Mueller's Gibbon

Total Page:16

File Type:pdf, Size:1020Kb

Mueller's Gibbon Mueller’s Gibbon Hylobates muelleri A native to Borneo, the Mueller’s Gibbon moves through the trees by swinging from branch to branch. These small apes feed on ripe fruit, and help to disperse seeds throughout the forests. Our Mueller’s Gibbons: Lance (Male): 1/7/1993 Emily (Female): 3/21/1988 White- Handed Gibbon Hylobates lar The white-handed gibbon is a species of ape found throughout South East Asia. Their colors can range from tan, brown, or black in both males and females. Gibbons pairs will often duet in the mornings to communicate with other groups. Our White-Handed Gibbons: Hosen (Male): 5/7/1985 Connie (Female): 8/19/1990 Sumatran Orangutan Pongo abelii Orangutans are a large species of primate found in only two places in the entire world, the islands of Borneo and Sumatra. These beautiful red apes, often shy and elusive, are among some of the smartest animals on the planet! Our Orangutans: Henry (Male): 1/1/1991 Palm Oil and Orangutans In Indonesia, orangutans are losing much of their habitat to the palm oil industry. Huge areas of forest are cleared to make these plantations. Palm oil, processed from the oil palm tree, is an ingredient found in one out of every 10 grocery items. Supporting sustainably sourced palm oil can help protect orangutans and their habitats. DOWNLOAD the Cheyenne Mountain Zoo Sustainable Palm Oil App to help make Orangutan friendly decisions while shopping! Pygmy Slow Loris Nycticebus pygmaeus This slow-moving, nocturnal, prosimian spends most of its time in the trees. When threatened, lorises produce a secretion that becomes toxic when mixed with their saliva, helping to deter predators. Our Lorises: Cai (Female): 12/6/2010 Lomoth (Male): 9/17/2010 White- faced Saki Pithecia pithecia These small monkeys inhabit the tropical forests of Brazil and Venezuela. Known as the “flying monkey,” sakis have the ability to leap 30ft between branches! Male sakis are black in color, with a stark white face and black snout. Different from the males, females are brownish gray in color throughout their whole body. Our White-faced Sakis: Penelope (Female): 7/28/2010 Dakota (Male): 7/11/1992 Selva (Female): 7/8/2018 Golden- headed Lion Tamarin Leontopithecus chrysomelas Known for their beautiful golden manes of hair, Golden-headed Lion Tamarins are a small species of monkeys found only in the coastal forests of Brazil. Unique to other primates, these tamarins live in single female, multi-male groups, where the males play a huge role in infant care. Our Tamarins: Lucio (Male): 10/22/2005 Jovi (Female): 5/27/2012 Lion Tamarin Conservation Success Due to the loss of their native habitats, from urban and agriculture development, Golden Lion Tamarin populations plummeted to as low as 200 in the 1970’s. In the 1980’s, the National Zoo and their partners began a captive breeding and release program. As of 2003, the Golden- Lion Tamarins were downgraded from Critically Endangered to Endangered. It is estimated that around 1,500 tamarins are living in the wild, with an additional 450 residing in zoos around the world. Because of zoos, the future for lion tamarins is much brighter. ZOOS SAVE SPECIES WITH SCIENCE! Black Howler Monkey Alouatta caraya Known for their booming vocalizations, howler monkeys howl to defend their territory from outsider groups. Male black howlers are larger in size and all black in color compared to the more golden-brown females. Our Howler Monkey’s: Hayden (Female): 12/10/2015 Helen (Female): 12/28/1994 Coquerel’s Sifaka Propithecus coquereli Sometimes referred to as the “dancing sifaka,” the sifaka lemur moves through a unique form of locomotion called vertical clinging and leaping. They can leap distances of over 30 ft! Sifakas tend to live in small social groups, where the females are dominant to the males. Our Sifakas: Bobby (Male): 9/3/2012 Andri (Male): 11/16/2013 Bonobo Pan paniscus Bonobos, like chimps, are one of our closest living relatives, sharing over 98% of the same DNA. Our Bonobos: Vernon (Male): 1/30/1972 Lana (Female): 4/13/1979 Vergil (Male): 1/24/1994 Vim (Male): 9/5/1995 Zanga (Female): 1/9/1999 Kimia (Female): 6/13/1999 Kesi (Female): 8/15/2004 Kenge (Female): 11/6/2009 Zeke (Male): 3/29/2010 Kibibi (Female): 11/17/2013 Bolingo (Male): 3/16/2015 Coltan Mining and Bonobos Bonobos are Endangered, with populations continuing to decline. It is estimated as few as 50,000 individuals remain. A large reason for this is the loss of habitat due to the mining of coltan. Coltan is an ore that is an essential component of many electronic devices, including cellphones. To