Pathways to the Ultra- Efficient Powertrain – Towards 60% Efficiency

Total Page:16

File Type:pdf, Size:1020Kb

Pathways to the Ultra- Efficient Powertrain – Towards 60% Efficiency Pathways to the ultra- efficient powertrain – towards 60% efficiency Future Powertrain 2017 Dr Robert Morgan Deputy Head, AEC University of Brighton Advanced Engineering Centre 2 University of Brighton Improving thermal efficiency through fundamental understanding of the in cylinder processes Confidential Copyright University of Brighton 2016 Are we at to the end of the road? 3 Wartsila RT-flex58T Mechanical losses 3% Finite combustion 3% Mercedes F1 Blowby 1% Cycle to Cycle variations 2% Gas exchange 2% Heat transfer 7% TOTAL 18% Stone 2012 Confidential Copyright University of Brighton 2016 4 Changing the rules – the split cycle engine, a new thermodynamic cycle Independent 1. Isothermal compression Less work of compression optimisation of the 2. Isobaric heating Pre combustion waste compression & heat recovery expansion cylinders 3. Mixed cycle heat addition 4. Expansion Confidential Copyright University of Brighton 2016 5 Why hasn't it been done before? 1909 Ricardo “Dolphin” engine 1 2004 “ISOENGINE” 2 Several engines with split compressor and combustion cylinders have been proposed Only the Isoengine recovered heat between the chambers Scuderi Engine 3 1 Engines and Enterprise: The Life and Work of Sir Harry Ricardo 2 nd Ed 2Isoengine data analysis and future design options. Coney et al. CIMAC Congress 2004, Paper 83, Koyoto 3http://www.scuderigroup.com/engine-development/ Confidential Copyright University of Brighton 2016 There are multiple challenges in practically 6 implementing the recuperated split cycle engine Effective isothermal compression √ Isoengine, Cool R Cryopower ULTRA High pressure recuperation, practical for mass manufacture Practical valve system with a very short induction period at high T & P Achieving complete and rapid combustion in the expansion stroke Confidential Copyright University of Brighton 2016 Ideal pressure trace – minimal compression work, inlet / 7 chamber pressure equalised, rapid burn Inlet valve lift Exhaust valve lift ~30° period Inlet pressure Pressure rise caused by air Cylinder Cylinder pressure induction, not compression! Rapid burn, 12-20°ATDC TDC Crank angle Confidential Copyright University of Brighton 2016 8 Engine system installation at Brighton Gas storage bottles Gas burner tube at c. 900° C High pressure air system, delivers air up to 70 bar Gas burner delivers heated air at 800°C Prototype recuperator from Hiflux Engine installation Split lubrication and cooling system Confidential Copyright University of Brighton 2016 800rpm, 47.9Nm, 900bar rail, 23:1 AFR, 25bar inlet 9 Start of Combustion phased to IVC Inlet air works against piston Chamber filled prior to ignition Confidential Copyright University of Brighton 2016 14 degrees of retard achieved, increasing torque to 10 91Nm 8.5bar/deg 30% increase In volume Less works against piston, Some work recovery ATDC Inlet valve restricting flow and so the chamber is not fully filled Confidential Copyright University of Brighton 2016 1200 rpm, 800bar rail, 23.9:1 AFR, 30bar, 688degC inlet 11 Combustion still stable with 6 degrees retard Confidential Copyright University of Brighton 2016 Impact on cycle efficiency 12 15 10 5 0 -5 -10 -15 -20Changein thermalefficiency, % -30 -20 -10 0 10 20 30 Change in combustion period, degrees crank Confidential Copyright University of Brighton 2016 13 How does the split cycle engine compare? (update from FPT2016) Waste Advanced Chemical Split cycle heat combustion looping 43% BTE Current recovery (two fuels) +WHR best in class heavy Baseline duty diesel WHR Advanced Isothermal 45% BTE combustion Reduce H 2 slip compression Improved Advanced optimisation 47% BTE Recuperation WHR combustion 50% BTE 48% BTE 50% BTE Optimisation of CR/ER & insulation 55% BTE Normal Fast burning fuel fuels 58% BTE 60% BTE Closed hybrid cycles? Confidential Copyright University of Brighton 2016 Concluding remarks 14 Are we approaching the limits of what can be achieved with a conventional Otto or Diesel cycle? But the reciprocating engine still offers many advantages over other solutions in particular in high power – long range applications New approaches are needed to achieve a clean propulsion system that breaks the 50% efficiency barrier The split cycle engine offers a solution, with the potential to approach 60% BTE Testing has proved the viability of the combustion system – the main outstanding challenge! Confidential Copyright University of Brighton 2016.