supplier: Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051 USA · Information department: Telephone: 800-227-9770 e-mail: [email protected] · Emergency telephone number: CHEMTREC®: 1-800-424-9300 2 Hazard(s) identification · Classification of the substance or mixture GHS06 Skull and crossbones Acute Tox. 3 H301 Toxic if swallowed. GHS08 Health hazard Muta. 1B H340 May cause genetic defects. Carc. 1B H350 May cause cancer. Repr. 2 H361 Suspected of damaging fertility or the unborn child. STOT RE 1 H372 Causes damage to organs through prolonged or repeated exposure. GHS07 Acute Tox. 4 H312 Harmful in contact with skin. Acute Tox. 4 H332 Harmful if inhaled. Skin Irrit. 2 H315 Causes skin irritation. Eye Irrit. 2A H319 Causes serious eye irritation. Skin Sens. 1 H317 May cause an allergic skin reaction. · Label elements · GHS label elements The substance is classified and labeled according to the Globally Harmonized System (GHS). (Contd. on page 2) US 48.1.26 Page 2/10 Safety Data Sheet acc. to OSHA HCS Printing date 03/24/2019 Version Number 2 Reviewed on 03/24/2019 Trade name: Acrylamide (Contd.
    [Show full text]
  • Report on Carcinogens, Fourteenth Edition for Table of Contents, See Home Page
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Naphthalene comes from studies of workers in a coke plant, which found that con- centrations of naphthalene metabolites in the urine were significantly CAS No. 91-20-3 correlated with concentrations of naphthalene in personal air sam- ples (Bieniek 1994, 1997). The first step in the metabolism of naph- Reasonably anticipated to be a human carcinogen thalene is formation of naphthalene-1,2-oxide (as two stereo isomers, First listed in the Eleventh Report on Carcinogens (2004) 1R,2S-oxide and 1S,2R-oxide) through the action of cytochrome P450 enzymes in the presence of the coenzyme NADPH. These oxides are metabolized further by three pathways: (1) hydration by epoxide hy- drolases into dihydrodiols, (2) conjugation by glutathione transferases, and (3) spontaneous rearrangement into 1-naphthol and 2-naph- Carcinogenicity thol, which are converted to naphthoquinones (Chichester et al. 1994, Shultz et al. 1999). Naphthalene is excreted in the urine as the un- Naphthalene is reasonably anticipated to be a human carcinogen changed parent compound or as metabolites, including 1-naphthol, based on sufficient evidence from studies in experimental animals. 2-naphthol, naphthoquinones, dihydroxynaphthalenes, and conju- gated forms, including glutathione, cysteine, glucuronic acid, and Cancer Studies in Experimental Animals sulfate conjugates (NTP 2002). Exposure of rats to naphthalene by inhalation caused nasal tumors, The mechanism by which naphthalene causes cancer is unknown. which are rare in this species. Two types of nasal tumor were ob- A strong correlation has been observed between the rates of forma- served: olfactory epithelial neuroblastoma of the nose, which is a tion of the stereoisomer (1R,2S)-naphthalene oxide in various tissues highly malignant and extremely rare tumor of the lining of the nose, and the selective toxicity of naphthalene to these tissues, suggesting and respiratory epithelial adenoma, which also is rare (NTP 2000).
