Redalyc.Rocinela Signata (Isopoda: Aegidae) Parasitizing the Gills of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Full Text in Pdf Format
Vol. 9: 185–192, 2010 AQUATIC BIOLOGY Published online May 12 doi: 10.3354/ab00250 Aquat Biol Microparasite ecology and health status of common bluestriped snapper Lutjanus kasmira from the Pacific Islands Thierry M. Work1,*, Matthias Vignon2, 3, Greta S. Aeby4 1US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50167, Honolulu, Hawaii 96850, USA 2Centre de Biologie et d’Ecologie Tropicale et Méditerranéenne, UMR 5244 CNRS-EPHE-UPVD, avenue Paul Alduy, 66860 Perpignan Cedex, France 3Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), USR 3278 CNRS-EPHE, BP 1013 Papetoia, Moorea, French Polynesia 4Hawaii Institute of Marine Biology, PO Box 1346, Kaneohe, Hawaii 96744, USA ABSTRACT: Common bluestriped snappers Lutjanus kasmira were intentionally introduced into Hawaii from the South Pacific in the 1950s and have become well established throughout the archi- pelago. We examined health, prevalence and infection intensity of 2 microparasites, coccidia and epitheliocystis-like organisms (ELO), in L. kasmira from their introduced and native range including the islands where translocated fish originated (Tahiti and Marquesas Islands, French Polynesia) and from several other islands (American Samoa, Fiji and New Caledonia). In addition, we did a longitu- dinal survey of these parasites in the introduced range. Coccidia and ELO were widely distributed and were found on all islands except for New Caledonia. Health indices, as measured by overall organ lesions, body condition and parasite intensity, indicated that fish from Samoa were the least healthy, and fish from Midway (Hawaiian Archipelago) were the healthiest. Microparasite diversity was highest on Midway and Hawaii and lowest on New Caledonia. -
(Isopoda: Flabellifera: Aegidae) in the Tropical Western
912 BULLETIN OF MARINESCIENCE, VOL. 30, NO.4, 1980 --. 1975. Observaciones sobre el crecimiento de tortugas marinas en cautividad, Caldasia II: 139-150, McKeown, A. 1977, Marine turtles of the Solomon Islands, Ministry of Natural Resources, Fisheries Division, Honiara, 50 pp, Prichard, P. 1969. Sea turtles of the Guianas, Bull. Fla. St. Mus, 13: 85-140. Schmidt, J. 1916, Marking experiments with turtles in the Danish West Indies. Meddr. Kommn. Havunders, (Ser. Fisk.) 5: 26 pp. Witzell, W. N. 1972. To live or not to live. Int. Turtle Tortoise Soc, J. 6: 32-35. --, 1974, The conservation of the hawksbill turtle in Western Samoa. South Pac. Bull. 24: 33- 36. --, and A, C, Banner. 1980, The hawksbill turtle, Eretmochelys imbricata, in Western Samoa. Bull. Mar. Sci. 30: 571-579. DATE ACCEPTED: May 5, 1980. ADDRESS: Fisheries Division, Western Samoa. PRESENT ADDRESS: National Marine Fisheries Ser- vice, Southeast Fisheries Center. 75 Virginia Beach Drive, Miami, Florida 33/49. BULLETIN OF MARINESCIENCE, 30(4):912-914, 1980 NEW RECORD OF AEGA MONOPHTHALMA JOHNSTON (lSOPODA: FLABELLIFERA: AEGIDAE) IN THE TROPICAL WESTERN ATLANTIC Sara-Ann F. Treat ABSTRACT-The isopod Aega monophthalma Johnston 1834 is reported for the first time from the tropical western Atlantic at Cay Sal Bank, Bahamas. The previously known distribution included the eastern and northern Atlantic. An adult male specimen of Aega monophthalma Johnston 1834 was obtained from a depth of 460 m at Cay Sal Bank, Bahamas, in May 1978. Prior to 1900, this species had been reported from Iceland, the Shetland Islands, Britain and Norway (Barnard, 1914). In 1901 a juvenile male specimen was discovered in deep waters off the South African coast (Barnard, 1914); subsequently, the species was reported from Denmark and Sweden (Stephensen, 1948). -
Sharkcam Fishes
SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam -
Potential of Pigeon Creek As a Nursery Habitat for Juvenile Reef Fish
