Xxxciclo Del Dottorato Di Ricerca in Ingegneria E Architettura

Total Page:16

File Type:pdf, Size:1020Kb

Xxxciclo Del Dottorato Di Ricerca in Ingegneria E Architettura UNIVERSITÀ DEGLI STUDI DI TRIESTE XXX CICLO DEL DOTTORATO DI RICERCA IN INGEGNERIA E ARCHITETTURA CURRICULUM INGEGNERIA MECCANICA, NAVALE, DELL’ENERGIA E DELLA PRODUZIONE WASTE HEAT RECOVERY WITH ORGANIC RANKINE CYCLE (ORC) IN MARINE AND COMMERCIAL VEHICLES DIESEL ENGINE APPLICATIONS Settore scientifico-disciplinare: ING-IND/09 DOTTORANDO SIMONE LION COORDINATORE PROF. DIEGO MICHELI SUPERVISORE DI TESI PROF. RODOLFO TACCANI CO-SUPERVISORE DI TESI DR. IOANNIS VLASKOS ANNO ACCADEMICO 2016/2017 Author’s Information Simone Lion Ph.D. Candidate at Università degli Studi di Trieste Development Engineer at Ricardo Deutschland GmbH Early Stage Researcher (ESR) in the Marie Curie FP7 ECCO-MATE Project Author’s e-mail: • Academic: [email protected] • Industrial: [email protected] • Personal: [email protected] Author’s address: • Academic: Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Piazzale Europa, 1, 34127, Trieste, Italy • Industrial: Ricardo Deutschland GmbH, Güglingstraße, 66, 73525, Schwäbisch Gmünd, Germany Project website: • ECCO-MATE Project: www.ecco-mate.eu Official acknowledgments: The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n°607214. Abstract Heavy and medium duty Diesel engines, for marine and commercial vehicles applications, reject more than 50-60% of the fuel energy in the form of heat, which does not contribute in terms of useful propulsion effect. Moreover, the increased attention towards the reduction of polluting emissions and fuel consumption is pushing engine manufacturers and fleet owners in the direction of increasing the overall powertrain efficiency, still considering acceptable investment and operational costs. For these reasons, waste heat recovery systems, such as the Organic Rankine Cycles (ORC), are undergoing a period of intense research and development. However, in most of engine waste heat recovery studies in literature, the engine side analysis is not considered in a detailed way, even though the engine architecture and the operational behaviour strongly influence the availability of heat sources, and their characteristics, to be recovered using waste heat recovery systems. As an example, the use of emission reduction strategies, such as Exhaust Gas Recirculation (EGR), can introduce an additional heat source and modify the temperatures in the engine gas lines, thus leading to new possible scenarios for the exploitation of the engine wasted heat. The scope of this work, carried out in collaboration with Ricardo, an international engineering consulting company, is to introduce an innovative combined engine-waste heat recovery system analysis and design methodology, which could go beyond the traditional development approach, considering both the engine and the ORC system as a synergic and integrated powertrain. For this reason, industry-standard engine gas dynamics simulation software and thermodynamic process simulation techniques have been used and further developed in order to study the combined effects and performance of engine-ORC systems in the commercial vehicle and marine sectors, addressing at the same time several development issues, such as: working fluid and layout choice, powertrain thermal management, energy utilization, turbocharging and emission reduction strategies, in the direction of a co-simulation approach, which is one of the industry’s main interests, to reduce development time and costs. After a detailed literature review and modelling approach explanation, four different case studies have been proposed, to demonstrate an increasing level of integration between engine and ORC system analysis, addressing also applications which are not commonly considered in literature, such as off- highway vehicles and two-stroke ships propulsion units. The first case study is focused on an agricultural tractor Diesel engine application, using engine data obtained from Ricardo’s testing activities. These data are the starting point for the investigation of the performance of different ORC architectures and working fluids, as well as for the exploitation of EGR wasted heat and the integration of the