    [Show full text]
  • Safety Data Sheet Acc
    Page 1/10 Safety Data Sheet acc. to OSHA HCS Printing date 02/27/2020 Reviewed on 09/11/2018 1 Identification · Product identifier · Trade name: Acrylamide/Bis Solution, 37,5:1 · Article number: 10681 · Application of the substance / the mixture Laboratory chemicals · Details of the supplier of the safety data sheet · Manufacturer/Supplier: SERVA Electrophoresis GmbH Carl-Benz-Str. 7 D-69115 Heidelberg Tel.: +49 6221 13840-0 FAX: +49 6221 13840-10 [email protected] · Information department: Product Safety department Tel.: +49 6221 13840-35 · Emergency telephone number: Medical Emergency Information in case of poisoning: Poison Information Center Mainz - Phone: +49 (0) 6131 19240 (advisory service in German or English language) 2 Hazard(s) identification · Classification of the substance or mixture GHS08 Muta. 1B H340 May cause genetic defects. Carc. 1B H350 May cause cancer. Repr. 2 H361 Suspected of damaging fertility or the unborn child. STOT RE 1 H372 Causes damage to organs through prolonged or repeated exposure. GHS07 Acute Tox. 4 H302 Harmful if swallowed. Skin Irrit. 2 H315 Causes skin irritation. Eye Irrit. 2A H319 Causes serious eye irritation. Skin Sens. 1 H317 May cause an allergic skin reaction. · Label elements · GHS label elements The product is classified and labeled according to the Globally Harmonized System (GHS). · Hazard pictograms GHS07, GHS08 · Signal word Danger · Hazard-determining components of labeling: acrylamide N,N'-methylenediacrylamide · Hazard statements Harmful if swallowed. Causes skin irritation. Causes serious eye irritation. May cause an allergic skin reaction. May cause genetic defects. (Contd. on page 2) US 50.0.4 Page 2/10 Safety Data Sheet acc.
    [Show full text]
  • Guidelines for Statistical Analysis of Occupational Exposure Data
    GUIDELINES FOR STATISTICAL ANALYSIS OF OCCUPATIONAL EXPOSURE DATA FINAL by IT Environmental Programs, Inc. 11499 Chester Road Cincinnati, Ohio 45246-0100 and ICF Kaiser Incorporated 9300 Lee Highway Fairfax, Virginia 22031-1207 Contract No. 68-D2-0064 Work Assignment No. 006 for OFFICE OF POLLUTION PREVENTION AND TOXICS U.S. ENVIRONMENTAL PROTECTION AGENCY 401 M STREET, S.W. WASHINGTON, D.C. 20460 August 1994 DISCLAIMER This report was developed as an in-house working document and the procedures and methods presented are subject to change. Any policy issues discussed in the document have not been subjected to agency review and do not necessarily reflect official agency policy. Mention of trade names or products does not constitute endorsement or recommendation for use. i CONTENTS FIGURES.......................................................... v TABLES........................................................... vi ACKNOWLEDGMENT................................................vii INTRODUCTION.................................................... 1 A. Types of Occupational Exposure Monitoring Data ...................... 1 B. Types of Occupational Exposure Assessments ........................ 2 C. Variability in Occupational Exposure Data ........................... 3 D. Organization of This Report .................................... 4 STEP 1: IDENTIFY USER NEEDS........................................ 9 STEP 2: COLLECT DATA............................................. 15 A. Obtaining Data From NIOSH ................................... 15
    [Show full text]
  • Center for Dairy Farm Safety - Glossary of Terms
    Center for Dairy Farm Safety - Glossary of Terms ACGIH—American Conference of Governmental Industrial Hygienists. A professional organization devoted to worker health protection. In particular, the organization publishes "Threshold Limit Values for Chemical Substances in the Work Environment" and the "Documentation of TLVs." The TLV booklet is one source which may be used in hazard determination. www.acgih.org. ANSI—American National Standards Institute. ANSI is a coordinating body of various trade, technical, professional, and consumer groups who develop voluntary standards. www.ansi.org Acute—An adverse effect on the human body with symptoms of high severity coming quickly to a crisis. Acute effects are normally the result of short term exposures and short duration. Aerosol—This is a solid or liquid particulate, natural or manmade, which can remain suspended in air. Paint spray and smoke are examples of aerosols. Asphyxiant—A chemical, usually in a gas or vapor state, which displaces oxygen or prevents its use in the body by other chemical means. Assistant Secretary (OSHA)—"...means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee." Autoignition temperature—This is the lowest temperature at which a substance will ignite and sustain combustion in the absence of an ignition source. Blood Agents—These are chemicals such as carbon monoxide and the cyanides which act on the blood and the hematopoietic system and ultimately result in depriving body tissues of adequate oxygen. Boiling point—The temperature at which a liquid changes its physical state to a gas. Toluene has a boiling point of 231°F.
