Progress in Respiratory Research

Total Page:16

File Type:pdf, Size:1020Kb

Progress in Respiratory Research Clinical Chest Ultrasound: From the ICU to the Bronchoscopy Suite Progress in Respiratory Research Vol. 37 Series Editor Chris T. Bolliger Cape Town Clinical Chest Ultrasound From the ICU to the Bronchoscopy Suite Volume Editors C.T. Bolliger Cape Town F.J.F. Herth Heidelberg P.H. Mayo New Hyde Park, N.Y. T. Miyazawa Kawasaki J.F. Beamis Burlington, Mass. 214 figures, 41 in color, 11 tables, and online supplementary material, 2009 Basel · Freiburg · Paris · London · New York · Bangalore · Bangkok · Shanghai · Singapore · Tokyo · Sydney Prof. Dr. Chris T. Bolliger Prof. Dr. Teruomi Miyazawa Department of Medicine Division of Respiratory and Infectious Diseases Faculty of Health Sciences Department of Internal Medicine University of Stellenbosch St. Marianna University School of Medicine 19063 Tygerberg 7505, Cape Town (South Africa) 2-16-1 Sugao miyamae-ku Kawasaki, Kanagawa 216-8511 (Japan) Prof. Dr. Felix J.F. Herth Department of Pneumology and Critical Care Medicine Dr. John F. Beamis Thoraxklinik, University of Heidelberg Section Pulmonary and Critical Care Medicine Amalienstrasse 5 Lahey Clinic DE-69126 Heidelberg (Germany) 41 Mall Road Burlington, MA 01805 (USA) Dr. Paul H. Mayo Long Island Jewish Medical Center Division of Pulmonary, Critical Care, and Sleep Medicine 410 Lakeville Road New Hyde Park, NY 11040 (USA) Library of Congress Cataloging-in-Publication Data Clinical chest ultrasound : from the ICU to the bronchoscopy suite / volume editors, C.T. Bolliger ... [et al.]. p. ; cm. -- (Progress in respiratory research ; v. 37) Includes bibliographical references and index. ISBN 978-3-8055-8642-9 (hard cover : alk. paper) 1. Chest--Ultrasonic imaging. I. Bolliger, C. T. (Christoph T.) II. Series: Progress in respiratory research ; v. 37. [DNLM: 1. Thoracic Diseases--ultrasonography. 2. Thorax--ultrasonography. W1 PR681DM v.37 2009 / WF 975 C641 2009] RC941.C647 2009 617.5’407543--dc22 2009000811 Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents®. Disclaimer. The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the book is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. © Copyright 2009 by S. Karger AG, P.O. Box, CH–4009 Basel (Switzerland) www.karger.com Printed in Switzerland on acid-free and non-aging paper (ISO 9706) by Reinhardt Druck, Basel ISSN 1422–2140 ISBN 978–3–8055–8642–9 e-ISBN 978–3–8055–8643–6 Contents Foreword VII Preface VIII The Basics Chapter 1 Physics of Diagnostic Ultrasound 2 Creating the Image Reuter, K.L.; Bogdan, A. (Burlington, Mass.) Chapter 2 Thoracic Ultrasound Overview 11 Islam, S. (Columbus, Ohio); Tonn, H. (Hannover) Transthoracic Ultrasound Chapter 3 Transthoracic Ultrasound for Chest Wall, Pleura, and the Peripheral Lung 22 Koegelenberg, C.F.N.; Diacon, A.H.; Bolliger, C.T. (Cape Town) Chapter 4 Ultrasound of the Neck 34 Kreuter, M.; Delorme, S. (Heidelberg); Schuler, A. (Geislingen); Herth, F.J.F. (Heidelberg) Chapter 5 Diagnosis of Pulmonary Embolism and Pneumonia Using Transthoracic Sonography 43 Reissig, A.; Kroegel, C. (Jena) Chapter 6 The Mediastinum 51 Herth, F.J.F. (Heidelberg) Critical Care Applications Chapter 7 Critical Care Echocardiography 60 Mayo, P.H. (New Hyde Park, N.Y.) Chapter 8 Use of Ultrasound for Central Venous Access 69 Garibaldi, B.; Feller-Kopman, D. (Baltimore, Md.) Chapter 9 Ultrasound Evaluation of the Lung 76 Pellecchia, C. (New York, N.Y.); Mayo, P.H. (New Hyde Park, N.Y.) Chapter 10 Pleural Ultrasonography in the Intensive Care Unit 82 Wang, J.S.; Doelken, P. (Charleston, S.C.) V Chapter 11 Abdominal Ultrasonography as Related to Problems of the Chest 89 Beckh, S.; Kirchpfening, K. (Nürnberg) Chapter 12 Use of Ultrasonography for the Diagnosis of Venous Thromboembolic Disease 96 Kaplan, A.E. (McAllen, Tex.); Kory, P. (New York, N.Y.) Endoscopic Ultrasound Applications Chapter 13 Principles and Practice of Endoscopic Ultrasound 110 Nishina, K.; Hirooka, K. (Tokyo); Wiegand, J.; Dremel, H. (Hamburg) Chapter 14 Short History of the Development of Endobronchial Ultrasound – A Story of Success 128 Becker, H.D. (Heidelberg) Chapter 15 State-of-the-Art Equipment and Procedures 140 Kurimoto, N.; Osada, H.; Miyazawa, T. (Kawasaki) Chapter 