system with a preliminary study of the vehicle thermal management and cooling system. The results obtained show how the recovery of EGR heat can be beneficial both in terms of ORC system’s performance increase and decreased impact on the vehicle cooling system. A parallel exhaust gas and EGR ORC architecture is able, in principle, to allow around 10% maximum fuel saving, still considering a good trade-off with cooling radiator dimensions and parasitic fan consumption increase, when using water-steam, toluene or ethanol as possible working fluids. The second case study refers to a 1.5 MW, four-stroke, Diesel engine power generator, generally used for auxiliary power production on board ships. A detailed thermodynamic model of the engine has been developed in the commercial software Ricardo WAVE and the performance have been calculated at varying exhaust backpressure levels, in order to represent different possible designs for an ORC boiler fitted on the exhaust side of the engine. Three turbocharging systems have been assessed: a fixed geometry turbocharger, a turbocharger with Waste-Gate (WG) and a Variable Geometry Turbocharger (VGT). An ORC thermodynamic model has been then implemented, considering simple or recuperated architectures and different suitable working fluids, in order to assess the potential for exhaust gas heat recovery. From the simulations’ results, on the engine side, the VGT system allows to better withstand i the adverse effect of the ORC boiler backpressure, while at the same time fulfilling the requirements for combustion air-fuel ratio and maximum turbocharger exhaust temperature. Additionally, a recuperated ORC, running with acetone, allows a fuel consumption reduction between 9.1 and 10.2%, depending on the boiler design backpressure. Flammability and health hazards could however still be a problem, when installing the system onboard ships, even though an intermediate oil loop can mitigate the issues, separating the hot engine exhaust gas from the ORC working fluid. The third case study is focused on a 13.6 MW, low-speed, two-stroke, Diesel engine propulsion unit, typically installed in bulk carriers, oil tankers and container ships. A thermodynamic model of the engine, in typical IMO Tier II configuration, has been developed and validated, in Ricardo WAVE, based on the experimental data supplied by the project partner Winterthur Gas & Diesel (WinGD). Starting from the validated baseline model, a Low Pressure (LP) EGR circuit has been implemented for IMO Tier III operations, and the engine thermodynamic performance and characteristics evaluated in order to understand the impact of the emission reduction strategy on the engine fuel consumption and possible waste heat sources exploitable through the use of ORCs. A general increase of the heat available to be recovered can be evinced when using EGR, especially for the Scavenge Air Cooler (SAC) and the exhaust gas economizer. Four different ORC architectures, and two different working fluids (water-steam and R1233zd(E)) have been assessed, with the scope of obtaining the highest power production from the recovery of the waste heat. When combining the different ORC architectures, in order to try to fully exploit the engine waste heat available, a combined system with a water-steam Rankine cycle on the exhaust gas side and a refrigerant-based ORC recovering jacket cooling water and SAC heat, in an innovative two-stage SAC configuration, has been estimated to bring 5.4% fuel economy benefit in Tier II operation, and 5.9% in Tier III (at full load). The results achieved show the possibility of mitigating the increased fuel consumption effect of EGR operations using waste heat recovery systems. A preliminary economic feasibility analysis shows how a fuel cost savings of about 4% to 5.7% can be expected. The second and third case studies show how engine simulation tools can be used to assess the engine performance under different operational strategies, while at the same time, supplying the right boundary conditions for the evaluation of the performance of the waste heat recovery system, saving time and expensive test campaigns. However, a more synergic approach should be considered, when evaluating the combined engine-ORC systems. For this reason, the