Purification and Characterization of the Pink-Floyd Drillipeptide, a Bioactive Venom Peptide from Clavus Davidgilmouri (Gastropoda: Conoidea: Drilliidae)

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Characterization of the Pink-Floyd Drillipeptide, a Bioactive Venom Peptide from Clavus Davidgilmouri (Gastropoda: Conoidea: Drilliidae) toxins Article Purification and Characterization of the Pink-Floyd Drillipeptide, a Bioactive Venom Peptide from Clavus davidgilmouri (Gastropoda: Conoidea: Drilliidae) Victor M. Chua 1,2, Joanna Gajewiak 2, Maren Watkins 2, Samuel S. Espino 2, Iris Bea L. Ramiro 1,2,3 , Carla A. Omaga 1,2, Julita S. Imperial 2, Louie Paolo D. Carpio 1, Alexander Fedosov 4 , Helena Safavi-Hemami 2,3,5 , Lilibeth A. Salvador-Reyes 1 , Baldomero M. Olivera 2 and Gisela P. Concepcion 1,* 1 The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines; [email protected] (V.M.C.); [email protected] (I.B.L.R.); [email protected] (C.A.O.); [email protected] (L.P.D.C.); [email protected] (L.A.S.-R.) 2 School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; [email protected] (J.G.); [email protected] (M.W.); [email protected] (S.S.E.); [email protected] (J.S.I.); [email protected] (H.S.-H.); [email protected] (B.M.O.) 3 Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark 4 Severstov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect 33, Moscow 119071, Russia; [email protected] 5 Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA * Correspondence: [email protected] Received: 6 June 2020; Accepted: 4 August 2020; Published: 7 August 2020 Abstract: The cone snails (family Conidae) are the best known and most intensively studied venomous marine gastropods. However, of the total biodiversity of venomous marine mollusks (superfamily Conoidea, >20,000 species), cone snails comprise a minor fraction. The venoms of the family Drilliidae, a highly diversified family in Conoidea, have not previously been investigated. In this report, we provide the first biochemical characterization of a component in a Drilliidae venom and define a gene superfamily of venom peptides. A bioactive peptide, cdg14a, was purified from the venom of Clavus davidgilmouri Fedosov and Puillandre, 2020. The peptide is small (23 amino acids), disulfide-rich (4 cysteine residues) and belongs to the J-like drillipeptide gene superfamily. Other members of this superfamily share a conserved signal sequence and the same arrangement of cysteine residues in their predicted mature peptide sequences. The cdg14a peptide was chemically synthesized in its bioactive form. It elicited scratching and hyperactivity, followed by a paw-thumping phenotype in mice. Using the Constellation Pharmacology platform, the cdg14a drillipeptide was shown to cause increased excitability in a majority of non-peptidergic nociceptors, but did not affect other subclasses of dorsal root ganglion (DRG) neurons. This suggests that the cdg14a drillipeptide may be blocking a specific molecular isoform of potassium channels. The potency and selectivity of this biochemically characterized drillipeptide suggest that the venoms of the Drilliidae are a rich source of novel and selective ligands for ion channels and other important signaling molecules in the nervous system. Keywords: venom; Clavus; Drilliidae; drillipeptide Key Contribution: We report the discovery and chemical characterization of a peptide isolated from the drilliid gastropod, Clavus davidgilmouri. Toxins 2020, 12, 508; doi:10.3390/toxins12080508 www.mdpi.com/journal/toxins Toxins 2020, 12, 508 2 of 16 1. Introduction TheToxins successful 2020, 12, x FOR evolutionary PEER REVIEW radiation of the venomous marine snails in the superfamily2 Conoideaof 15 has generated1. Introduction a significant fraction of the biodiversity of living mollusks (>20,000 species) [1,2]. Traditionally, three groups of gastropods, the cone snails, the auger snails, and the turrids, were thought The successful evolutionary radiation of the venomous marine snails in the superfamily to comprise this superfamily. However, anatomical and molecular phylogenetic studies revealed Conoidea has generated a significant fraction of the biodiversity of living mollusks (>20,000 species) that while[1,2]. Traditionally, cone snails belongthree groups to a single of gastropods, monophyletic the cone lineage snails, (the the familyauger snails, Conidae), and the and turrids, the auger snailswere can similarlythought to be comprise grouped this into superfamily. a single clade However, (the family anatomical Terebridae), and molecular the conoidean phylogenetic snails that havestudies generally revealed been that referred while cone to as snails turrids belong (the to former a single family monophyletic Turridae, lineagesensu (the lato family) comprise Conidae), several phylogeneticallyand the auger unrelated snails