ORIGINAL ARTICLE Potential of Pigeon Creek, San Salvador, Bahamas, As Nursery Habitat for Juvenile Reef Fish Ian C. Conboy1 Northeast Fisheries Science Center, Woods Hole, MA James M. Haynes The College at Brockport, State University of New York, Brockport, NY ABSTRACT This project assessed the significance of Pigeon Creek, San Salvador, Bahamas as a nursery habitat for coral reef fishes. Pigeon Creek’s perimeter is lined with mangrove and limestone bedrock. The bottom is sand or sea grass and ranges in depth from exposed at low tide to a 3-m deep, tide-scoured channel. In June 2006 and January 2007, fish were counted and their maturity was recorded while sampling 112 of 309 possible 50-m transects along the perimeter of the Pigeon Creek. Excluding silversides (Atherinidae, 52% of fish counted), six families each comprised more than 1% of the total abundance (Scaridae/parrotfishes, 35.3%; Lutjanidae/snappers, 23.9%; Haemulidae/grunts, 21.0%; Gerreidae/mojarras, 8.5%; Pomacentridae/damselfishes, 6.1%; Labridae/wrasses, 2.4%). There were few differences in effort-adjusted counts among habitats (mangrove, bedrock, mixed), sections (north, middle, southwest) and seasons (summer 2006 and winter 2007). Red mangrove (Rhizophora mangle), covering 68% of the perimeter was where 62% of the fish were counted. Snappers, grunts and parrot fishes are important food fishes and significant families in terms of reef ecology around San Salvador. Mangrove was the most important habitat for snappers and grunts; bedrock was most important for parrot fishes. The southwest section was important for snappers, grunts and parrot fishes, the north section for grunts and parrot fishes, and the middle section for snappers. -
New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E. -
Parupeneus Forsskali (Fourmanoir & Guézé, 1976) in the Mediterranean, with Preliminary Information on Its Diet Composition in Cyprus
BioInvasions Records (2020) Volume 9, Issue 2: 209–222 CORRECTED PROOF Research Article Progress of the dispersal of the alien goatfish Parupeneus forsskali (Fourmanoir & Guézé, 1976) in the Mediterranean, with preliminary information on its diet composition in Cyprus Athanasios Evagelopoulos1,*, Andreas Nikolaou1, Nikolas Michailidis2,3, Thodoros E. Kampouris1 and Ioannis E. Batjakas1 1Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece 2Department of Fisheries and Marine Research, 101 Vithleem Str., 1416 Strovolos, Nicosia, Cyprus 3Department of Biological Sciences, University of Cyprus, 1 Panepistimiou Str., 2109 Aglantzia, Nicosia, Cyprus Author e-mails: [email protected] (AE), [email protected] (AK), [email protected] (NM), [email protected] (TEK), [email protected] (IEB) *Corresponding author Citation: Evagelopoulos A, Nikolaou A, Michailidis N, Kampouris TE, Batjakas IE Abstract (2020) Progress of the dispersal of the alien goatfish Parupeneus forsskali Parupeneus forsskali has been the latest Indo-Pacific goatfish species to expand its (Fourmanoir & Guézé, 1976) in the range into the Mediterranean. It is the least studied alien mullid in the Eastern Mediterranean, with preliminary Mediterranean, and specific information on its diet is generally lacking in the information on its diet composition in literature. The objectives of this paper are (1) to comprehensively document the Cyprus. BioInvasions Records 9(2): 209– 222, https://doi.org/10.3391/bir.2020.9.2.06 progress of its invasion in the Mediterranean through a systematic literature review to retrieve all published records of the species in the region, and (2) to present Received: 15 October 2019 preliminary quantitative information on its diet in its non-native range. -
Mullidae 3175
click for previous page Perciformes: Percoidei: Mullidae 3175 MULLIDAE Goatfishes (surmullets) by J.E. Randall iagnostic characters: Body moderately elongate and somewhat compressed (size to 50 cm). Two Dlong unbranched barbels on chin; mouth low on head, the lower jaw inferior, the cleft slightly oblique; dentition variable but teeth conical, either in villiform bands or in 1 or 2 rows, never as enlarged canines (except in adult males of western Atlantic and eastern Pacific species of Pseudupeneus, the teeth of which are slightly enlarged). A single flat spine posteriorly on opercle (a second less developed spine may be present); margin of preopercle smooth. Two well-separated dorsal fins, the first with VII or VIII (usually VIII) slender spines (first spine often very small), the second fin with 9 soft rays (first unbranched); anal fin with I spine and 6 or 7 soft rays; caudal fin deeply forked, with 13 branched rays; pelvic fins with I spine and 5 soft rays; pectoral fins with 13 to 18 rays. Scales finely ctenoid; head and body completely scaly (except preorbital region of some species of Upeneus). Lateral line complete, following contour of back, the pored scales to base of caudal fin 27 to 38. Colour: ground colour in preservative usually pale, in life often whitish to light red; most species with distinctive black, brown, red, or yellow markings; median fins often with stripes or oblique bands. 2 dorsal fins, 1st with VII-VIII spines, 2nd with 9 soft rays 2 barbels on chin Habitat, biology, and fisheries: Most goatfishes inhabit shallow seas. They are usually found on open sand or mud bottoms, at least for feeding (though the species of Parupeneus and Mulloidichthys are often seen on coral reefs or rocky substrata). -