last case study aims to set the basics, and open the path, to a new methodology which can be helpful to understand the overall system and optimize its combined performance. In particular, a model of a four-stroke, 200 kW, Diesel engine, for on-highway trucks applications, has been developed in Ricardo WAVE. Innovative post-processing routines, developed in MATLAB, have been used to calculate a detailed First and Second Law analysis, for every engine operating point which can be simulated. The ORC models, for different architectures and working fluids, have also been adapted in order to calculate a complete energy and exergy balance. The calculation of the exergy destruction terms, for every sub-system of the overall engine-ORC powertrain, allows also to highlight where the main inefficiencies concentrate, thus helping to propose improvement strategies. Once energy and exergy streams are known, it has been possible to implement a techno and thermo- economic analysis, allowing
Recommended publications
  • Cylinder Deactivation: a Technology with a Future Or a Niche Application?: Schaeffler Symposium
    172 173 Cylinder Deactivation A technology with a future or a niche application? N O D H I O E A S M I O U E N L O A N G A D F J G I O J E R U I N K O P J E W L S P N Z A D F T O I E O H O I O O A N G A D F J G I O J E R U I N K O P O A N G A D F J G I O J E R O I E U G I A F E D O N G I U A M U H I O G D N O I E R N G M D S A U K Z Q I N K J S L O G D W O I A D U I G I R Z H I O G D N O I E R N G M D S A U K N M H I O G D N O I E R N G E Q R I U Z T R E W Q L K J P B E Q R I U Z T R E W Q L K J K R E W S P L O C Y Q D M F E F B S A T B G P D R D D L R A E F B A F V N K F N K R E W S P D L R N E F B A F V N K F N T R E C L P Q A C E Z R W D E S T R E C L P Q A C E Z R W D K R E W S P L O C Y Q D M F E F B S A T B G P D B D D L R B E Z B A F V R K F N K R E W S P Z L R B E O B A F V N K F N J H L M O K N I J U H B Z G D P J H L M O K N I J U H B Z G B N D S A U K Z Q I N K J S L W O I E P ArndtN N BIhlemannA U A H I O G D N P I E R N G M D S A U K Z Q H I O G D N W I E R N G M D A M O E P B D B H M G R X B D V B D L D B E O I P R N G M D S A U K Z Q I N K J S L W O Q T V I E P NorbertN Z R NitzA U A H I R G D N O I Q R N G M D S A U K Z Q H I O G D N O I Y R N G M D E K J I R U A N D O C G I U A E M S Q F G D L N C A W Z Y K F E Q L O P N G S A Y B G D S W L Z U K O G I K C K P M N E S W L N C U W Z Y K F E Q L O P P M N E S W L N C T W Z Y K M O T M E U A N D U Y G E U V Z N H I O Z D R V L G R A K G E C L Z E M S A C I T P M O S G R U C Z G Z M O Q O D N V U S G R V L G R M K G E C L Z E M D N V U S G R V L G R X K G T N U G I C K O
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0180875 A1 Meldolesi Et Al
    US 20100180875A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0180875 A1 Meldolesi et al. (43) Pub. Date: Jul. 22, 2010 (54) SEATING CONTROL DEVICE FOR A VALVE Publication Classification FOR A SPLTCYCLE ENGINE (51) Int. C. (75) Inventors: Riccardo Meldolesi, Brighton FO2B 33/22 (2006.01) (GB); Stephen Peter Scuderi, FI6K 25/00 (2006.01) Westfield, MA (US) (52) U.S. Cl. ....................................... 123/70 Rs 251/175 Correspondence Address: (57) ABSTRACT EDWARDS ANGELL PALMER & DODGE LLP A seating control device for a valve, comprising: P.O. BOX SS874 a vessel for containing a fluid; BOSTON, MA 02205 (US) an upper snubber element translatably receivable in the (73) Assignee: The Scuderi Group, LLC, West vessel for controlling the seating Velocity of a valve Springfield, MA (US) associated therewith; and a lower snubber element translatably receivable in the ves (21) Appl. No.: 12/321,640 sel, adjacent the upper Snubber element, presenting a surface to the upper snubber element, for controlling the (22) Filed: Jan. 22, 2009 seating of the valve. 62 Patent Application Publication Jul. 22, 2010 Sheet 1 of 13 US 2010/0180875 A1 FIG. 1 Prior Art 18 ° 22 28 2632/ 4. A%214 NR tRNILE N 2 74 % 12 P % 14 Tin - O % |RLNji Patent Application Publication Jul. 22, 2010 Sheet 2 of 13 US 2010/0180875 A1 FIG. 2 Prior Art Valve Lift 45 42 Crank Angle (deg) 43 FIG. 3 Prior Art LO O N 2No. 2NN N Nº 3 3 2\, 3. 22 2% % YERNAL7 ANNau Air H-. 12 release exce Hern --- - Co % ( , r16 Patent Application Publication Jul.