can groups, similarly some be ofgrouped which into are morea single closely clade related (the family to the Terebridae), cone snails the than to the typeconoidean genus snails of the that Turridae, have generallyTurris [3 been–5]. referred to as turrids (the former family Turridae, sensu Inlato a) comprise proposed several reorganization phylogenetically of the unrelated superfamily groups, Conoidea some of which based are on more molecular closely datarelated with to the mostthe recent cone emendationssnails than to the [6 ],type the genus members of the ofTurridae, the old Turris family [3–5]. Turridae have been reclassified into 15 monophyleticIn a proposed families. reorganization One of the of most the superfamil diverse phylogeneticy Conoidea based lineages on molecular of former data “turrids” with the whose most recent emendations [6], the members of the old family Turridae have been reclassified into 15 distinctiveness has long since been acknowledged, is the family Drilliidae [1,6]. The venoms of this monophyletic families. One of the most diverse phylogenetic lineages of former “turrids” whose species-richdistinctiveness conoidean has long family since until been recentlyacknowledged, remained is the completely family Drilliidae uncharacterized, [1,6]. The venoms likely of this because mostspecies-rich drilliids are conoidean relatively family small, until uncommon, recently andrema predominantlyined completely collecteduncharacterized, offshore. likely Earlier because this year, resultsmost of thedrilliids transcriptomic are relatively analysis small, ofuncommon, two species and in predominantly the genus Clavus collectedwere offshore. published Earlier [7] featuringthis unparalleledyear, results diversity of the oftranscriptomic putative venom analysis components of two species in these in the gastropods. genus Clavus An were important published finding [7] of Lu etfeaturing al. [7] was unparalleled the high number diversity of of transcripts putative venom encoding components short cysteine-rich in these gastropods. mature An peptides, important sharing somefinding crucial structuralof Lu et al. features [7] was of the conotoxins high number [8]. Suchof transcripts structural encoding similarity short suggests cysteine-rich that drilliid mature venom peptidespeptides, are also sharing likely some to share crucial some structural pharmacological features of properties conotoxins of [8]. conotoxins. Such structural Taking similarity into account the broadsuggests interest that indrilliid conotoxins, venom discoveringpeptides are aalso principally likely to novelshare some source pharmacological of natural peptides properties with similarof conotoxins. Taking into account the broad interest in conotoxins, discovering a principally novel bioactivity would be of great importance. However, first, the predicted transcripts need to be validated source of natural peptides with similar bioactivity would be of great importance. However, first, the by thepredicted analysis transcripts of venom need proteins, to be and validated second, by the the proposed analysis bioactivityof venom proteins, has to be and demonstrated. second, the Inproposed this report, bioactivity we describehas to be demonstrated. the purification and characterization of cdg14a, isolated from the venom ofInClavus this report, davidgilmouri we describeFedosov the purification and Puillandre, and characterization 2020, the first bioactiveof cdg14a, peptide isolated offrom any the species in thevenom family of Drilliidae. Clavus davidgilmouri Following Fedosov Lu et al. and [7], Puillandre, we refer to2020, the venomthe first peptidesbioactive frompeptide species of any in this familyspecies as “drillipeptides” in the family Drilliidae. to distinguish Following these Lu fromet al. conopeptides[7], we refer to the and venom turripeptides. peptides from The speciesspecies that we havein this investigated, family as “drillipeptides”Clavus davidgilmouri to distinguish, measures these ~15–30 from mmconopeptides (Figure1 );and it is turripeptides. one of the species The in the broadlyspecies distributedthat we have Indo-Pacificinvestigated, ClavusClavus davidgilmouri canalicularis, complex,measures ~15–30 whose mm taxonomy (Figure 1); has it beenis one recently of the species in the broadly distributed Indo-Pacific Clavus canalicularis complex, whose taxonomy has revised [9] and for which transcriptomic data is available [7]. been recently revised [9] and for which transcriptomic data is available [7]. Figure 1. Shells of Clavus species. From left to right: Clavus davidgilmouri, Clavus canalicularis, Clavus Figure 1. Shells of Clavus species. From left to right: Clavus davidgilmouri, Clavus canalicularis, viduus, Clavus unizonalis, and Clavus suduirauti [9–11]. Clavus viduus, Clavus unizonalis, and Clavus suduirauti [9–11].