get coltan, large areas of forest must be cleared and the remaining soil mined to extract the valuable ore. This puts bonobos in great danger. By RECYCLING old cell phones, we can reduce the demand for mining coltan and help protect habitat in the wild for bonobos and other wildlife. The Cincinnati Zoo has collected and recycled over 70,000 cellphones! Angolan Colobus Monkey Colobus angolensis An oddity among other primate species, Colobus Monkeys actually lack thumbs! This special adaptation allows them to have almost hook like hands to help swing in the trees. They are also amazing leapers, and can jump over 30 feet at a time! Our Monkeys: Don King (Male): 10/29/1995 Cindy (Female): 7/4/2000 Potto Perodictus potto Using their powerful clamp like hands and feet, pottos move slowly through the forest trees, rarely coming to the ground. When frightened, pottos will freeze and hold very still to blend in, potentially for hours at a time! While slow moving, pottos can quickly catch small prey animals when needed. Our Pottos: Otto (Male): 12/14/2015 Garnett’s Galago Otolemur garnetti The Garnett’s galago is also commonly known as the Greater Bushbaby due to its territorial vocalizations that sound like a child’s cry. These small, nocturnal, prosimians leap through the forest trees with amazing agility. Their large eyes help them to navigate in low light settings. Our Galagos: Sandy (Female): 11/20/2000 Grey Bamboo Lemur Hapalemur griseus Like its name would imply, the bamboo lemurs feed mainly on bamboo, a plant which contains high amounts of toxic cyanide. Bamboo lemurs can eat these plants without experiencing its poisoning effects! Bamboo lemurs live in small groups of around four individuals, they often rely on scent marking to communicate with each other and rival groups. Our Grey Bamboo Lemur: Lil Bit (Female): 4/6/1999 “You cannot get through a single day without having an impact on the world around you. What you do makes a difference, and you have to decide what kind of difference you want to make.” “Only if we understand, can we care. Only if we care, we will help. Only if we help, shall all be saved.” ~ Jane Goodall Aye-Aye Daubentonia madagascariensis A very unique species of lemur, the aye-aye plays a similar role to woodpeckers in the forests of Madagascar. Aye-ayes are percussion foragers, they tap on the trees with their long and thin middle fingers to locate insects inside. Once found, aye-ayes use their rodent-like teeth to gnaw through the bark, and spear the larva with their finger. Our Aye-ayes: Medea (Female): 9/10/2004 Nify (Male): 6/21/2008 .
Recommended publications
  • 10 Sota3 Chapter 7 REV11
    200 Until recently, quantifying rates of tropical forest destruction was challenging and laborious. © Jabruson 2017 (www.jabruson.photoshelter.com) forest quantifying rates of tropical Until recently, Photo: State of the Apes Infrastructure Development and Ape Conservation 201 CHAPTER 7 Mapping Change in Ape Habitats: Forest Status, Loss, Protection and Future Risk Introduction This chapter examines the status of forested habitats used by apes, charismatic species that are almost exclusively forest-dependent. With one exception, the eastern hoolock, all ape species and their subspecies are classi- fied as endangered or critically endangered by the International Union for Conservation of Nature (IUCN) (IUCN, 2016c). Since apes require access to forested or wooded land- scapes, habitat loss represents a major cause of population decline, as does hunting in these settings (Geissmann, 2007; Hickey et al., 2013; Plumptre et al., 2016b; Stokes et al., 2010; Wich et al., 2008). Until recently, quantifying rates of trop- ical forest destruction was challenging and laborious, requiring advanced technical Chapter 7 Status of Apes 202 skills and the analysis of hundreds of satel- for all ape subspecies (Geissmann, 2007; lite images at a time (Gaveau, Wandono Tranquilli et al., 2012; Wich et al., 2008). and Setiabudi, 2007; LaPorte et al., 2007). In addition, the chapter projects future A new platform, Global Forest Watch habitat loss rates for each subspecies and (GFW), has revolutionized the use of satel- uses these results as one measure of threat lite imagery, enabling the first in-depth to their long-term survival. GFW’s new analysis of changes in forest availability in online forest monitoring and alert system, the ranges of 22 great ape and gibbon spe- entitled Global Land Analysis and Dis- cies, totaling 38 subspecies (GFW, 2014; covery (GLAD) alerts, combines cutting- Hansen et al., 2013; IUCN, 2016c; Max Planck edge algorithms, satellite technology and Insti tute, n.d.-b).