    [Show full text]
  • The Recuperated Split Cycle – Experimental Combustion Data from a Single Cylinder Test Rig
    2017-24-0169 The recuperated split cycle – experimental combustion data from a single cylinder test rig Author, co-author ( Do NOT enter this information. It will be pulled from participant tab in MyTechZone ) Affiliation ( Do NOT enter this information. It will be pulled from participant tab in MyTechZone ) Critical deadlines – Review ready 16 th March, final manuscript 10 th June Abstract research in the field. Significant benefits through vehicle and system measures, such as kinetic energy recovery and improved aerodynamics are expected to deliver substantial improvements but the primary The conventional Diesel cycles engine is now approaching the source of loss in the system, the prime mover, is more challenging. practical limits of efficiency. The recuperated split cycle engine is an Reductions in powertrain friction and improvements in combustion alternative cycle with the potential to achieve higher efficiencies than efficiency are likely to deliver brake efficiencies as high as 50% from could be achieved using a conventional engine cycle. In a split cycle conventional compression ignition technologies [1]. The addition of engine, the compression and combustion strokes are performed in waste heat recovery will also drive performance beyond 50%, but there separate chambers. This enables direct cooling of the compression is a broad consensus that brake efficiencies in the range of 50-55% cylinder reducing compression work, intra cycle heat recovery and low represents the technology limit from an advanced compression ignition heat rejection expansion. Previously reported analysis has shown that propulsion system with waste heat recovery. brake efficiencies approaching 60% are attainable, representing a 33% improvement over current advanced heavy duty diesel engine.
    [Show full text]
  • 1 Active Stirling Engine a Thesis Submitted in Partial Fulfilment of The
    Active Stirling Engine A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Electrical Engineering in the University of Canterbury by Vinod Kumar Gopal University of Canterbury 2012 1 Table of Contents ACKNOWLEDGMENTS 12 ABSTRACT 14 GLOSSARY 16 1. INTRODUCTION AND HISTORY OF STIRLING ENGINE DEVELOPMENT 22 1.1 Reverend Robert Stirling and his engine 23 1.2 Philips Stirling engine development 24 1.3 Other notable Stirling engine developments 28 1.4 Stirling engine development in Japan 29 1.5 Stirling engine development in US 29 1.6 Development in Stirling engine refrigeration and cryocooling 30 2. COMBINED HEAT AND POWER OR CHP SYSTEMS 34 2.1 Introduction to CHP systems 34 2.2 WhisperGen ® microCHP systems 38 2.3 Control of existing microCHP systems 40 3. FUNDAMENTALS OF STIRLING ENGINES 44 3.1 Introduction to Stirling engine technology 44 3.2 Thermodynamic cycles 45 3.3 The Stirling cycle 48 2 3.4 Ideal and conventional Stirling engines 51 3.5 Stirling engine control 55 3.6 Temperature control of Stirling engines 55 3.7 Pressure control of Stirling engines 55 3.8 Stroke control of Stirling engines 56 3.9 Phase control in Stirling engines 57 3.10 Dead volume control 58 3.11 Speed control 58 4. THE PROBLEM TO BE SOLVED 60 4.1 Effect of phase angle on Stirling engine performance 60 4.2 Controllability of current microCHP systems 61 4.3 Making use of phase control 64 4.4 Sinusoidal vs. non linear motion of reciprocating parts 64 4.5 Achieving phase control and non linear control 66 5.
    [Show full text]
  • Scuderi Split Cycle Engine: a Review
    Int. J. Mech. Eng. & Rob. Res. 2013 Anshul Jangalwa et al., 2013 ISSN 2278 – 0149 www.ijmerr.com Vol. 2, No. 4, October 2013 © 2013 IJMERR. All Rights Reserved Review Article SCUDERI SPLIT CYCLE ENGINE: A REVIEW Anshul Jangalwa1*, Aditya Kumar Singh1, Akshay Jain1 and Ankit Barua1 *Corresponding Author: Anshul Jangalwa, [email protected] Internal Combustion engines have become a very important prime movers in today’s life, there study is also an active field of research for many automobile industries and also has its environmental concerns. IC engines are used not only in automobile industries but are also used in transportation in sea as well as air, as a prime mover for electric generators and in industrial applications. There efficiencies and there environmental impacts are very crucial. A new IC engine developed by the Scuderi group called ‘Scuderi Split Cycle Engine’ is described in this review paper. It is more efficient than a conventional engine and also have less emissions. Keywords: Conventional engine, Efficiency, Split cycle INTRODUCTION different groups all over the world. Various Scuderi Split-cycle engines divides the four engineers and scientists worked on it to strokes of intake, compression, power, and explore the possibility of the split cycle engine. exhaust into two separate but paired cylinders. But, none has matched the efforts and the The first cylinder is used for intake and results obtained by Late Carmelo J. Scuderi. compression. The compressed air is then He gave his entire life for the Scuderi split cycle transferred through a crossover passage from engine. The Scuderi Group, an engineering the compression cylinder into the expansion and licensing company based in West cylinder, where combustion and exhaust occur.