Recommended publications
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • CONE SHELLS - CONIDAE MNHN Koumac 2018
    Living Seashells of the Tropical Indo-Pacific Photographic guide with 1500+ species covered Andrey Ryanskiy INTRODUCTION, COPYRIGHT, ACKNOWLEDGMENTS INTRODUCTION Seashell or sea shells are the hard exoskeleton of mollusks such as snails, clams, chitons. For most people, acquaintance with mollusks began with empty shells. These shells often delight the eye with a variety of shapes and colors. Conchology studies the mollusk shells and this science dates back to the 17th century. However, modern science - malacology is the study of mollusks as whole organisms. Today more and more people are interacting with ocean - divers, snorkelers, beach goers - all of them often find in the seas not empty shells, but live mollusks - living shells, whose appearance is significantly different from museum specimens. This book serves as a tool for identifying such animals. The book covers the region from the Red Sea to Hawaii, Marshall Islands and Guam. Inside the book: • Photographs of 1500+ species, including one hundred cowries (Cypraeidae) and more than one hundred twenty allied cowries (Ovulidae) of the region; • Live photo of hundreds of species have never before appeared in field guides or popular books; • Convenient pictorial guide at the beginning and index at the end of the book ACKNOWLEDGMENTS The significant part of photographs in this book were made by Jeanette Johnson and Scott Johnson during the decades of diving and exploring the beautiful reefs of Indo-Pacific from Indonesia and Philippines to Hawaii and Solomons. They provided to readers not only the great photos but also in-depth knowledge of the fascinating world of living seashells. Sincere thanks to Philippe Bouchet, National Museum of Natural History (Paris), for inviting the author to participate in the La Planete Revisitee expedition program and permission to use some of the NMNH photos.
    [Show full text]
  • Iberus : Revista De La Sociedad Española De Malacología
    © SociedadEspañola de Malacología Iberus,2A (1): 13-21,2006 Taxonomic notes on some Indo -Pacific and West African Drilliaspecies (Conoidea: Drilliidae) Notas taxonómicas sobre unas especies de Drillia del Indo -Pacifico y África occidental (Conoidea: Drilliidae) Donn L. TIPPETT* Recibido ell-XII-2003. Aceptado el' 7-III-2006 ABSTRACT Two uncommon turrid species, Drillia dunkeri (Weinkauff, 1 876) and Drillia enna (Dalí, 1918), have been reviewed on the basis of examination of type material, material discovered in the USNM collection or procured by the author, and study of the literature. The review permits clarification of their taxonomic status, localities, and ranges. Athird, common, species, Drillia regia (Habe and Murakami, 1970), confused originally with D. enna, is similarly clarified. Confused with Drillia dunkeri, Drillia umbilicata Gray, 1 838, type species of the genus, and a species resembling it closely, Drillia patriciae Bernard, 1 984 are also reviewed. RESUMEN Drillia dunkeri (Weinkauff, 1876) y Drillia enna (Dalí, 1918), dos especies de tórridos poco comunes, se revisan en base al material tipo, de colecciones en el USNM o procu- rado por el autor, y el estudio de la literatura. La revisión permite clarificar el estado taxo- nómico, localidades y de rango. Igualmente se aclara la taxonomía de una tercera espe- cie común, D. regia (Habe y Murakami, 1970), originalmente confunidida con D. enna. Debido a la confusión con D. dunkeri, también se revisa D. umbilicata Gray, 1838, la especie tipo del género, y una especie parecida, D. patriciae Bernard, 1984. KEY WORDS: Drillia, taxonomy. PALABRAS CLAVE: Drillia, taxonomía. INTRODUCTION Drillia dunkeri (Weinkauff, 1876), as the USNM collection reveáis 3 further Pleurotoma {Clavus) dunkeri, was de- specimens that are here identified as D.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Proceedings of the United States National Museum
    a Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 121 1967 Number 3579 VALID ZOOLOGICAL NAMES OF THE PORTLAND CATALOGUE By Harald a. Rehder Research Curator, Division of Mollusks Introduction An outstanding patroness of the arts and sciences in eighteenth- century England was Lady Margaret Cavendish Bentinck, Duchess of Portland, wife of William, Second Duke of Portland. At Bulstrode in Buckinghamshire, magnificent summer residence of the Dukes of Portland, and in her London house in Whitehall, Lady Margaret— widow for the last 23 years of her life— entertained gentlemen in- terested in her extensive collection of natural history and objets d'art. Among these visitors were Sir Joseph Banks and Daniel Solander, pupil of Linnaeus. As her own particular interest was in conchology, she received from both of these men many specimens of shells gathered on Captain Cook's voyages. Apparently Solander spent considerable time working on the conchological collection, for his manuscript on descriptions of new shells was based largely on the "Portland Museum." When Lady Margaret died in 1785, her "Museum" was sold at auction. The task of preparing the collection for sale and compiling the sales catalogue fell to the Reverend John Lightfoot (1735-1788). For many years librarian and chaplain to the Duchess and scientif- 1 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 121 ically inclined with a special leaning toward botany and conchology, he was well acquainted with the collection. It is not surprising he went to considerable trouble to give names and figure references to so many of the mollusks and other invertebrates that he listed.