16 Convex Probe Endobronchial Ultrasound 147 Yasufuku, K. (Toronto, Ont.); Nakajima, T. (Chiba) Chapter 17 Endobronchial Ultrasound for Staging of Lung Cancer 153 Herth, F.J.F. (Heidelberg) Chapter 18 Endobronchial Ultrasonography for Peripheral Pulmonary Lesions 160 Kurimoto, N.; Osada, H.; Miyazawa, T. (Kawasaki) Chapter 19 Esophageal Ultrasound 166 Annema, J.T.; Rabe, K.F. (Leiden) Chapter 20 Competing Technologies: Ultrasound, Navigational Bronchoscopy, Optical Coherence Tomography, etc. – Who Will Win Out? 171 Lee, P. (Singapore); Beamis, J.F. (Burlington, Mass.) Ultrasound and Therapeutic Procedures Chapter 21 Ultrasound and Medical Thoracoscopy 182 Michaud, G.; Ernst, A. (Boston, Mass.) Chapter 22 Endobronchial Ultrasound for Difficult Airway Problems 189 Shirakawa, T.; Ishida, A.; Miyazu, Y.; Kurimoto, N. (Kawasaki); Iwamoto, Y. (Hiroshima); Nobuyama, S.; Miyazawa, T. (Kawasaki) Chapter 23 Ultrasound Guidance for Endoscopic Treatment of Pulmonary Malignancies 202 Eberhardt, R. (Heidelberg); Bugalho, A. (Lisbon) Chapter 24 Ultrasound-Guided Drainage Procedures and Biopsies 208 Wang, J.S.; Doelken, P. (Charleston, S.C.) Author Index 215 Subject Index 216 V ideo Online supplementary material, www.karger.com/PRR037_suppl VI Contents Foreword This current volume on Clinical Chest Ultrasound: From the A book on imagery tools should include as many illus- ICU to the Bronchoscopy Suite is the 37th in the series, and trations as possible without overdoing it and becoming an the 10th since I took over as Editor-in-Chief. For this cele- atlas, which was clearly not our aim. We therefore made use bratory 10th volume I wanted to have an unusual topic, but of the electronic option to put a number of pictures and one that would perfectly reflect the spirit of Progress in more importantly all video clips on a special on-line repos- Respiratory Research. When talking to potential guest editors itory open to the purchaser of the book. We hope that this for the book John Beamis, a friend and well-known interven- feature will be attractive to the reader especially since these tional pulmonologist from Boston, came up with the bril- illustrations can also be downloaded for personal use. liant idea to choose ultrasound as the topic and to cover all The final product should meet the very high standards of aspects of its use in the chest that might be of interest to pul- the book series, which — by the way — has seen two of its monologists and intensivists. The above title was born. The latest volumes receive a ‘highly commended’ award in the next step was to find guest editors who would be willing to BMA Book Competition! In the future we will continue to do this book together with me, and bring the necessary produce about one book a year about any important aspect knowledge to cover every angle of this new imaging tool. I of chest medicine. But while waiting for upcoming vol- was delighted that we could get the support of John Beamis umes, get this one and enjoy it! for the introductory section, Paul Mayo for the intensive care C.T. Bolliger unit part, Felix Herth for the endoscopic ultrasound section, Cape Town and Teruomi Miyazawa for the therapeutic procedures, while I covered the transthoracic applications. VII Preface The use of ultrasound in medicine began during and In case of parabronchial lesions, for instance, the view shortly after the 2nd World War in various centres around during bronchoscopy is limited to the inner surface, the world. The work of Dr. Karl Theodore Dussik in whereas the addition of endobronchial ultrasound systems Austria in 1942 on transmission ultrasound investigation of allows the inspection of structures surrounding the airways. the brain is the first published work on medical ultrasonics. The various applications of chest ultrasound are set to From the mid-1960s onwards, the advent of commer- become practical and essential tools for the pulmonologist cially available systems allowed the wider dissemination of in the near future. the art. Rapid technological advances in electronics and However, the medical use of ultrasound remains highly piezoelectric materials provided further improvements operator dependent in spite of advances in technology, and from bistable to greyscale images and from still images to the interests of the patient are best served by the provision real-time moving images. The technical advances at this of an ultrasound service which offers the maximum clinical time led to a rapid growth in the applications to which benefit and optimal use of resources, i.e.