    [Show full text]
  • Combustion Characteristics of a Spark-Ignited Split-Cycle Engine Fuelled with Methane
    Article citation info: CAMERON I., SOBIESIAK A. Combustion characteristics of a spark-ignited split-cycle engine fuelled with methane. Combustion Engines. 2015, 161(2), 33-41. ISSN 2300-9896. Iain CAMERON PTNSS-2015-204 Andrzej SOBIESIAK Combustion characteristics of a spark-ignited split-cycle engine fuelled with methane This paper begins with a brief introduction to the operating principles of a split-cycle engine that utilizes a valved, intermediary volume to connect the two engine cylinders. Results from experimental testing of the engine fueled with pure methane are presented with a particular emphasis on the combustion duration and phasing. Two different methods of analysing the combustion duration – the mass fraction burn (MFB) and normalized pressure ratio (PRN) – are given. Testing was performed at wide open throttle (WOT) for engine speeds ranging from 850–1200 rpm, and air-fuel equiva- lence ratios from 0.8–1.0. The results indicate that the main combustion duration is very rapid for all conditions tested, despite late combustion phasing. Changes in spark timing were shown to have a considerable impact on IMEP but did not greatly effect the burn duration. Cyclic variability of IMEP was found to be less than 4% for all cases, except when operation was leaner than ø = 0.85, indicating good combustion stability. Key words: spark ignition engines, split-cycle, methane, natural gas, CNG, fast burn, turbulence 1. Introduction [9, 10]. The majority of these engines rely on squish vol- The use of natural gas (NG) as a transportation fuel is umes and/or specially designed piston cavities to generate supported by many appealing attributes associated with the turbulence at TDC.
    [Show full text]
  • The Split Cycle Engine and Its Impact on the Vehicle Cooling System
    The split cycle engine and its impact on the vehicle cooling system R E Morgan, G Dong, and M R Heikal Centre for Automotive Engineering, University of Brighton Abstract The split cycle engine represents a radical departure from conventional internal combustion engines. In the split cycle engine, the compression and combustion processes occur in different cylinders, enabling extreme charge air cooling, intra cylinder waste heat recovery and independent optimisation of the compression and combustion chambers. Combining these benefits, thermal efficiencies of over 50% and approaching 60% in some applications are theoretically possible. The split cycle engine is of particular interest in commercial vehicle applications where load factors are high and savings in fuel consumption of major economic benefit to end users. The energy balance of the split cycle engine is markedly different to conventional engines with significantly more energy being rejected through charge air cooling but correspondingly less through the engine cooling system. How the charge air is cooled will affect how thermal energy is rejected to the environment and the consequential impact on the vehicle cooling system. In this paper, the split cycle engine will be described and the energy balance compared with a conventional heavy duty diesel engines. Methods of charge air cooling; through multi stage compression with intercooling, direct cooling with a water spray and by the injection of a cryogenic liquid spray will be discussed. The overall energy balance, impact on powertrain efficiency and heat exchanger sizing for the water spray cooling case is compared with a comparable diesel engine. Finally, the consequences of the split cycle on component thermal loading will be discussed and strategies for controlling critical component temperatures described.