Life History Demographic Parameter Synthesis for Exploited Florida and Caribbean Coral Reef Fishes
Please do not remove this page Life history demographic parameter synthesis for exploited Florida and Caribbean coral reef fishes Stevens, Molly H; Smith, Steven Glen; Ault, Jerald Stephen https://scholarship.miami.edu/discovery/delivery/01UOML_INST:ResearchRepository/12378179400002976?l#13378179390002976 Stevens, M. H., Smith, S. G., & Ault, J. S. (2019). Life history demographic parameter synthesis for exploited Florida and Caribbean coral reef fishes. Fish and Fisheries (Oxford, England), 20(6), 1196–1217. https://doi.org/10.1111/faf.12405 Published Version: https://doi.org/10.1111/faf.12405 Downloaded On 2021/09/28 21:22:59 -0400 Please do not remove this page Received: 11 April 2019 | Revised: 31 July 2019 | Accepted: 14 August 2019 DOI: 10.1111/faf.12405 ORIGINAL ARTICLE Life history demographic parameter synthesis for exploited Florida and Caribbean coral reef fishes Molly H. Stevens | Steven G. Smith | Jerald S. Ault Rosenstiel School of Marine and Atmospheric Science, University of Miami, Abstract Miami, FL, USA Age‐ or length‐structured stock assessments require reliable life history demo‐ Correspondence graphic parameters (growth, mortality, reproduction) to model population dynamics, Molly H. Stevens, Rosenstiel School of potential yields and stock sustainability. This study synthesized life history informa‐ Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, tion for 84 commercially exploited tropical reef fish species from Florida and the Miami, FL 33149, USA. U.S. Caribbean (Puerto Rico and the U.S. Virgin Islands). We attempted to identify a Email: [email protected] useable set of life history parameters for each species that included lifespan, length Funding information at age, weight at length and maturity at length. -
Parasitic in Mullus Argentinae (Perciformes: Mullidae) from the Atlantic Coast of South America
Ahead of print online version FOLIA PARASITOLOGICA 59 [1]: 64–70, 2012 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://folia.paru.cas.cz/ A new species of Neoascarophis (Nematoda: Cystidicolidae) parasitic in Mullus argentinae (Perciformes: Mullidae) from the Atlantic coast of South America Aldenice N. Pereira1, Juan T. Timi2, Fabiano M. Vieira1 and José L. Luque1 1 Curso de Pós-Graduação em Ciências Veterinárias and Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74.508, CEP 23851-970, Seropédica, RJ, Brasil; 2 Laboratorio de Parasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata – Consejo Nacional de Investigaciones Científicas yTécnicas (CONICET), Funes 3350, (7600) Mar del Plata, Argentina Abstract: A new nematode species (Neoascarophis mariae n. sp.) is described based on specimens collected from the Argentine goatfishMullus argentinae (Hubbs et Marini) from coastal waters off the state of Rio de Janeiro, Brazil. In the genus, the new species belongs to the group of species with females that have the vulva near the posterior end of the body. Only males of Neoascarophis longispicula Moravec et Klimpel, 2009 are known and can be distinguished from those of the new species by their larger body, devel- oped and somewhat dorsoventrally expanded flat inner part of the pseudolabia, bifurcate deirids and larger spicules (the left one with a rounded tip) with a different length ratio. Other species with females that have the vulva near the equatorial region are N. yarihige Machida, 1976 and N. -
MRAG South Atlantic PSA Draft Report