    [Show full text]
  • Hearing Loss Prevention, Chapter 296-817
    Chapter 296-817 WAC Introduction Hearing Loss Prevention (Noise) _________________________________________________________________________________________________________ Chapter 296-817 WAC Hearing Loss Prevention (Noise) (Form Number 414-117-000) This book contains rules for Safety Standards for hearing loss prevention (Noise), as adopted under the Washington Industrial Safety and Health Act of 1973 (Chapter 49.17 RCW). The rules in this book are effective December 2015. A brief promulgation history, set within brackets at the end of this chapter, gives statutory authority, administrative order of promulgation, and date of adoption of filing. TO RECEIVE E-MAIL UPDATES: Sign up at https://public.govdelivery.com/accounts/WADLI/subscriber/new?topic_id=WADLI_19 TO PRINT YOUR OWN PAPER COPY OR TO VIEW THE RULE ONLINE: Go to https://www.lni.wa.gov/safety-health/safety-rules/rules-by-chapter/?chapter=817/ DOSH CONTACT INFORMATION: Physical address: 7273 Linderson Way Tumwater, WA 98501-5414 (Located off I-5 Exit 101 south of Tumwater.) Mailing address: DOSH Standards and Information PO Box 44810 Olympia, WA 98504-4810 Telephone: 1-800-423-7233 For all L&I Contact information, visit https://www.lni.wa.gov/agency/contact/ Also available on the L&I Safety & Health website: DOSH Core Rules Other General Workplace Safety & Health Rules Industry and Task-Specific Rules Proposed Rules and Hearings Newly Adopted Rules and New Rule Information DOSH Directives (DD’s) See http://www.lni.wa.gov/Safety-Health/ Chapter 296-817 WAC Table of Contents Hearing Loss Prevention (Noise) _________________________________________________________________________________________________________ Chapter 296-817 WAC Safety Standards for Hearing Loss Prevention (Noise) WAC Page WAC 296-817-099 Noise definitions.
    [Show full text]
  • Occupational Noise Measurement
    Occupational Noise Measurement Occupational hearing loss is damage to the inner ear from noise or vibrations due to certain types of jobs or entertainment. Occupational hearing loss is a form of acoustic trauma caused by exposure to vibration or sound. Sound is heard as the ear converts vibration from sound waves into impulses in the nerves of the ear. Sounds above 90 decibels (dB, a measurement of the loudness or strength of sound vibration) may cause vibration intense enough to damage the inner ear, especially if the sound continues for a long time. Did you know that occupational hearing loss was an ergonomic type injury? The reason being that if is a cumulative trauma which translates to exposures over time. In order to control and prevent occupational deafness you must be able to measure the exposures. 90 dB -- a large truck 5 yards away (motorcycles, snowmobiles, and similar engines range from 85 - 90 dB) 100 dB -- some rock concerts 120 dB -- a jackhammer about 3 feet away 130 dB -- a jet engine from 100 feet away A general rule of thumb is that if you need to shout to be heard, the sound is in the range that can damage hearing. Some jobs carry a high risk for hearing loss, such as: Airline ground maintenance Construction Farming Jobs involving loud music or machinery Oil rigs Refineries Measuring noise levels and workers' noise exposures is the most important part of a workplace hearing conservation and noise control program. It helps identify work locations where there are noise problems, employees who may be affected, and where additional noise measurements need to be made.