    [Show full text]
  • Gibbon Classification : the Issue of Species and Subspecies
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1988 Gibbon classification : the issue of species and subspecies Erin Lee Osterud Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biological and Physical Anthropology Commons, and the Genetics and Genomics Commons Let us know how access to this document benefits ou.y Recommended Citation Osterud, Erin Lee, "Gibbon classification : the issue of species and subspecies" (1988). Dissertations and Theses. Paper 3925. https://doi.org/10.15760/etd.5809 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. AN ABSTRACT OF THE THESIS OF Erin Lee Osterud for the Master of Arts in Anthropology presented July 18, 1988. Title: Gibbon Classification: The Issue of Species and Subspecies. APPROVED BY MEM~ OF THE THESIS COMMITTEE: Marc R. Feldesman, Chairman Gibbon classification at the species and subspecies levels has been hotly debated for the last 200 years. This thesis explores the reasons for this debate. Authorities agree that siamang, concolor, kloss and hoolock are species, while there is complete lack of agreement on lar, agile, moloch, Mueller's and pileated. The disagreement results from the use and emphasis of different character traits, and from debate on the occurrence and importance of gene flow. GIBBON CLASSIFICATION: THE ISSUE OF SPECIES AND SUBSPECIES by ERIN LEE OSTERUD A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF ARTS in ANTHROPOLOGY Portland State University 1989 TO THE OFFICE OF GRADUATE STUDIES: The members of the Committee approve the thesis of Erin Lee Osterud presented July 18, 1988.
    [Show full text]
  • Downloaded from Brill.Com09/27/2021 09:14:05PM Via Free Access 218 Rode-Margono & Nekaris – Impact of Climate and Moonlight on Javan Slow Lorises
    Contributions to Zoology, 83 (4) 217-225 (2014) Impact of climate and moonlight on a venomous mammal, the Javan slow loris (Nycticebus javanicus Geoffroy, 1812) Eva Johanna Rode-Margono1, K. Anne-Isola Nekaris1, 2 1 Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK 2 E-mail: [email protected] Keywords: activity, environmental factors, humidity, lunarphobia, moon, predation, temperature Abstract Introduction Predation pressure, food availability, and activity may be af- To secure maintenance, survival and reproduction, fected by level of moonlight and climatic conditions. While many animals adapt their behaviour to various factors, such nocturnal mammals reduce activity at high lunar illumination to avoid predators (lunarphobia), most visually-oriented nocturnal as climate, availability of resources, competition, preda- primates and birds increase activity in bright nights (lunarphilia) tion, luminosity, habitat fragmentation, and anthropo- to improve foraging efficiency. Similarly, weather conditions may genic disturbance (Kappeler and Erkert, 2003; Beier influence activity level and foraging ability. We examined the 2006; Donati and Borgognini-Tarli, 2006). According response of Javan slow lorises (Nycticebus javanicus Geoffroy, to optimal foraging theory, animal behaviour can be seen 1812) to moonlight and temperature. We radio-tracked 12 animals as a trade-off between the risk of being preyed upon in West Java, Indonesia, over 1.5 years, resulting in over 600 hours direct observations. We collected behavioural and environmen- and the fitness gained from foraging (Charnov, 1976). tal data including lunar illumination, number of human observ- Perceived predation risk assessed through indirect cues ers, and climatic factors, and 185 camera trap nights on potential that correlate with the probability of encountering a predators.