Recommended publications
  • A Comprehensive Benchmark for Single Image Compression Artifact Reduction
    IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020 7845 A Comprehensive Benchmark for Single Image Compression Artifact Reduction Jiaying Liu , Senior Member, IEEE, Dong Liu , Senior Member, IEEE, Wenhan Yang , Member, IEEE, Sifeng Xia , Student Member, IEEE, Xiaoshuai Zhang , and Yuanying Dai Abstract— We present a comprehensive study and evaluation storage processes to save bandwidth and resources. Based on of existing single image compression artifact removal algorithms human visual properties, the codecs make use of redundan- using a new 4K resolution benchmark. This benchmark is called cies in spatial, temporal, and transform domains to provide the Large-Scale Ideal Ultra high-definition 4K (LIU4K), and it compact approximations of encoded content. They effectively includes including diversified foreground objects and background reduce the bit-rate cost but inevitably lead to unsatisfactory scenes with rich structures. Compression artifact removal, as a visual artifacts, e.g. blockiness, ringing, and banding. These common post-processing technique, aims at alleviating undesir- able artifacts, such as blockiness, ringing, and banding caused artifacts are derived from the loss of high-frequency details by quantization and approximation in the compression process. during the quantization process and the discontinuities caused In this work, a systematic listing of the reviewed methods is by block-wise batch processing. These artifacts not only presented based on their basic models (handcrafted models and degrade user visual experience, but they are also detrimental deep networks). The main contributions and novelties of these for successive image processing and computer vision tasks. methods are highlighted, and the main development directions In our work, we focus on the degradation of compressed are summarized, including architectures, multi-domain sources, images.
    [Show full text]
  • Learning a Virtual Codec Based on Deep Convolutional Neural
    JOURNAL OF LATEX CLASS FILES 1 Learning a Virtual Codec Based on Deep Convolutional Neural Network to Compress Image Lijun Zhao, Huihui Bai, Member, IEEE, Anhong Wang, Member, IEEE, and Yao Zhao, Senior Member, IEEE Abstract—Although deep convolutional neural network has parameters are always assigned to the codec in order to been proved to efficiently eliminate coding artifacts caused by achieve low bit-rate coding leading to serious blurring and the coarse quantization of traditional codec, it’s difficult to ringing artifacts [4–6], when the transmission band-width is train any neural network in front of the encoder for gradient’s back-propagation. In this paper, we propose an end-to-end very limited. In order to alleviate the problem of Internet image compression framework based on convolutional neural transmission congestion [7], advanced coding techniques, network to resolve the problem of non-differentiability of the such as de-blocking, and post-processing [8], are still the hot quantization function in the standard codec. First, the feature and open issues to be researched. description neural network is used to get a valid description in The post-processing technique for compressed image can the low-dimension space with respect to the ground-truth image so that the amount of image data is greatly reduced for storage be explicitly embedded into the codec to improve the coding or transmission. After image’s valid description, standard efficiency and reduce the artifacts caused by the coarse image codec such as JPEG is leveraged to further compress quantization. For instance, adaptive de-blocking filtering is image, which leads to image’s great distortion and compression designed as a loop filter and integrated into H.264/MPEG-4 artifacts, especially blocking artifacts, detail missing, blurring, AVC video coding standard [9], which does not require an and ringing artifacts.