    [Show full text]
  • Maleic Anhydride
    Maleic Anhydride 108-31-6 Hazard Summary Maleic anhydride is used in the formulation of resins. Exposure to maleic anhydride may occur from accidental releases to the environment or in workplaces where it is produced or used. Acute (short-term) inhalation exposure of humans to maleic anhydride has been observed to cause irritation of the respiratory tract and eye irritation. Chronic (long-term) exposure to maleic anhydride has been observed to cause chronic bronchitis, asthma-like attacks, and upper respiratory tract and eye irritation in workers. In some people, allergies have developed so that lower concentrations can no longer be tolerated. Kidney effects were observed in rats chronically exposed to maleic anhydride via gavage (experimentally placing the chemical in the stomach). EPA has not classified maleic anhydride for carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (6), which contains information on oral chronic toxicity and the RfD, and EPA's Health and Environmental Effects Profile for Maleic Anhydride. (2) Other secondary sources include Hazardous Substances Data Bank (HSDB) (1), a database of summaries of peer-reviewed literature, and the Registry of Toxic Effects of Chemical Substances (RTECS) (3), a database of toxic effects that are not peer reviewed. Uses Maleic anhydride is used primarily in the formation of unsaturated polyester resins for use in boats, autos, trucks, buildings, piping, and electrical goods. Lube oil adhesives synthesized from maleic anhydride are used to prolong oil-change intervals and improve engine efficiency. (2,9) Maleic anhydride is also used to make copolymers, pesticides, and other organic compounds, and in Diels-Alder syntheses.
    [Show full text]
  • Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- Cer, a Cohort of Swedish Men, the U.S
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- cer, a cohort of Swedish men, the U.S. Nurses’ Health Study, and the CAS No. 79-06-1 Danish Diet, Cancer, and Health Study. In addition, several case- control studies (most of which used food-frequency questionnaires) Reasonably anticipated to be a human carcinogen assessed cancer and dietary exposure of Swedish, French, and U.S. First listed in the Sixth Annual Report on Carcinogens (1991) populations to acrylamide. The tissue site studied most frequently Also known as 2-propenamide was the breast. These studies found no overall association between breast cancer and dietary exposure to acrylamide; however, some, H C NH2 but not all, studies reported an association between acrylamide ex- H2C C posure and a specific type of breast cancer (sex-hormone-receptor- O positive cancer in post-menopausal women). The Danish study used Carcinogenicity acrylamide-hemoglobin adducts to assess exposure; however, these adducts are not source-specific, but reflect both dietary exposure Acrylamide is reasonably anticipated to be a human carcinogen based and exposure from other sources, such as smoking. Two of three pro- on sufficient evidence of carcinogenicity from studies in experimen- spective cohort studies reported increased risks of endometrial and tal animals. ovarian cancer, but a case-control study found no increased risk of ovarian cancer. Most of the studies evaluating prostate and colorectal Cancer Studies in Experimental Animals cancer did not find increased risks associated with dietary exposure Acrylamide caused tumors in two rodent species, at several different to acrylamide.