    [Show full text]
  • 7 Gibbon Song and Human Music from An
    Gibbon Song and Human Music from an 7 Evolutionary Perspective Thomas Geissmann Abstract Gibbons (Hylobates spp.) produce loud and long song bouts that are mostly exhibited by mated pairs. Typically, mates combine their partly sex-specific repertoire in relatively rigid, precisely timed, and complex vocal interactions to produce well-patterned duets. A cross-species comparison reveals that singing behavior evolved several times independently in the order of primates. Most likely, loud calls were the substrate from which singing evolved in each line. Structural and behavioral similarities suggest that, of all vocalizations produced by nonhuman primates, loud calls of Old World monkeys and apes are the most likely candidates for models of a precursor of human singing and, thus, human music. Sad the calls of the gibbons at the three gorges of Pa-tung; After three calls in the night, tears wet the [traveler's] dress. (Chinese song, 4th century, cited in Van Gulik 1967, p. 46). Of the gibbons or lesser apes, Owen (1868) wrote: “... they alone, of brute Mammals, may be said to sing.” Although a few other mammals are known to produce songlike vocalizations, gibbons are among the few mammals whose vocalizations elicit an emotional response from human listeners, as documented in the epigraph. The interesting questions, when comparing gibbon and human singing, are: do similarities between gibbon and human singing help us to reconstruct the evolution of human music (especially singing)? and are these similarities pure coincidence, analogous features developed through convergent evolution under similar selective pressures, or the result of evolution from common ancestral characteristics? To my knowledge, these questions have never been seriously assessed.
    [Show full text]
  • Photopigments and Color Vision in the Nocturnal Monkey, Aotus GERALD H
    Vision Res. Vol. 33, No. 13, pp. 1773-1783, 1993 0042-6989/93 $6.00 + 0.00 Printed in Great Britain. All rights reserved Copyright 0 1993 Pergamon Press Ltd Photopigments and Color Vision in the Nocturnal Monkey, Aotus GERALD H. JACOBS,*? JESS F. DEEGAN II,* JAY NEITZ,$ MICHAEL A. CROGNALE,§ MAUREEN NEITZT Received 6 November 1992; in revised form 3 February 1993 The owl monkey (Aotus tridrgutus) is the only nocturnal monkey. The photopigments of Aotus and the relationship between these photopigments and visual discrimination were examined through (1) an analysis of the tlicker photometric electroretinogram (ERG), (2) psychophysical tests of visual sensitivity and color vision, and (3) a search for the presence of the photopigment gene necessary for the production of a short-wavelength sensitive (SWS) photopigment. Roth electrophysiological and behavioral measurements indicate that in addition to a rod photopigment the retina of this primate contains only one other photopigment type-a cone pigment having a spectral peak cu 543 nm. Earlier results that suggested these monkeys can make crude color discriminations are interpreted as probably resulting from the joint exploitation of signals from rods and cones. Although Aotus has no functional SWS photopigment, hybridization analysis shows that A&us has a pigment gene that is highly homologous to the human SWS photopigment gene. Aotus trivirgatus Cone photopigments Monkey color vision Monochromacy Photopigment genes Evolution of color vision INTRODUCTION interest to anyone interested in visual adaptations for two somewhat contradictory reasons. On the one hand, The owl monkey (A&us) is unique among present study of A&us might provide the possibility of docu- day monkeys in several regards.
    [Show full text]
  • Slow Loris Forest Protector Teacher's Pack
    2 www.nocturama.org https://www.facebook.com/pages/Little-Fireface-Project/ littlefi[email protected] INTRODUCTION Welcome! Welcome to the Slow Loris—Forest Protector’s Teacher’s Pack and Learning Exercise Book. The purpose of this short booklet is to explain how to use the book and to help to reinforce its message through a series of fun and easy-to- We at the Little Fireface Project (LFP) our so glad you are using this teacher’s use exercises. pack. First we want to tell you about ourselves and our passion about one of the world’s most unique little primates. LFP is a UK Charity based out of Ox- ford Brookes University set up to help save the slow loris through studying In this pack, you will find the following materials to help you and your students them in the wild and through education projects. explore the story of two night-active (nocturnal) primates, slow lorises: a moth- er (Tereh—speedy) and her young son (Bunga—flower). Tereh lovingly teaches Why the slow loris and why a charity dedicated to one group of animals? Well, her son the life skills he needs to be a grown-up slow loris. At the same time, the eight species of slow lorises, found only in Asia, are facing a tough time. Bunga learns that by doing his job in the forest, he helps the forest to grow, They are threatened for many reasons beyond the habitat loss causing many of while helping protect the crops grown by people. Asia’s species to go extinct.