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0180875 A1 Meldolesi Et Al
    US 20100180875A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0180875 A1 Meldolesi et al. (43) Pub. Date: Jul. 22, 2010 (54) SEATING CONTROL DEVICE FOR A VALVE Publication Classification FOR A SPLTCYCLE ENGINE (51) Int. C. (75) Inventors: Riccardo Meldolesi, Brighton FO2B 33/22 (2006.01) (GB); Stephen Peter Scuderi, FI6K 25/00 (2006.01) Westfield, MA (US) (52) U.S. Cl. ....................................... 123/70 Rs 251/175 Correspondence Address: (57) ABSTRACT EDWARDS ANGELL PALMER & DODGE LLP A seating control device for a valve, comprising: P.O. BOX SS874 a vessel for containing a fluid; BOSTON, MA 02205 (US) an upper snubber element translatably receivable in the (73) Assignee: The Scuderi Group, LLC, West vessel for controlling the seating Velocity of a valve Springfield, MA (US) associated therewith; and a lower snubber element translatably receivable in the ves (21) Appl. No.: 12/321,640 sel, adjacent the upper Snubber element, presenting a surface to the upper snubber element, for controlling the (22) Filed: Jan. 22, 2009 seating of the valve. 62 Patent Application Publication Jul. 22, 2010 Sheet 1 of 13 US 2010/0180875 A1 FIG. 1 Prior Art 18 ° 22 28 2632/ 4. A%214 NR tRNILE N 2 74 % 12 P % 14 Tin - O % |RLNji Patent Application Publication Jul. 22, 2010 Sheet 2 of 13 US 2010/0180875 A1 FIG. 2 Prior Art Valve Lift 45 42 Crank Angle (deg) 43 FIG. 3 Prior Art LO O N 2No. 2NN N Nº 3 3 2\, 3. 22 2% % YERNAL7 ANNau Air H-. 12 release exce Hern --- - Co % ( , r16 Patent Application Publication Jul.
    [Show full text]
  • The Recuperated Split Cycle – Experimental Combustion Data from a Single Cylinder Test Rig
    2017-24-0169 The recuperated split cycle – experimental combustion data from a single cylinder test rig Author, co-author ( Do NOT enter this information. It will be pulled from participant tab in MyTechZone ) Affiliation ( Do NOT enter this information. It will be pulled from participant tab in MyTechZone ) Critical deadlines – Review ready 16 th March, final manuscript 10 th June Abstract research in the field. Significant benefits through vehicle and system measures, such as kinetic energy recovery and improved aerodynamics are expected to deliver substantial improvements but the primary The conventional Diesel cycles engine is now approaching the source of loss in the system, the prime mover, is more challenging. practical limits of efficiency. The recuperated split cycle engine is an Reductions in powertrain friction and improvements in combustion alternative cycle with the potential to achieve higher efficiencies than efficiency are likely to deliver brake efficiencies as high as 50% from could be achieved using a conventional engine cycle. In a split cycle conventional compression ignition technologies [1]. The addition of engine, the compression and combustion strokes are performed in waste heat recovery will also drive performance beyond 50%, but there separate chambers. This enables direct cooling of the compression is a broad consensus that brake efficiencies in the range of 50-55% cylinder reducing compression work, intra cycle heat recovery and low represents the technology limit from an advanced compression ignition heat rejection expansion. Previously reported analysis has shown that propulsion system with waste heat recovery. brake efficiencies approaching 60% are attainable, representing a 33% improvement over current advanced heavy duty diesel engine.