    [Show full text]
  • Current Status of Philippine Mollusk Museum Collections and Research, and Their Implications on Biodiversity Science and Conservation
    Philippine Journal of Science 147 (1): 123-163, March 2018 ISSN 0031 - 7683 Date Received: 28 Feb 2017 Current Status of Philippine Mollusk Museum Collections and Research, and their Implications on Biodiversity Science and Conservation Dino Angelo E. Ramos2*, Gizelle A. Batomalaque1,3, and Jonathan A. Anticamara1,2 1Ecology and Taxonomy Academic Group (ETAG), Institute of Biology, University of the Philippines, Diliman, Quezon City 1101 Philippines 2UP Biology Invertebrate Museum, Institute of Biology, University of the Philippines, Diliman, Quezon City 1101 Philippines 3Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania 19104 USA Mollusks are an invaluable resource in the Philippines, but recent reviews on the status of museum collections of mollusks or research trends in the country are lacking. Such assessments can contribute to a more comprehensive evaluation of natural history museums in the Philippines, as well as biodiversity management. This review showed that local museums in the Philippines have much to improve in terms of their accessibility and geographic coverage in order to effectively cater to research and conservation needs of the country. Online access to databases was lacking for local museums, making it cumbersome to retrieve collection information. The UST museum held the most species and subspecies across all museums (4899), comparable to the national museums of countries such as the USA and France. In terms of size, there were larger Philippine mollusk collections in museums abroad. Majority of mollusk specimens come from Regions 4 and 7, while the CAR and Region 12 were least sampled. Publications on Philippine mollusks are dominated by taxonomic and biodiversity research.
    [Show full text]
  • Biodiversita' Ed Evoluzione
    Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN BIODIVERSITA’ ED EVOLUZIONE Ciclo XXIII Settore scientifico-disciplinare di afferenza: BIO/05 ZOOLOGIA MOLLUSCS OF THE MARINE PROTECTED AREA “SECCHE DI TOR PATERNO” Presentata da: Dott. Paolo Giulio Albano Coordinatore Dottorato Relatore Prof.ssa Barbara Mantovani Prof. Francesco Zaccanti Co-relatore Prof. Bruno Sabelli Esame finale anno 2011 to Ilaria and Chiara, my daughters This PhD thesis is the completion of a long path from childhood amateur conchology to scientific research. Many people were involved in this journey, but key characters are three. Luca Marini, director of “Secche di Tor Paterno” Marine Protected Area, shared the project idea of field research on molluscs and trusted me in accomplishing the task. Without his active support in finding funds for the field activities this project would have not started. It is no exaggeration saying I would not have even thought of entering the PhD without him. Bruno Sabelli, my PhD advisor, is another person who trusted me above reasonable expectations. Witness of my childhood love for shells, he has become witness of my metamorphosis to a researcher. Last, but not least, Manuela, my wife, shared my objectives and supported me every single day despite the family challenges we had to face. Many more people helped profusely. I sincerely hope not to forget anyone. Marco Oliverio, Sabrina Macchioni, Letizia Argenti and Roberto Maltini were great SCUBA diving buddies during field activities. Betulla Morello, former researcher at ISMAR-CNR in Ancona, was my guide through the previously unexplored land of non-parametric multivariate statistics.
