Analysis of Electric Guitar Pickups
Analysis of Electric Guitar Pickups Fanuel T. Ban - Graduate Student, Penn State University / Sales Executive, LMS North America. 15061 Springdale St, Suite 102. Huntington Beach, CA 92649 Nomenclature ε = Electromagnetic Force f = Frequency Φ = Magnetic Flux L = Length B = Magnetic Induction f = Fundamental Frequency 1 A = Area fn = nth Harmonic c = Transverse Wave Speed A = Complex Amplitude of nth Solution n x = Displacement, x − Direction L = Pluck Location d y = Displacement, y − Direction h = Height t = Time n = Mode Number T = Tension L = Lumped Capacitance ρL = Linear Mass Density Zc = Complex Impedance j = Square Root of −1 Lcoil = Coil Lumped Inductance ω = Angular Frequency Ccoil = Coil Capacitance k = Wave Number C = Load Capacitance λ = Wavelength load Abstract Many guitarists do not understand how tones are generated by electromagnetic pickups on electric guitars. With further engineering insight, they may become more effective at achieving their desired tone. The creation of a tone - from a plucked string to the sound that emerges from the amplifier - requires the understanding of several strongly-interacting acoustical, mechanical, and electronic systems. These include the theory of electromagnetic induction, the design and fabrication of the pickup, and the location of the pickup relative to the bridge, the structural characteristics of the guitar, and the relationship of the pickup's output impedance to that of the instrument cable and guitar preamplifier. A complete analysis of the three most common electromagnetic pickups, the Single Coil, the Humbucker, and the P-90, used on the Fender Telecaster(TM) and Stratocaster(TM) and Gibson Les Paul(TM), provide examples for the approach developed in this paper.
[Show full text]