    [Show full text]
  • New Image Compression Artifact Measure Using Wavelets
    New image compression artifact measure using wavelets Yung-Kai Lai and C.-C. Jay Kuo Integrated Media Systems Center Department of Electrical Engineering-Systems University of Southern California Los Angeles, CA 90089-256 4 Jin Li Sharp Labs. of America 5750 NW Paci c Rim Blvd., Camas, WA 98607 ABSTRACT Traditional ob jective metrics for the quality measure of co ded images such as the mean squared error (MSE) and the p eak signal-to-noise ratio (PSNR) do not correlate with the sub jectivehuman visual exp erience well, since they do not takehuman p erception into account. Quanti cation of artifacts resulted from lossy image compression techniques is studied based on a human visual system (HVS) mo del and the time-space lo calization prop ertyofthe wavelet transform is exploited to simulate HVS in this research. As a result of our research, a new image quality measure by using the wavelet basis function is prop osed. This new metric works for a wide variety of compression artifacts. Exp erimental results are given to demonstrate that it is more consistent with human sub jective ranking. KEYWORDS: image quality assessment, compression artifact measure, visual delity criterion, human visual system (HVS), wavelets. 1 INTRODUCTION The ob jective of lossy image compression is to store image data eciently by reducing the redundancy of image content and discarding unimp ortant information while keeping the quality of the image acceptable. Thus, the tradeo of lossy image compression is the numb er of bits required to represent an image and the quality of the compressed image.
    [Show full text]
  • ITC Confplanner DVD Pages Itcconfplanner
    Comparative Analysis of H.264 and Motion- JPEG2000 Compression for Video Telemetry Item Type text; Proceedings Authors Hallamasek, Kurt; Hallamasek, Karen; Schwagler, Brad; Oxley, Les Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings Rights Copyright © held by the author; distribution rights International Foundation for Telemetering Download date 25/09/2021 09:57:28 Link to Item http://hdl.handle.net/10150/581732 COMPARATIVE ANALYSIS OF H.264 AND MOTION-JPEG2000 COMPRESSION FOR VIDEO TELEMETRY Kurt Hallamasek, Karen Hallamasek, Brad Schwagler, Les Oxley [email protected] Ampex Data Systems Corporation Redwood City, CA USA ABSTRACT The H.264/AVC standard, popular in commercial video recording and distribution, has also been widely adopted for high-definition video compression in Intelligence, Surveillance and Reconnaissance and for Flight Test applications. H.264/AVC is the most modern and bandwidth-efficient compression algorithm specified for video recording in the Digital Recording IRIG Standard 106-11, Chapter 10. This bandwidth efficiency is largely derived from the inter-frame compression component of the standard. Motion JPEG-2000 compression is often considered for cockpit display recording, due to the concern that details in the symbols and graphics suffer excessively from artifacts of inter-frame compression and that critical information might be lost. In this paper, we report on a quantitative comparison of H.264/AVC and Motion JPEG-2000 encoding for HD video telemetry. Actual encoder implementations in video recorder products are used for the comparison. INTRODUCTION The phenomenal advances in video compression over the last two decades have made it possible to compress the bit rate of a video stream of imagery acquired at 24-bits per pixel (8-bits for each of the red, green and blue components) with a rate of a fraction of a bit per pixel.