    [Show full text]
  • Integrative Taxonomy of the Clavus Canalicularis Species Complex (Drilliidae, Conoidea, Gastropoda) with Description of Four New Species A
    Integrative taxonomy of the Clavus canalicularis species complex (Drilliidae, Conoidea, Gastropoda) with description of four new species A. Fedosov, N. Puillandre To cite this version: A. Fedosov, N. Puillandre. Integrative taxonomy of the Clavus canalicularis species complex (Drilli- idae, Conoidea, Gastropoda) with description of four new species. Molluscan Research, Taylor & Francis, 2020, 40 (3), pp.251-266. 10.1080/13235818.2020.1788695. hal-02975080 HAL Id: hal-02975080 https://hal.archives-ouvertes.fr/hal-02975080 Submitted on 22 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integrative taxonomy of the Clavus canalicularis species complex (Drilliidae, Conoidea, Gastropoda) with description of four new species A.E. Fedosov1, N. Puillandre2 1 A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russian Federation 2 Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 26, 75005 Paris, France Abstract The conoidean family Drilliidae Olsson, 1964 is a species-rich lineage of marine gastropods, showing a high degree of diversification even in comparison to other families of Conoidea.
    [Show full text]
  • Proceedings of National Seminar on Biodiversity And
    BIODIVERSITY AND CONSERVATION OF COASTAL AND MARINE ECOSYSTEMS OF INDIA (2012) --------------------------------------------------------------------------------------------------------------------------------------------------------- Patrons: 1. Hindi VidyaPracharSamiti, Ghatkopar, Mumbai 2. Bombay Natural History Society (BNHS) 3. Association of Teachers in Biological Sciences (ATBS) 4. International Union for Conservation of Nature and Natural Resources (IUCN) 5. Mangroves for the Future (MFF) Advisory Committee for the Conference 1. Dr. S. M. Karmarkar, President, ATBS and Hon. Dir., C B Patel Research Institute, Mumbai 2. Dr. Sharad Chaphekar, Prof. Emeritus, Univ. of Mumbai 3. Dr. Asad Rehmani, Director, BNHS, Mumbi 4. Dr. A. M. Bhagwat, Director, C B Patel Research Centre, Mumbai 5. Dr. Naresh Chandra, Pro-V. C., University of Mumbai 6. Dr. R. S. Hande. Director, BCUD, University of Mumbai 7. Dr. Madhuri Pejaver, Dean, Faculty of Science, University of Mumbai 8. Dr. Vinay Deshmukh, Sr. Scientist, CMFRI, Mumbai 9. Dr. Vinayak Dalvie, Chairman, BoS in Zoology, University of Mumbai 10. Dr. Sasikumar Menon, Dy. Dir., Therapeutic Drug Monitoring Centre, Mumbai 11. Dr, Sanjay Deshmukh, Head, Dept. of Life Sciences, University of Mumbai 12. Dr. S. T. Ingale, Vice-Principal, R. J. College, Ghatkopar 13. Dr. Rekha Vartak, Head, Biology Cell, HBCSE, Mumbai 14. Dr. S. S. Barve, Head, Dept. of Botany, Vaze College, Mumbai 15. Dr. Satish Bhalerao, Head, Dept. of Botany, Wilson College Organizing Committee 1. Convenor- Dr. Usha Mukundan, Principal, R. J. College 2. Co-convenor- Deepak Apte, Dy. Director, BNHS 3. Organizing Secretary- Dr. Purushottam Kale, Head, Dept. of Zoology, R. J. College 4. Treasurer- Prof. Pravin Nayak 5. Members- Dr. S. T. Ingale Dr. Himanshu Dawda Dr. Mrinalini Date Dr.
    [Show full text]
  • Evolution, Distribution, and Phylogenetic Clumping of a Repeated Gastropod Innovation
    Zoological Journal of the Linnean Society, 2017, 180, 732–754. With 5 figures. The varix: evolution, distribution, and phylogenetic clumping of a repeated gastropod innovation NICOLE B. WEBSTER1* and GEERAT J. VERMEIJ2 1Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 2Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA Received 27 June 2016; revised 4 October 2016; accepted for publication 25 October 2016 A recurrent theme in evolution is the repeated, independent origin of broadly adaptive, architecturally and function- ally similar traits and structures. One such is the varix, a shell-sculpture innovation in gastropods. This periodic shell thickening functions mainly to defend the animal against shell crushing and peeling predators. Varices can be highly elaborate, forming broad wings or spines, and are often aligned in synchronous patterns. Here we define the different types of varices, explore their function and morphological variation, document the recent and fossil distri- bution of varicate taxa, and discuss emergent patterns of evolution. We conservatively found 41 separate origins of varices, which were concentrated in the more derived gastropod clades and generally arose since the mid-Mesozoic. Varices are more prevalent among marine, warm, and shallow waters, where predation is intense, on high-spired shells and in clades with collabral ribs. Diversification rates were correlated in a few cases with the presence of varices, especially in the Muricidae and Tonnoidea, but more than half of the origins are represented by three or fewer genera. Varices arose many times in many forms, but generally in a phylogenetically clumped manner (more frequently in particular higher taxa), a pattern common to many adaptations.