    [Show full text]
  • Scuderi Split Cycle Engine: a Review
    Int. J. Mech. Eng. & Rob. Res. 2013 Anshul Jangalwa et al., 2013 ISSN 2278 – 0149 www.ijmerr.com Vol. 2, No. 4, October 2013 © 2013 IJMERR. All Rights Reserved Review Article SCUDERI SPLIT CYCLE ENGINE: A REVIEW Anshul Jangalwa1*, Aditya Kumar Singh1, Akshay Jain1 and Ankit Barua1 *Corresponding Author: Anshul Jangalwa, [email protected] Internal Combustion engines have become a very important prime movers in today’s life, there study is also an active field of research for many automobile industries and also has its environmental concerns. IC engines are used not only in automobile industries but are also used in transportation in sea as well as air, as a prime mover for electric generators and in industrial applications. There efficiencies and there environmental impacts are very crucial. A new IC engine developed by the Scuderi group called ‘Scuderi Split Cycle Engine’ is described in this review paper. It is more efficient than a conventional engine and also have less emissions. Keywords: Conventional engine, Efficiency, Split cycle INTRODUCTION different groups all over the world. Various Scuderi Split-cycle engines divides the four engineers and scientists worked on it to strokes of intake, compression, power, and explore the possibility of the split cycle engine. exhaust into two separate but paired cylinders. But, none has matched the efforts and the The first cylinder is used for intake and results obtained by Late Carmelo J. Scuderi. compression. The compressed air is then He gave his entire life for the Scuderi split cycle transferred through a crossover passage from engine. The Scuderi Group, an engineering the compression cylinder into the expansion and licensing company based in West cylinder, where combustion and exhaust occur.
    [Show full text]
  • Combustion Characteristics of a Spark-Ignited Split-Cycle Engine Fuelled with Methane
    Article citation info: CAMERON I., SOBIESIAK A. Combustion characteristics of a spark-ignited split-cycle engine fuelled with methane. Combustion Engines. 2015, 161(2), 33-41. ISSN 2300-9896. Iain CAMERON PTNSS-2015-204 Andrzej SOBIESIAK Combustion characteristics of a spark-ignited split-cycle engine fuelled with methane This paper begins with a brief introduction to the operating principles of a split-cycle engine that utilizes a valved, intermediary volume to connect the two engine cylinders. Results from experimental testing of the engine fueled with pure methane are presented with a particular emphasis on the combustion duration and phasing. Two different methods of analysing the combustion duration – the mass fraction burn (MFB) and normalized pressure ratio (PRN) – are given. Testing was performed at wide open throttle (WOT) for engine speeds ranging from 850–1200 rpm, and air-fuel equiva- lence ratios from 0.8–1.0. The results indicate that the main combustion duration is very rapid for all conditions tested, despite late combustion phasing. Changes in spark timing were shown to have a considerable impact on IMEP but did not greatly effect the burn duration. Cyclic variability of IMEP was found to be less than 4% for all cases, except when operation was leaner than ø = 0.85, indicating good combustion stability. Key words: spark ignition engines, split-cycle, methane, natural gas, CNG, fast burn, turbulence 1. Introduction [9, 10]. The majority of these engines rely on squish vol- The use of natural gas (NG) as a transportation fuel is umes and/or specially designed piston cavities to generate supported by many appealing attributes associated with the turbulence at TDC.
    [Show full text]
  • The Split Cycle Engine and Its Impact on the Vehicle Cooling System
    The split cycle engine and its impact on the vehicle cooling system R E Morgan, G Dong, and M R Heikal Centre for Automotive Engineering, University of Brighton Abstract The split cycle engine represents a radical departure from conventional internal combustion engines. In the split cycle engine, the compression and combustion processes occur in different cylinders, enabling extreme charge air cooling, intra cylinder waste heat recovery and independent optimisation of the compression and combustion chambers. Combining these benefits, thermal efficiencies of over 50% and approaching 60% in some applications are theoretically possible. The split cycle engine is of particular interest in commercial vehicle applications where load factors are high and savings in fuel consumption of major economic benefit to end users. The energy balance of the split cycle engine is markedly different to conventional engines with significantly more energy being rejected through charge air cooling but correspondingly less through the engine cooling system. How the charge air is cooled will affect how thermal energy is rejected to the environment and the consequential impact on the vehicle cooling system. In this paper, the split cycle engine will be described and the energy balance compared with a conventional heavy duty diesel engines. Methods of charge air cooling; through multi stage compression with intercooling, direct cooling with a water spray and by the injection of a cryogenic liquid spray will be discussed. The overall energy balance, impact on powertrain efficiency and heat exchanger sizing for the water spray cooling case is compared with a comparable diesel engine. Finally, the consequences of the split cycle on component thermal loading will be discussed and strategies for controlling critical component temperatures described.