    [Show full text]
  • Life Science Journal 2013; 10 (2) [email protected] 102 P
    Life Science Journal 2013; 10 (2) http://www.lifesciencesite.com Performance And Analysis Of Compression Artifacts Reduction For Mpeq-2 Moving Pictures Using Tv Regularization Method M.Anto bennet 1, I. Jacob Raglend2 1Department of ECE, Nandha Engineering College, Erode- 638052, India 2Noorul Islam University, TamilNadu, India [email protected] Abstract: Novel approach method for the reduction of compression artifact for MPEG–2 moving pictures is proposed. Total Variation (TV) regularization method, and obtain a texture component in which blocky noise and mosquito noise are decomposed. These artifacts are removed by using selective filters controlled by the edge information from the structure component and the motion vectors. Most discrete cosine transforms (DCT) based video coding suffers from blocking artifacts where boundaries of (8x8) DCT blocks become visible on decoded images. The blocking artifacts become more prominent as the bit rate is lowered. Due to processing and distortions in transmission, the final display of visual data may contain artifacts. A post-processing algorithm is proposed to reduce the blocking artifacts of MPEG decompressed images. The reconstructed images from MPEG compression produce noticeable image degradation near the block boundaries, in particular for highly compressed images, because each block is transformed and quantized independently. The goal is to improve the visual quality, so perceptual blur and ringing metrics are used in addition to PSNR evaluation and the value will be approx. 43%.The experimental results show much better performances for removing compression artifacts compared with the conventional method. [M.Anto bennet, I. Jacob Raglend. Performance And Analysis Of Compression Artifacts Reduction For Mpeq-2 Moving Pictures Using Tv Regularization Method.
    [Show full text]
  • Image Compression Using Anti-Forensics Method
    IMAGE COMPRESSION USING ANTI-FORENSICS METHOD M.S.Sreelakshmi1 and D. Venkataraman1 1Department of Computer Science and Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India [email protected] [email protected] ABSTRACT A large number of image forensics methods are available which are capable of identifying image tampering. But these techniques are not capable of addressing the anti-forensics method which is able to hide the trace of image tampering. In this paper anti-forensics method for digital image compression has been proposed. This anti-forensics method is capable of removing the traces of image compression. Additionally, technique is also able to remove the traces of blocking artifact that are left by image compression algorithms that divide an image into segments during compression process. This method is targeted to remove the compression fingerprints of JPEG compression. Keywords Forensics, JPEG compression, anti-forensics, blocking artifacts. 1. INTRODUCTION Due to wide availability of powerful graphic editing software image forgeries can be done very easily. As a result a number of forensics methods have been developed for detecting digital image forgeries even when they are visually convincing. In order to improve the existing forensics method anti-forensics methods have to be developed and studies, so that the loopholes in the existing forensics methods can be identified and hence forensics methods can be improved. By doing so, researchers can be made aware of which forensics techniques are capable of being deceived, thus preventing altered images from being represented as authentic and allowing forensics examiners to establish a degree of confidence in their findings. 2. OVERVIEW OF PROPOSED METHOD When a digital image undergoes JPEG compression it’s first divided into series of 8x8 pixel blocks.
    [Show full text]
  • Differentiable GIF Encoding Framework
    GIFnets: Differentiable GIF Encoding Framework Innfarn Yoo, Xiyang Luo, Yilin Wang, Feng Yang, and Peyman Milanfar Google Research - Mountain View, California [innfarn, xyluo, yilin, fengyang, milanfar]@google.com Abstract Graphics Interchange Format (GIF) is a widely used im- age file format. Due to the limited number of palette col- ors, GIF encoding often introduces color banding artifacts. Traditionally, dithering is applied to reduce color banding, but introducing dotted-pattern artifacts. To reduce artifacts and provide a better and more efficient GIF encoding, we introduce a differentiable GIF encoding pipeline, which in- cludes three novel neural networks: PaletteNet, DitherNet, and BandingNet. Each of these three networks provides an (a) Original (b) Palette important functionality within the GIF encoding pipeline. PaletteNet predicts a near-optimal color palette given an input image. DitherNet manipulates the input image to re- duce color banding artifacts and provides an alternative to traditional dithering. Finally, BandingNet is designed to detect color banding, and provides a new perceptual loss specifically for GIF images. As far as we know, this is the first fully differentiable GIF encoding pipeline based on deep neural networks and compatible with existing GIF de- coders. User study shows that our algorithm is better than Floyd-Steinberg based GIF encoding. (c) Floyd-Steinberg (d) Our Method Figure 1: Comparison of our method against GIF encod- 1. Introduction ing with no dithering and Floyd-Steinberg dithering. Com- pared to GIF without dithering (b) and Floyd-Steinberg (c), GIF is a widely used image file format. At its core, GIF our method (d) shows less banding artifacts as well as less represents an image by applying color quantization.