    [Show full text]
  • How Many Valves Per Cylinder (Revised) – 0, 1, 2, 3, 4, 5, Or 8? with Illustrations and a P.S
    DST 20 February 2015. P.1 of 13 How many valves per cylinder (revised) – 0, 1, 2, 3, 4, 5, or 8? With illustrations and a P.S. on 6 Since 1993 all Formula 1 engine designers have chosen 4 poppet valves per cylinder (2 inlet, 2 exhaust). In 2006 this layout was actually specified in the FIA regulations and the new 2014 rules continue it. Keith Duckworth, who created in 1966 a cylinder head having 4 valves per cylinder (4 v/c) opposed at a relatively narrow angle and combined them with port geometry and increased valve Lift/Diameter ratio to create in-cylinder “Barrel Turbulence” (aka “Tumble Swirl”) to raise combustion efficiency, set a benchmark to which, in time, all competitors conformed and which spread far outside the racing arena. In most of the past century this unanimity on 4 v/c did not exist. Racing 4-stroke piston engines were built with 2, 3, 4, 5, and 8 poppet valves per cylinder. This article follows the title subject generally from the series of 85 “Grand Prix Cars-of-the-Year”, 1906 – 2000, listed in this web site . Specifically this admits only 2, 3, and 4 valves per cylinder so, for general interest, substantial diversions have been included to other racing engines with a wider variety of arrangements In future references to “valve gear” it is to be understood that it refers to poppet valves opened by cams, directly or indirectly, and closed by steel springs forcing them to ride on the cam, unless otherwise mentioned (Desmodromic gear in Mercedes 1954-1955 (DVRS) and Pneumatic Valve Return Systems (PVRS) post-1990).
    [Show full text]
  • PROJECT the Social Sciences, and the Humanities and Arts, Leading to Bachelor’S, Master’S and Doctoral Degrees
    ABOUT WPI Founded in 1865 in Worcester, Mass., WPI is one of the nation’s first engineering and technology universities. Its 14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, business, PROJECT the social sciences, and the humanities and arts, leading to bachelor’s, master’s and doctoral degrees. WPI’s talented faculty work with students on interdisciplinary research that seeks solutions to important and socially relevant problems in fields as diverse PRESENTATION as the life sciences and bioengineering, energy, information security, materials processing, and robotics. Students also have the opportunity to make a difference to communities and organizations around the world through the university’s innovative Global DAYApril 21, 2016 Projects Program. There are more than 45 WPI project centers throughout the Americas, Africa, Asia-Pacific, and Europe. Project Sponsors include... ACI Worldwide Inc. KARL STORZ Endovision, Inc. Reliant Medical Group WPI Projects Program and Sponsorship Amadeus North America Koch Membrane Systems Roche Amazon Robotics Massport Shape Security The projects program at WPI is the university’s signature approach to undergraduate education, combining theo- Angelo Gordon Mathworks Skyworks Solutions retical study with practical problem solving. We bring together the brilliant minds and talents of our student teams BAE Systems Microsoft Spirol International and faculty advisors with a wide variety of corporate, government, and nonprofit organizations. Collaboratively, we Barclays MilliporeSigma Stantec address real business needs, synergizing to create meaningful results. Bose Corporation The MITRE Corporation State Street Global Advisors Boston Scientific Corporation Nanocomp Technologies Sun Life Financial, Inc. Project work is one of the most distinctive aspects of a WPI education and has been at the core of WPI’s undergraduate Chitika, Inc.
    [Show full text]
  • MESP White Paper References
    Modeling earthquake source processes: from tectonics to dynamic rupture Appendix C, References cited Aagaard, B.T., and T. H. Heaton (2004). Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures. Bulletin of the Seismological Society of America; 94 (6): 2064–2078. Aagaard, B.T., Heaton, T.H., and J.F Hall (2001). Dynamic Earthquake Ruptures in the Presence of Lithostatic Normal Stresses: Implications for Friction Models and Heat Production Bulletin of the Seismological Society of America, v. 91, p. 1765-1796, doi:10.1785/0120000257. Aagaard, B. T., Knepley, M. G. and C. A. Williams (2013), A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, Journal of Geophysical Research, 118, 3059– 3079, doi: 10.1002/jgrb.50217. Aben, F. M., Doan, M.-L., Gratier, J.-P. and F. Renard (2017), Coseismic Damage Generation and Pulverization in Fault Zones: Insights From Dynamic Split-Hopkinson Pressure Bar Experiments, in Fault Zone Dynamic Processes, vol. 227, edited by M. Y. Thomas, T. M. Mitchell, and H. S. Bhat, pp. 47–80, John Wiley and Sons, Inc. Abercrombie, R. E. (2014), Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield, Geophys. Res. Lett., 41, 8784–8791, doi:10.1002/2014GL062079. Abercrombie, R. E. (2015), Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. Journal of Geophysical Research, 120, 4263–4277. doi: 10.1002/2015JB011984. Abercrombie, R. E., and J. Mori (1996), Occurrence patterns of foreshocks to large earthquakes in the western United States, Nature, 381, pp.