    [Show full text]
  • PROJECT the Social Sciences, and the Humanities and Arts, Leading to Bachelor’S, Master’S and Doctoral Degrees
    ABOUT WPI Founded in 1865 in Worcester, Mass., WPI is one of the nation’s first engineering and technology universities. Its 14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, business, PROJECT the social sciences, and the humanities and arts, leading to bachelor’s, master’s and doctoral degrees. WPI’s talented faculty work with students on interdisciplinary research that seeks solutions to important and socially relevant problems in fields as diverse PRESENTATION as the life sciences and bioengineering, energy, information security, materials processing, and robotics. Students also have the opportunity to make a difference to communities and organizations around the world through the university’s innovative Global DAYApril 21, 2016 Projects Program. There are more than 45 WPI project centers throughout the Americas, Africa, Asia-Pacific, and Europe. Project Sponsors include... ACI Worldwide Inc. KARL STORZ Endovision, Inc. Reliant Medical Group WPI Projects Program and Sponsorship Amadeus North America Koch Membrane Systems Roche Amazon Robotics Massport Shape Security The projects program at WPI is the university’s signature approach to undergraduate education, combining theo- Angelo Gordon Mathworks Skyworks Solutions retical study with practical problem solving. We bring together the brilliant minds and talents of our student teams BAE Systems Microsoft Spirol International and faculty advisors with a wide variety of corporate, government, and nonprofit organizations. Collaboratively, we Barclays MilliporeSigma Stantec address real business needs, synergizing to create meaningful results. Bose Corporation The MITRE Corporation State Street Global Advisors Boston Scientific Corporation Nanocomp Technologies Sun Life Financial, Inc. Project work is one of the most distinctive aspects of a WPI education and has been at the core of WPI’s undergraduate Chitika, Inc.
    [Show full text]
  • Xxxciclo Del Dottorato Di Ricerca in Ingegneria E Architettura
    UNIVERSITÀ DEGLI STUDI DI TRIESTE XXX CICLO DEL DOTTORATO DI RICERCA IN INGEGNERIA E ARCHITETTURA CURRICULUM INGEGNERIA MECCANICA, NAVALE, DELL’ENERGIA E DELLA PRODUZIONE WASTE HEAT RECOVERY WITH ORGANIC RANKINE CYCLE (ORC) IN MARINE AND COMMERCIAL VEHICLES DIESEL ENGINE APPLICATIONS Settore scientifico-disciplinare: ING-IND/09 DOTTORANDO SIMONE LION COORDINATORE PROF. DIEGO MICHELI SUPERVISORE DI TESI PROF. RODOLFO TACCANI CO-SUPERVISORE DI TESI DR. IOANNIS VLASKOS ANNO ACCADEMICO 2016/2017 Author’s Information Simone Lion Ph.D. Candidate at Università degli Studi di Trieste Development Engineer at Ricardo Deutschland GmbH Early Stage Researcher (ESR) in the Marie Curie FP7 ECCO-MATE Project Author’s e-mail: • Academic: [email protected] • Industrial: [email protected] • Personal: [email protected] Author’s address: • Academic: Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Piazzale Europa, 1, 34127, Trieste, Italy • Industrial: Ricardo Deutschland GmbH, Güglingstraße, 66, 73525, Schwäbisch Gmünd, Germany Project website: • ECCO-MATE Project: www.ecco-mate.eu Official acknowledgments: The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n°607214. Abstract Heavy and medium duty Diesel engines, for marine and commercial vehicles applications, reject more than 50-60% of the fuel energy in the form of heat, which does not contribute in terms of useful propulsion effect. Moreover, the increased attention towards the reduction of polluting emissions and fuel consumption is pushing engine manufacturers and fleet owners in the direction of increasing the overall powertrain efficiency, still considering acceptable investment and operational costs.