    [Show full text]
  • Arxiv:1803.04680V4 [Cs.CV] 16 Mar 2018 1
    Multi-Frame Quality Enhancement for Compressed Video Ren Yang, Mai Xu,∗ Zulin Wang and Tianyi Li School of Electronic and Information Engineering, Beihang University, Beijing, China fyangren, maixu, wzulin, [email protected] HEVC Our MFQE approach PQF Abstract PSNR (dB) PSNR 81 85 90 95 100 105 Frames The past few years have witnessed great success in ap- Compressed frame 93 Compressed frame 96 Compressed frame 97 plying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on en- hancing the quality of a single frame, ignoring the similar- ity between consecutive frames. In this paper, we investi- gate that heavy quality fluctuation exists across compressed MF-CNN of our MFQE approach video frames, and thus low quality frames can be enhanced DS-CNN [42] using the neighboring high quality frames, seen as Multi- Frame Quality Enhancement (MFQE). Accordingly, this pa- per proposes an MFQE approach for compressed video, as a first attempt in this direction. In our approach, we Enhanced frame 96 Enhanced frame 96 Raw frame 96 firstly develop a Support Vector Machine (SVM) based de- Figure 1. Example for quality fluctuation (top) and quality enhancement tector to locate Peak Quality Frames (PQFs) in compressed performance (bottom). video. Then, a novel Multi-Frame Convolutional Neural Recently, there has been increasing interest in enhanc- Network (MF-CNN) is designed to enhance the quality of ing the visual quality of compressed image/video [27, 10, compressed video, in which the non-PQF and its nearest 18, 36, 6, 9, 38, 12, 24, 24, 42].
    [Show full text]
  • Gifnets: Differentiable GIF Encoding Framework
    GIFnets: Differentiable GIF Encoding Framework Innfarn Yoo, Xiyang Luo, Yilin Wang, Feng Yang, and Peyman Milanfar Google Research - Mountain View, California [innfarn, xyluo, yilin, fengyang, milanfar]@google.com Abstract Graphics Interchange Format (GIF) is a widely used im- age file format. Due to the limited number of palette col- ors, GIF encoding often introduces color banding artifacts. Traditionally, dithering is applied to reduce color banding, but introducing dotted-pattern artifacts. To reduce artifacts and provide a better and more efficient GIF encoding, we introduce a differentiable GIF encoding pipeline, which in- cludes three novel neural networks: PaletteNet, DitherNet, and BandingNet. Each of these three networks provides an (a) Original (b) Palette important functionality within the GIF encoding pipeline. PaletteNet predicts a near-optimal color palette given an input image. DitherNet manipulates the input image to re- duce color banding artifacts and provides an alternative to traditional dithering. Finally, BandingNet is designed to detect color banding, and provides a new perceptual loss specifically for GIF images. As far as we know, this is the first fully differentiable GIF encoding pipeline based on deep neural networks and compatible with existing GIF de- coders. User study shows that our algorithm is better than Floyd-Steinberg based GIF encoding. (c) Floyd-Steinberg (d) Our Method Figure 1: Comparison of our method against GIF encod- 1. Introduction ing with no dithering and Floyd-Steinberg dithering. Com- pared to GIF without dithering (b) and Floyd-Steinberg (c), GIF is a widely used image file format. At its core, GIF our method (d) shows less banding artifacts as well as less represents an image by applying color quantization.