    [Show full text]
  • Spark® 704 Noise Dosimeter Technical Reference Manual Larson Davis Spark® 704 Personal Noise Dosimeter
    Spark® 704 Noise Dosimeter Technical Reference Manual Larson Davis Spark® 704 Personal Noise Dosimeter Technical Reference Manual I704.01 Rev E Copyright Copyright 2006, 2007, 2008 and 2009 by PCB Piezotronics, Inc. This manual is copyrighted, with all rights reserved. The manual may not be copied in whole or in part for any use without prior written consent of PCB Piezotronics, Inc. Disclaimer The following paragraph does not apply in any state or country where such statements are not agreeable with local law: Even though PCB Piezotronics, Inc. has reviewed its documentation, PCB Piezotronics, Inc. makes no warranty or representation, either expressed or implied, with respect to this instrument and documentation, its quality, performance, merchantability, or fitness for a particular purpose. This documentation is subject to change without notice, and should not be construed as a commitment or representation by PCB Piezotronics, Inc. This publication may contain inaccuracies or typographical errors. PCB Piezotronics, Inc. will periodically update the material for inclusion in new editions. Changes and improvements to the information described in this manual may be made at any time. Record of Serial Number and Purchase Date Serial Number: ___________ Purchase Date: ___________ Recycling PCB Piezotronics, Inc. is an environmentally friendly organization and encourages our customers to be environmentally conscious. When this product reaches its end of life, please recycle the product through a local recycling center or return the product
    [Show full text]
  • 7 Strategies for Noise Surveys
    7 STRATEGIES FOR NOISE SURVEYS Mr H. Lester* Professor J. Malchaire Unité Hygiène et Physiologie du travail Health and Safety Executive, UK Université catholique de Louvain (UCL Clos Chapelle-aux-Champs 3038 B-1200 Bruxelles BELGIUM [email protected] Mr H.S. Arbey and Mr Thiery Institut National de Recherche et de Securité Avenue de Bourgogne, B.P. No 27 F-54501 Vandoeuvre Cedex FRANCE [email protected] [email protected] 7.1. INTRODUCTION 7.1.1. Definitions Linst designates the instantaneous level indicated by a simple sound level meter set on FAST or SLOW as far as the averaging time is concerned. In recent times the Linst parameter has been. replaced by the A-weighted equivalent level LAeq,T. This is the continuous level which, over a given period of time, T, would give the same amount of acoustical energy as the actual noise. This is the so called ISO equal energy principle. As mentioned in chapter 4, this is different from the so called OSHA principle (USA) according to which an exposure of duration T at a noise level L dB(A) is equivalent to an exposure of duration 2 T at a noise level (L-5) dB(A) (according to the ISO principle, it is equivalent to (L-3) dB(A) during 2 T). Over a given period of time, personal dosimeters (personal sound exposure meters) offer usually the possibility of recording all or some of the following parameters: Lx% the noise level (in dB(A)) exceeded during x% of the time; LMAX the highest level (in dB(A)) exceeded during that period of time (in SLOW and FAST, depending upon the setting of the instrument); Lpeak the highest peak level (in dB).
    [Show full text]
  • Safety Data Sheet Acc
    Page 1/9 Safety Data Sheet acc. to OSHA HCS Printing date 08/15/2018 Reviewed on 09/15/2017 1 Identification · Product identifier · Trade name: Triolein,[9.10-3H(N)] · Product number: NET431L005mC, NET431L000mC · Application of the substance / the mixture Laboratory chemicals · Details of the supplier of the safety data sheet · Manufacturer/Supplier: PerkinElmer Inc 549 Albany st Boston, MA 02118 · Information department: US Technical Support 800-762-4000 · Emergency telephone number: If inside USA, call CHEMTREC at 1-800-424-9300 If outside USA, call CHEMTREC at 1-703-527-3887 2 Hazard(s) identification · Classification of the substance or mixture Flam. Liq. 2 H225 Highly flammable liquid and vapor. Skin Irrit. 2 H315 Causes skin irritation. Repr. 2 H361 Suspected of damaging fertility or the unborn child. STOT SE 3 H336 May cause drowsiness or dizziness. STOT RE 2 H373 May cause damage to organs through prolonged or repeated exposure. Asp. Tox. 1 H304 May be fatal if swallowed and enters airways. · Additional information: For the wording of the listed H phrases refer to section 16. · Label elements · GHS label elements The product is classified and labeled according to the Globally Harmonized System (GHS). · Hazard pictograms GHS02 GHS07 GHS08 · Signal word Danger · Hazard-determining components of labeling: toluene · Hazard statements Highly flammable liquid and vapor. Causes skin irritation. Suspected of damaging fertility or the unborn child. May cause drowsiness or dizziness. May cause damage to organs through prolonged or repeated exposure. May be fatal if swallowed and enters airways. · Precautionary statements If swallowed: Immediately call a poison center/doctor.
    [Show full text]