    [Show full text]
  • MESP White Paper References
    Modeling earthquake source processes: from tectonics to dynamic rupture Appendix C, References cited Aagaard, B.T., and T. H. Heaton (2004). Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures. Bulletin of the Seismological Society of America; 94 (6): 2064–2078. Aagaard, B.T., Heaton, T.H., and J.F Hall (2001). Dynamic Earthquake Ruptures in the Presence of Lithostatic Normal Stresses: Implications for Friction Models and Heat Production Bulletin of the Seismological Society of America, v. 91, p. 1765-1796, doi:10.1785/0120000257. Aagaard, B. T., Knepley, M. G. and C. A. Williams (2013), A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, Journal of Geophysical Research, 118, 3059– 3079, doi: 10.1002/jgrb.50217. Aben, F. M., Doan, M.-L., Gratier, J.-P. and F. Renard (2017), Coseismic Damage Generation and Pulverization in Fault Zones: Insights From Dynamic Split-Hopkinson Pressure Bar Experiments, in Fault Zone Dynamic Processes, vol. 227, edited by M. Y. Thomas, T. M. Mitchell, and H. S. Bhat, pp. 47–80, John Wiley and Sons, Inc. Abercrombie, R. E. (2014), Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield, Geophys. Res. Lett., 41, 8784–8791, doi:10.1002/2014GL062079. Abercrombie, R. E. (2015), Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. Journal of Geophysical Research, 120, 4263–4277. doi: 10.1002/2015JB011984. Abercrombie, R. E., and J. Mori (1996), Occurrence patterns of foreshocks to large earthquakes in the western United States, Nature, 381, pp.
    [Show full text]
  • Annual Report, Fiscal Year 1967
    00 CD to CO [- «fpffi 1967 ECHNICAL HIGHLIGHTS O F T H E NATIONAL BUREAU OF STANDARDS >-. * X Mr? Sri* Annual Report for: INSTITUTE FOR BASIC STANDARDS INSTITUTE FOR MATERIALS RESEARCH INSTITUTE FOR APPLIED TECHNOLOGY UNITED STATES DEPARTMENT OF COMMERCE Alexander B. Trowbridge. Secretary John F. Kincaid. Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS A. V. Astin, Director 1967 Technical Highlights of the National Bureau of Standards Annual Report, Fiscal Year 1967 November 1967 MisceUaneous Publication 293 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 55 cents Library of Congress Catalog Card Number: 6-23979 CONTENTS INTRODUCTION 1 Move to Gaithersburg Site 1 Dedication of New Facilities 1 Symposium on Technology and World Trade. NBS Publishes History. Legislation Affecting NBS 3 Fair Packaging and Labeling Act of 1966. Pending Legis- lation. Expansion of the Research Associate Program 4 General Trends 5 The National Measurement System. 6 THE NATIONAL MEASUREMENT SYSTEM 7 A Systems Approach to Measurement 7 Basic Social Needs 8 Importance of the System 8 Function of the National Measurement System 9 The Intellectual System 10 The Operational System 11 The Central Core. Instrumentation Network. Data Net- work. Techniques Network. INSTITUTE FOR BASIC STANDARDS 19 Physical Quantities 19 International Base Units 20 Length. Time and Frequency. Temperature. Electric Current. Mechanical Quantities 23 Electrical Quantities—DC and Low Frequency 25 Electrical Quantities—Radio 26 High-Frequency Electrical Standards. High-Frequency Impedance Standards. High-Frequency Calibration Serv- ices. Microwave Calibrations. Electromagnetic Field Standards. Dielectric and Magnetic Standards. Thermal Quantities 32 Photometric and Radiometric Quantities^ _1 32 Ionizing Radiations 36 Physical Properties 39 Nuclear Properties.