    [Show full text]
  • Review of Artifacts in JPEG Compression and Reduction
    ISSN: 2278 – 909X International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 6, Issue 3, March - 2017 Review of Artifacts In JPEG Compression And Reduction Sima Sonawane, B.H.Pansambal Encoding Abstract— In recent years, the development of social networking and multimedia devices has grown fast which requires wide bandwidth and more storage space. The other approach is to use the available bandwidth and storage space efficiently as it is not feasible to change devices often. On social networking sites large volume of data and images are collected and stored daily. Compression is a key technique to solve the issue. JPEG compression gives good and clear results but the decompression technique usually results in artifacts in images. In this paper types of artifact and reduction techniques are discussed. Index Terms— JPEG compression; artifact; artifact reduction; post-processing; lossy compression; lossless Fig. 1: JPEG Encoder and Decoder compression Each eight-bit sample is level shifted by subtracting 28-1=7 I. INTRODUCTION = 128 before being DCT coded. This is known as DC level Generally, compression techniques represent the image in shifting. The 64 DCT coefficients are then uniformly fewer bits representing the original image. The main quantized according to the step size given in the objective of image compression is to reduce irrelevant application-specific quantization matrix. After quantization, information and redundancy of the image so that the image the DC (commonly referred to as (0, 0)) coefficient and the can be transmitted in an efficient form. Compression can be 63 AC coefficients are coded separately. The DC coefficients classified into lossless and lossy compression techniques.
    [Show full text]
  • Dail and Hammar's Pulmonary Pathology
    Dail and Hammar's Pulmonary Pathology Third Edition Dail and Hammar's Pulmonary Pathology Volume I: Nonneoplastic Lung Disease Third Edition Editor Joseph F. Tomashefski, Jr., MD Professor, Department of Pathology, Case Western Reserve University School of Medicine; Chairman, Department of Pathology, MetroHealth Medical Center, Cleveland, Ohio, USA Associate Editors Philip T. Cagle, MD Professor, Department of Pathology, Weill Medical College of Cornell University, New York, New York; Director, Pulmonary Pathology, Department of Pathology, The Methodist Hospital, Houston, Texas, USA Carol F. Farver, MD Director, Pulmonary Pathology, Department of Anatomic Pathology, The Cleveland Clinic Foundation, Cleveland, Ohio, USA Armando E. Fraire, MD Professor, Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA ~ Springer Editor: Joseph F. Tomashefski, Jr., MD Professor, Department of Pathology, Case Western Reserve University School of Medicine; Chairman, Department of Pathology, MetroHealth Medical Center, Cleveland, OH, USA Associate Editors: Philip T. Cagle, MD Professor, Department of Pathology, Weill Medical College of Cornell University, New York, NY; Director, Pulmonary Pathology, Department of Pathology, The Methodist Hospital, Houston, TX, USA Carol F. Farver, MD Director, Pulmonary Pathology, Department of Anatomic Pathology, The Cleveland Clinic Foundation, Cleveland, OH, USA Armando E. Fraire, MD Professor, Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA Library of Congress Control Number: 2007920839 Volume I ISBN: 978-0-387-98395-0 e-ISBN: 978-0-387-68792-6 DOl: 10.1 007/978-0-387 -68792-6 Set ISBN: 978-0-387-72139-2 © 2008 Springer Science+Business Media, LLC. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
    [Show full text]
  • Better Compression with Deep Pre-Editing
    1 Better Compression with Deep Pre-Editing Hossein Talebi, Damien Kelly, Xiyang Luo, Ignacio Garcia Dorado, Feng Yang, Peyman Milanfar and Michael Elad Google Research - Mountain View, California Abstract—Could we compress images via standard codecs while avoiding visible artifacts? The answer is obvious – this is doable as long as the bit budget is generous enough. What if the allocated bit-rate for compression is insufficient? Then unfortunately, artifacts are a fact of life. Many attempts were made over the years to fight this phenomenon, with various degrees of success. In this work we aim to break the unholy connection between bit-rate and image quality, and propose a way to circumvent compression artifacts by pre-editing the incoming image and modifying its content to fit the given bits. We design this editing operation as a learned convolutional neural network, and formulate an optimization problem for its training. Our loss takes into account a proximity between the original image and the edited one, a bit-budget penalty over the proposed image, and a no-reference image quality measure for forcing the outcome to (a) Input (b) Baseline JPEG (0.4809 bpp) be visually pleasing. The proposed approach is demonstrated on the popular JPEG compression, showing savings in bits and/or improvements in visual quality, obtained with intricate editing effects. I. INTRODUCTION Commonly used still image compression algorithms, such as JPEG [55], JPEG-2000 [15], HEIF [1] and WebP [25] produce undesired artifacts when the allocated bit rate is rel- atively low. Blockiness, ringing, and other forms of distortion are often seen in compressed-decompressed images, even at intermediate bit-rates.
    [Show full text]