    [Show full text]
  • Annual Report, Fiscal Year 1967
    00 CD to CO [- «fpffi 1967 ECHNICAL HIGHLIGHTS O F T H E NATIONAL BUREAU OF STANDARDS >-. * X Mr? Sri* Annual Report for: INSTITUTE FOR BASIC STANDARDS INSTITUTE FOR MATERIALS RESEARCH INSTITUTE FOR APPLIED TECHNOLOGY UNITED STATES DEPARTMENT OF COMMERCE Alexander B. Trowbridge. Secretary John F. Kincaid. Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS A. V. Astin, Director 1967 Technical Highlights of the National Bureau of Standards Annual Report, Fiscal Year 1967 November 1967 MisceUaneous Publication 293 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 55 cents Library of Congress Catalog Card Number: 6-23979 CONTENTS INTRODUCTION 1 Move to Gaithersburg Site 1 Dedication of New Facilities 1 Symposium on Technology and World Trade. NBS Publishes History. Legislation Affecting NBS 3 Fair Packaging and Labeling Act of 1966. Pending Legis- lation. Expansion of the Research Associate Program 4 General Trends 5 The National Measurement System. 6 THE NATIONAL MEASUREMENT SYSTEM 7 A Systems Approach to Measurement 7 Basic Social Needs 8 Importance of the System 8 Function of the National Measurement System 9 The Intellectual System 10 The Operational System 11 The Central Core. Instrumentation Network. Data Net- work. Techniques Network. INSTITUTE FOR BASIC STANDARDS 19 Physical Quantities 19 International Base Units 20 Length. Time and Frequency. Temperature. Electric Current. Mechanical Quantities 23 Electrical Quantities—DC and Low Frequency 25 Electrical Quantities—Radio 26 High-Frequency Electrical Standards. High-Frequency Impedance Standards. High-Frequency Calibration Serv- ices. Microwave Calibrations. Electromagnetic Field Standards. Dielectric and Magnetic Standards. Thermal Quantities 32 Photometric and Radiometric Quantities^ _1 32 Ionizing Radiations 36 Physical Properties 39 Nuclear Properties.
    [Show full text]
  • Pathways to the Ultra- Efficient Powertrain – Towards 60% Efficiency
    Pathways to the ultra- efficient powertrain – towards 60% efficiency Future Powertrain 2017 Dr Robert Morgan Deputy Head, AEC University of Brighton Advanced Engineering Centre 2 University of Brighton Improving thermal efficiency through fundamental understanding of the in cylinder processes Confidential Copyright University of Brighton 2016 Are we at to the end of the road? 3 Wartsila RT-flex58T Mechanical losses 3% Finite combustion 3% Mercedes F1 Blowby 1% Cycle to Cycle variations 2% Gas exchange 2% Heat transfer 7% TOTAL 18% Stone 2012 Confidential Copyright University of Brighton 2016 4 Changing the rules – the split cycle engine, a new thermodynamic cycle Independent 1. Isothermal compression Less work of compression optimisation of the 2. Isobaric heating Pre combustion waste compression & heat recovery expansion cylinders 3. Mixed cycle heat addition 4. Expansion Confidential Copyright University of Brighton 2016 5 Why hasn't it been done before? 1909 Ricardo “Dolphin” engine 1 2004 “ISOENGINE” 2 Several engines with split compressor and combustion cylinders have been proposed Only the Isoengine recovered heat between the chambers Scuderi Engine 3 1 Engines and Enterprise: The Life and Work of Sir Harry Ricardo 2 nd Ed 2Isoengine data analysis and future design options. Coney et al. CIMAC Congress 2004, Paper 83, Koyoto 3http://www.scuderigroup.com/engine-development/ Confidential Copyright University of Brighton 2016 There are multiple challenges in practically 6 implementing the recuperated split cycle engine Effective isothermal
    [Show full text]