    [Show full text]
  • 23Rd IIR International Congress of Refrigeration
    23rd IIR International Congress of Refrigeration Refrigeration for Sustainable Development Prague, Czech Republic 21-26 August 2011 Volume 1 of 5 ISBN: 978-1-61839-748-5 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2011) by the International Institute of Refrigeration All rights reserved. Printed by Curran Associates, Inc. (2012) For permission requests, please contact the International Institute of Refrigeration at the address below. International Institute of Refrigeration 177 Boulevard Malesherbes F 75017 Paris France Phone: 33 1 422 73 235 Fax: 33 1 422 31 798 [email protected] Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS Volume 1 PLENARY LECTURES ADAPTATION OF BUILDINGS AND TECHNOLOGIES FOR SURVIVAL IN A RAPIDLY CHANGING WORLD...............................................................................................................................................................................................................1 Roaf S. REFRIGERATION WITHIN A CLIMATE REGULATORY FRAMEWORK........................................................................................7 Kuijpers L. THE PHENOMENON OF SOLAR COOLING...........................................................................................................................................14
    [Show full text]
  • INTERNAL COMBUSTION ENGINES STILL DELIVER of the Compressor Cylinder Can Be Re- Duced to Eliminate Some of the Negative Work of the Compression Stroke
    redictions regarding the DIFFERENT demise of the internal DIFFERENT combustion engine (ICE) have a long history. The steadily growing number of STROKES: hybrid and full electric ve- STROKES: hicles on the road has only added fuel to Pthe fire, so to speak. But while naysayers have been trying to decide how many more years the ICE has left, engineers INTERNALINTERNAL and visionaries at several different com- panies have been looking for ways to ex- tend its life well into the future. They’ve accomplished this by completely reimag- COMBUSTIONCOMBUSTION ining how an ICE works and what it looks like. In this article, we’ll examine the new technologies that have been developed ENGINESENGINES by these companies. Simple inline or V- type piston engines are definitely not in- cluded in this group. It’s anyone’s guess how many (or if any) of these designs STILL DELIVER will ever end up in a mass-produced ve- STILL DELIVER hicle that you’ll see in your shop. For BBYY KKARLARL SSEYFERTEYFERT now, it’s interesting to see how far you can go with air, a little bit of fuel and a TheThe growinggrowing numbernumber ofof alternativealternative great deal of ingenuity. EcoMotors International (www.eco powertrainpowertrain vehiclesvehicles maymay havehave youyou motors.com) has developed an opposed- thinkingthinking you’llyou’ll soonsoon bebe anan electricelectric piston, opposed-cylinder (OPOC) engine that will run on a number of different engineerengineer ratherrather thanthan aa technician.technician. FearFear fuels, including gasoline, diesel and ethanol. The original OPOC engine de- not.not. TheThe internalinternal combustioncombustion engineengine sign has a long history dating back to the isn’t ready to fade into obscurity.
    [Show full text]
  • Mechanical Zonation of Rock Properties and the Development of Hydrothermal Fluid Circulation Pathways: Implications for Enhanced Geothermal Systems
    Mechanical Zonation of Rock Properties and the Development of Hydrothermal Fluid Circulation Pathways: Implications for Enhanced Geothermal Systems Oladoyin Kolawole ( [email protected] ) Bob L. Herd Department of Petroleum Engineering, Texas Tech University https://orcid.org/0000-0001- 9202-172X Ion Ispas Texas Tech University Folarin Kolawole School of Geosciences, University of Oklahoma Christophe Germay EPSLOG S.A John D McLennan Department of Chemical Engineering, University of Utah Research Keywords: Enhanced geothermal system, Geomechanics, Hydrothermal alteration, Mechanical stratigraphy, Fracture mechanics Posted Date: December 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-122204/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Mechanical Zonation of Rock Properties and the Development of 2 Hydrothermal Fluid Circulation Pathways: Implications for Enhanced 3 Geothermal Systems 4 1,2 1,2 3,4 5 5 Oladoyin Kolawole *, Ion Ispas , Folarin Kolawole , Christophe Germay , John D. 6 6 McLennan1Rock Mechanics Laboratory, 101 Terry Fuller Petroleum Engineering Research Building, Texas 7 Tech University, Lubbock, TX, USA 8 2Bob L. Herd Department of Petroleum Engineering, Texas Tech University, Lubbock, TX, USA 9 3School of Geosciences, University of Oklahoma, Norman, OK, USA 10 4Now at BP America Inc., Houston, TX, USA 11 5EPSLOG S.A., Liege, Belgium 12 6Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA 13 14 *Corresponding author: [email protected] (Oladoyin Kolawole) 15 ORCID: O.K - 0000-0001-9202-172X; I.I - 0000-0003-3426-4031; F.K - 0000-0002-5695- 16 2778; JD.M - 0000-0002-6663-5063 17 ABSTRACT 18 19 Oil and gas operations in sedimentary basins have revealed significant temperatures at 20 depth, raising the possibility of major geothermal resource potential in the sedimentary 21 sequences.
    [Show full text]