    [Show full text]
  • Evolutionary Stasis of the Pseudoautosomal Boundary In
    Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates Rylan Shearn, Alison E Wright, Sylvain Mousset, Corinne Régis, Simon Penel, Jean-François Lemaître, Guillaume Douay, Brigitte Crouau-Roy, Emilie Lecompte, Gabriel Ab Marais To cite this version: Rylan Shearn, Alison E Wright, Sylvain Mousset, Corinne Régis, Simon Penel, et al.. Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates. eLife, eLife Sciences Publication, 2020, 9, 10.7554/eLife.63650. hal-03064964 HAL Id: hal-03064964 https://hal.archives-ouvertes.fr/hal-03064964 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SHORT REPORT Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates Rylan Shearn1, Alison E Wright2, Sylvain Mousset1,3, Corinne Re´ gis1, Simon Penel1, Jean-Franc¸ois Lemaitre1, Guillaume Douay4, Brigitte Crouau-Roy5, Emilie Lecompte5, Gabriel AB Marais1,6* 1Laboratoire Biome´trie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France; 2Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom; 3Faculty of Mathematics, University of Vienna, Vienna, Austria; 4Zoo de Lyon, Lyon, France; 5Laboratoire Evolution et Diversite´ Biologique, CNRS / Univ. Toulouse, Toulouse, France; 6LEAF-Linking Landscape, Environment, Agriculture and Food Dept, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal Abstract Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region.
    [Show full text]
  • World's Most Endangered Primates
    Primates in Peril The World’s 25 Most Endangered Primates 2016–2018 Edited by Christoph Schwitzer, Russell A. Mittermeier, Anthony B. Rylands, Federica Chiozza, Elizabeth A. Williamson, Elizabeth J. Macfie, Janette Wallis and Alison Cotton Illustrations by Stephen D. Nash IUCN SSC Primate Specialist Group (PSG) International Primatological Society (IPS) Conservation International (CI) Bristol Zoological Society (BZS) Published by: IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), Bristol Zoological Society (BZS) Copyright: ©2017 Conservation International All rights reserved. No part of this report may be reproduced in any form or by any means without permission in writing from the publisher. Inquiries to the publisher should be directed to the following address: Russell A. Mittermeier, Chair, IUCN SSC Primate Specialist Group, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202, USA. Citation (report): Schwitzer, C., Mittermeier, R.A., Rylands, A.B., Chiozza, F., Williamson, E.A., Macfie, E.J., Wallis, J. and Cotton, A. (eds.). 2017. Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA. 99 pp. Citation (species): Salmona, J., Patel, E.R., Chikhi, L. and Banks, M.A. 2017. Propithecus perrieri (Lavauden, 1931). In: C. Schwitzer, R.A. Mittermeier, A.B. Rylands, F. Chiozza, E.A. Williamson, E.J. Macfie, J. Wallis and A. Cotton (eds.), Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018, pp. 40-43. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA.
    [Show full text]
  • Hibernation in Pygmy Lorises (Nycticebus Pygmaeus) – What Does It Mean?
    Vietnamese Journal of Primatology (2017) vol.2(5), 51-57 Hibernation in pygmy lorises (Nycticebus pygmaeus) – what does it mean? Ulrike Streicher1,3, Julia Nowack2, Gabrielle Stalder2, Christian Walzer2, Tilo Nadler3 and Thomas Ruf2 1 Current address: Cascades Raptor Center, Eugene, USA 2 University of Veterinary Medicine, Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, Vienna, Austria, Savoyenstr. 1, 110 Vienna, Austria 3 Endangered Primate Rescue Center, Cuc Phương National Park, Nho Quan District, Ninh Bình Province, Vietnam Corresponding author: Ulrike Streicher <[email protected]> Key words: South-East Asia, primate, torpor, multiday torpor, pygmy loris, hibernation Summary Torpor use in primates appeared to be restricted to African species and was only recently discovered in a species from Asia, the pygmy loris (Nycticebus pygmaeus). This finding has considerable implications for our perception of torpor in this mammal group and demonstrates that torpor is probably more widespread in mammals than commonly thought. This article summarizes the current knowledge on the use of torpor in the pygmy loris and places it into the context of ongoing research on this topic. Hiện tượng ngủ đông ở loài culi nhỏ (Nycticebus pygmaeus) – Ý nghĩa là gì? Tóm tắt Hiện tượng ngủ đông ở các loài linh trưởng được cho rằng chỉ tồn tại ở một số loài linh trưởng ở Châu Phi. Gần đây hiện tượng này được khám phá ở một loài linh trưởng ở Châu Á, loài culi nhỏ (Nycticebus pygmaeus). Phát hiện mới này có thể thay đổi nhận thức của chúng ta về hiện tượng ngủ đông ở nhóm thú này và nó cũng minh chứng rằng hiện tượng ngủ đông có thể phổ biến ở nhiều loài thú khác hơn những gì chúng ta thường nghĩ.