    [Show full text]
  • Turridae (Mollusca: Gastropoda) of Southern Africa and Mozambique
    Ann. Natal Mus. Vol. 29(1) Pages 167-320 Pietermaritzburg May, 1988 Turridae (Mollusca: Gastropoda) of southern Africa and Mozambique. Part 4. Subfamilies Drilliinae, Crassispirinae and Strictispirinae by R. N. Kilburn (Natal Museum, Pietermaritzburg) SYNOPSIS 71 species (42 previously undescribed) are covered: Drilliinae (33 species), Strictispirinae (3), Crassispirinae (35). New genera: Orrmaesia, Acinodrillia (Drilliinae); Inkinga (Strictispirinae); Naudedrillia, Nquma, Psittacodrillia, Calcatodrillia, Funa (Crassispirinae). New species: Drilliinae: Acinodrillia viscum, A. amazimba; Clavus groschi; Tylotiella isibopho, T. basipunctata, T. papi/io, T. herberti, T. sulekile, T. quadrata, Agladrillia ukuminxa, A. piscorum; Drillia (Drillia) spirostachys, D. (Clathrodrillia) connelli; Orrmaesia dorsicosta, O. nucella; Splendrillia mikrokamelos, S. kylix, S. alabastrum, S. skambos, S. sarda, S. daviesi. Crassispirinae: Crassiclava balteata; Inquisitor nodicostatus, /. arctatus, I. latiriformis, I. isabella, Funa fraterculus, F. asra; Naudedrillia filosa, N. perardua, N. cerea, N. angulata, N. nealyoungi, N. mitromorpha; Pseudexomilus fenestratus; Ceritoturris nataliae; Nquma scalpta; Haedropleura summa; Mauidrillia felina; Calcatodrillia chamaeleon, C. hololeukos; Buchema dichroma. New generic records: Clavus Montfort, 1810, Tylotiella Habe, 1958, Iredalea Oliver, 1915, Splendrillia Hedley, 1922, Agladrillia Woodring, 1928 (Drilliinae); Paradrillia Makiyama, 1940 (Strictispirinae); Crassiclava McLean, 1971, Pseudexomilus Powell, 1944, Haedropleura
    [Show full text]
  • On the Morphology and Homology of the “Central Tooth” in the Radulae of Turrinae (Conoidea: Turridae)
    Ruthenica, 2006, 16(1-2): 47-52. ©Ruthenica, 2006 On the morphology and homology of the “central tooth” in the radulae of Turrinae (Conoidea: Turridae) Yuri I. KANTOR A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski prospect 33, Moscow 119071, RUSSIA ABSTRACT. Radular morphology was studied in de- wings, by Powell [1966], while SEM micrographs tail in 64 species of 7 genera of Turrinae. It is suggested of several species have recently been published by that the so-called “central tooth” is formed by a fusion Medinskaya [2002]. Both authors characterized the of 3 teeth: the central one and a pair of lateral. A similar radula of the species of the subfamily as consisting of condition was found in some representatives of the wishbone marginal teeth and with or without a broad subfamilies Cochlespirinae and Crassispirinae (Turridae). unicuspid central tooth with a needle-shaped cusp. In the course of preparation of collective monog- raph on the Conoidea of New Caledonia region I The radular morphology, together with the shell examined in detail the radulae of 64 species of 7 characters is still the basis for discriminating the taxa genera (Gemmula Weinkauff, 1875, Gemmulobor- of Gastropoda at the family level. For some of the sonia Shuto, 1989, Lophiotoma Casey, 1904, Luce- groups, e.g. most of Caenogastropoda, the radula is rapex Iredale, 1936, Turridrupa Hedley, 1922, Tur- rather conservative in terms of the number of teeth ris Röding, 1798,and Xenuroturris Iredale, 1929) in a transverse row (most of the families possess a out of 13 of the subfamily Turrinae, found in the taenioglossan radula), while in others it is rather New Caledonia region, some new for science and variable.
    [Show full text]