South Atlantic Species Productivity – Susceptibility Analyses Draft Report To the Lenfest Ocean Program MRAG Americas 65 Eastern Avenue, Unit B2C Essex, MA 01929 Ph. 978-768-3880 Fax. 978-768-3878 www.mragamericas.com August 27, 2008 Table of Contents 1 Introduction........................................................................................................................................... 1 1.1 The Risk Based Assessment ........................................................................................................... 1 1.2 Information Collection ...................................................................................................................... 3 1.3 A Note about our Productivity Susceptibility Analysis Methodology................................................ 3 2 Non Snapper/Grouper Species ............................................................................................................ 3 2.1 Pink Shrimp, Penaeus [Farfantepenaeus] duorarum ....................................................................... 3 2.2 Red Drum, Sciaenops ocellatus ....................................................................................................... 4 3 Snapper/Grouper Complex .................................................................................................................. 5 3.1 Groupers .......................................................................................................................................... 5 3.2 Snapper......................................................................................................................................... -
Saltwater Fish Identification Guide
Identification Guide To South Carolina Fishes Inshore Fishes Red Drum (Spottail, redfish, channel bass, puppy drum,) Sciaenops ocellatus May have multiple spots along dorsal surface.. RKW Black Drum Pogonias cromis Broad black vertical bars along body. Barbells on chin. Spotted Seatrout (Winter trout, speckled trout) Cynoscion nebulosus Numerous distinct black spots on dorsal surface. Most commonly encountered in rivers and estuaries. RKW Most commonly encountered just offshore around live bottom and artificial reefs. Weakfish (Summer trout, Gray trout) Cynoscion regalis RKW Silver coloration with no spots. Large eye Silver Seatrout Cynoscion nothus RKW Spot Leiostomus xanthurus Distinct spot on shoulder. RKW Atlantic Croaker (Hardhead) Micropogonias undulatus RKW Silver Perch (Virginia Perch) Bairdiella chrysoura RKW Sheepshead Archosargus probatocephalus Broad black vertical bars along body. RKW Pinfish (Sailors Choice) Lagodon rhomboides Distinct spot. RKW Southern Kingfish (Whiting) Menticirrhus americanus RKW Extended 1st dorsal filament Northern Kingfish SEAMAP- Menticirrhus saxatilis SA:RPW Dusky 1st dorsal-fin tip Black caudal fin tip Gulf Kingfish SEAMAP- Menticirrhus littoralis SA:RPW Southern flounder Paralichthys lethostigma No ocellated spots . RKW Summer flounder Paralichthys dentatus Five ocellated spots in this distinct pattern. B. Floyd Gulf flounder Paralichthys albigutta B. Floyd Three ocellated spots in a triangle pattern. B. Floyd Bluefish Pomatomus saltatrix RKW Inshore Lizardfish Synodus foetens RKW RKW Ladyfish Elops saurus Florida Pompano Trachinotus carolinus RKW Lookdown Selene vomer RKW Spadefish Chaetodipterus faber Juvenile RKW Juvenile spadefish are commonly found in SC estuaries. Adults, which look very similar to the specimen shown above, are common inhabitants of offshore reefs. Cobia Rachycentron canadum Adult D. Hammond Juvenile RKW D. -
Andrew David Dorka Cobián Rojas Felicia Drummond Alain García Rodríguez
CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington ACKNOWLEDGMENTS This research was supported by the NOAA Office of Ocean Exploration and Research under award number NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University (HBOI-FAU), and by the NOAA Pacific Marine Environmental Laboratory under award number NA150AR4320064 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami. This expedition was conducted in support of the Joint Statement between the United States of America and the Republic of Cuba on Cooperation on Environmental Protection (November 24, 2015) and the Memorandum of Understanding between the United States National Oceanic and Atmospheric Administration, the U.S. National Park Service, and Cuba’s National Center for Protected Areas. We give special thanks to Carlos Díaz Maza (Director of the National Center of Protected Areas) and Ulises Fernández Gomez (International Relations Officer, Ministry of Science, Technology and Environment; CITMA) for assistance in securing the necessary permits to conduct the expedition and for their tremendous hospitality and logistical support in Cuba. We thank the Captain and crew of the University of Miami R/V F.G. Walton Smith and ROV operators Lance Horn and Jason White, University of North Carolina at Wilmington (UNCW-CIOERT), Undersea Vehicle Program for their excellent work at sea during the expedition.