    [Show full text]
  • Fine Scale Habitat and Movement Patterns of Javan Slow Loris ( Nycticebus Javanicus )In Cipaganti, West Java, Indonesia
    Fine scale habitat and movement patterns of javan slow loris ( Nycticebus javanicus )in Cipaganti, West Java, Indonesia Lina Fransson Degree project in biology, Master of science (2 years), 2018 Examensarbete i biologi 45 hp till masterexamen, 2018 Biology Education Centre, Uppsala University, and Department of Ecology and Genetics/ Animal Ecology, in cooperation with the Little Fireface Project Supervisors: Frank Johansson and Marie Sigaud External opponent: Josefine Stångberg Abstract....................................................................................................................................... 1 Introduction ................................................................................................................................ 2 Study questions ....................................................................................................................... 4 Materials and methods................................................................................................................ 5 Study area ............................................................................................................................... 5 “The species studied” in relation to its movement ................................................................. 6 Field work ............................................................................................................................... 8 Vegetation and habitat study ...............................................................................................
    [Show full text]
  • Groves #3 Layout 1
    Vietnamese Journal of Primatology (2009) 3, 37-44 Diet and feeding behaviour of pygmy lorises (Nycticebus pygmaeus) in Vietnam Ulrike Streicher Wildlife Veterinarinan, Danang, Vietnam. <[email protected]> Key words: Diet, feeding behaviour, pygmy loris Summary Little is known about the diet and feeding behaviour of the pygmy loris. Within the Lorisidae there are faunivorous and frugivorous species represented and this study aimed to characterize where the pygmy loris (Nycticebus pygmaeus) ranges on this scale. Feeding behaviour was observed in adult animals which had been confiscated from the illegal wildlife trade and housed at the Endangered Primate Rescue Center at Cuc Phuong National Park for some time before they were radio collared and released into Cuc Phuong National Park. The lorises were located in daytime by methods of radio tracking and in the evenings they were directly observed with the help of red-light torches. The observed lorises exploited a large variety of different food sources, consuming insects as well as gum and other plant exudates, thus appearing to be truly omnivorous. Seasonal variations in food preferences were observed. Omnivory can be an adaptive strategy, helping to overcome difficulties in times of food shortage. The pygmy loris’ feeding behaviour enables it to rely on other food sources like gum in times when other feeding resource become rare. Gum as an alternative food sources has the advantage of being readily available all year round. However it does not permit the same energetic benefits and consequently the same lifestyle as other food sources. But it is an important part of the pygmy loris’ multifaceted strategy to survive times of hostile environmental conditions.
    [Show full text]
  • Widespread Behavioral Responses by Mammals and Fish to Zoo Visitors Highlight Differences Between Individual Animals
    animals Article Widespread Behavioral Responses by Mammals and Fish to Zoo Visitors Highlight Differences between Individual Animals Sarah A. Boyle 1,*, Nathan Berry 1, Jessica Cayton 1, Sarah Ferguson 1, Allesondra Gilgan 1, Adiha Khan 1, Hannah Lam 1, Stephen Leavelle 1, Isabelle Mulder 1, Rachel Myers 1, Amber Owens 1, Jennifer Park 1 , Iqra Siddiq 1, Morgan Slevin 1, Taylor Weidow 1, Alex J. Yu 1 and Steve Reichling 2 1 Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; [email protected] (N.B.); [email protected] (J.C.); [email protected] (S.F.); [email protected] (A.G.); [email protected] (A.K.); [email protected] (H.L.); [email protected] (S.L.); [email protected] (I.M.); [email protected] (R.M.); [email protected] (A.O.); [email protected] (J.P.); [email protected] (I.S.); [email protected] (M.S.); [email protected] (T.W.); [email protected] (A.J.Y.) 2 Conservation and Research Department, Memphis Zoo, 2000 Prentiss Place, Memphis, TN 38112, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-901-843-3268 Received: 21 September 2020; Accepted: 9 November 2020; Published: 13 November 2020 Simple Summary: It is important to understand the impacts that humans have on zoo animals to ensure that zoo animal welfare is not compromised. We conducted multiple short-term studies of the impact of zoo visitors on 16 animal species and found that 90.9% of the mammal species and 60.0% of the fish species studied exhibited some change in behavior related to zoo visitors.
    [Show full text]