Innovative Startups 2013

Total Page:16

File Type:pdf, Size:1020Kb

Innovative Startups 2013 DATA PAGE Innovative startups 2013 Brady Huggett S firms, particularly companies from the Boston area, continue the Children’s Hospital of Philadelphia’s decision to support a startup Uto dominate Nature Biotechnology’s listing of innovative startups, is notable. In total, the United States accounts for about two-thirds of ranked in order of the 10 largest A rounds. This year’s list is notable firms receiving biotech A rounds in the broader life science field (Fig. 1); for the proportion of startups focusing on experimental gene thera- the United Kingdom ranks a very distant second. Although relatively pies; indeed, firms developing adeno-associated virus (AAV) platforms few biotechs in France and Switzerland received A rounds, companies garnered three of last year’s largest A rounds. A familiar group of early in those countries pulled in more on average than companies in the stage funds participated in most of the financings in Table 1, although United States (Table 2). Table 1 Top 10 A rounds in 2013 for innovative startups Company Amount raised ($M); date; investors Scientific founders Other Technology Juno $120; Dec. 4; Arch Venture Renier Brentjens, Memorial Sloan-Kettering Cancer Hans Bishop, Juno CEO and former Engineered chimeric antigen Therapeutics Partners, Crestline Investors Center (MSKCC); Phil Greenberg, Fred Hutchinson executive in residence at Warburg receptor adoptive T cell therapy (Seattle) Cancer Research Center (FHCRC) and the University of Pincus; Larry Corey, president and direc- against cancer Washington; Michael Jensen, University of Washington tor of FHCRC; Richard Klausner, senior School of Medicine; Stan Riddell, FHCRC and the vice president and chief medical officer University of Washington School of Medicine; of Illumina, chairman of Audax Health; Isabelle Rivière and Michel Sadelain, MSKCC Robert Nelsen, managing director of ARCH Venture Partners Spark $50; Oct. 22; The Children’s Jean Bennett, University of Pennsylvania; Beverly Davidson, Jeffrey Marrazzo, Spark president and AAV gene therapies against Therapeutics Hospital of Philadelphia (CHOP) University of Iowa; Katherine High and J. Fraser Wright, CEO, industry entrepreneur blindness and hemophilia (Philadelphia) CHOP Jounce $47; Feb. 14; Third Rock Ventures James Allison and Padmanee Sharma, University of Texas Not applicable Immunomodulatory therapeutics Therapeutics MD Anderson Cancer Center; Thomas Gajewski, University against cancer (Cambridge, of Chicago; Drew Pardoll, Johns Hopkins University; Massachusetts) Louis Weiner, Georgetown University Effector $45; May 20; US Venture Partners, Davide Ruggero and Kevan Shokat, University of California, Steve Worland, formerly CEO of Anadys; Small molecule translation Therapeutics Abingworth Management, Novartis San Francisco Siegfried Reich, formerly research regulators in cancer (San Diego) Venture Funds, SR One, Astellas fellow at the Lilly Biotech Center in San Venture, Osage University Partners, Diego; Kevin Eastwood, formerly senior Mission Bay Capital vice president of corporate development at Anadys Mitokyne $45; Oct. 7; Astellas Pharma, MPM Johan Auwerx, École Polytechnique Fédérale de Lausanne; Kazumi Shiosaki, managing director of Small molecule enhancers of (Boston) Capital, Longwood Founders Fund Andrew Dillin, University of California, Berkeley; MPM Capital mitochondrial function Ronald Evans, Salk Institute for Biological Studies; H. Robert Horvitz, Massachusetts Institute of Technology (MIT); Jodi Nunnari, University of California, Davis Editas Medicine $43; Nov. 25; Flagship Ventures, Feng Zhang, Broad Institute of MIT and Harvard; Kevin Bitterman, interim president of Gene editing and clustered regu- Nature America, Inc. All rights reserved. America, Inc. Nature (Boston) Polaris Venture Partners, Third George Church, Harvard Medical School (HMS); Editas Medicine and principal at Polaris larly interspaced short palindromic 4 Rock Ventures, Partners Innovation Jennifer Doudna, University of California, Berkeley; Partners repeats (CRISPR) and transcription Fund Keith Joung, Massachusetts General Hospital and HMS; activator–like effector nuclease David Liu, Harvard University (TALEN) technology © 201 GenSight $41.6; April 8; Novartis Venture José-Alain Sahel, Pierre and Marie Curie University; Bernard Gilly, previously chairman and AAV2 gene therapies against blind- Biologics (Paris) Funds, Abingworth Management, Botond Roska, Friedrich Miescher Institute; Jean Bennett, CEO of Fovea Pharmaceuticals ness and retinal degenerative Versant Ventures, Index Ventures University of Pennsylvania; Luk Vandenberghe, Harvard diseases University; Serge Picaud, Vision Institute npg Sideris $32; Oct. 22; MPM Capital, Raymond Bergeron, University of Florida Thomas Neenan, chief technology Lead is an orally active, small Pharmaceuticals Hatteras Venture Partners, Osage officer and former CEO of Viscus molecule, iron-chelating drug (Boston) University Partners Biologics candidate Audentes $30; July 18; OrbiMed Advisors, Thomas Schuetz, formerly VP of clinical affairs at TKT, Matthew Patterson, former entrepreneur- AAV gene therapy against X-linked Therapeutics 5AM Ventures, Versant Ventures which pioneered the gene activation platform in-residence with OrbiMed Advisors myotubular myopathy, Pompe dis- (San Francisco) ease and other rare muscle diseases Syros $30; April 11; Arch Venture Richard Young, MIT; James Bradner, HMS and Dana-Farber Cofounded with ARCH Venture Partners Gene expression; Syros is working Pharmaceuticals Partners, Flagship Ventures, WuXi Cancer Institute; Nathanael Gray, HMS and Dana-Farber and Flagship’s VentureLabs unit with a new class of gene control ele- (Watertown, PharmaTech Corporate Venture, Cancer Institute ments it calls super-enhancers and Massachusetts) private investors applying them to cancer Source: BCIQ: BioCentury Online Intelligence; company websites 70 66 Table 2 Total, average A round by country, 2013 Number of A rounds Country (number of rounds) Total amount raised ($M) Average raised ($M) 60 France (5) 99.9 19.9 50 Switzerland (2) 37.6 18.8 United States (66) 1,100.0 16.7 40 Ireland (1) 11.9 11.9 30 Germany (4) 46.0 11.5 United Kingdom (10) 104.5 10.4 20 The Netherlands (2) 16.2 8.1 10 Denmark (1) 6.5 6.5 10 5 4 22211 11 11 1 Norway (2) 12.4 6.2 0 Finland (1) 4.6 4.6 US UK Canada (1) 3.8 3.8 France Norway Iceland Ireland Finland Austria Germany Sweden DenmarkCanada Switzerland Austria (1) 2.7 2.7 The Netherlands Sweden (1) 1.7 1.7 Figure 1 Startups by country, 2013. Source: BCIQ: BioCentury Online Iceland (1) 0.9 0.9 Intelligence Source: BCIQ: BioCentury Online Intelligence NATURE BIOTECHNOLOGY VOLUME 32 NUMBER 2 FEBRUARY 2014 127.
Recommended publications
  • Renewed Momentum in Ocular Gene and Cell Therapy, Broadening Application to Chronic Diseases
    FEATURE Renewed momentum in ocular gene and cell therapy, broadening application to chronic diseases BY ROD MCNEIL Gene and cell therapies offer the prospect of ground-breaking new avenues for the treatment of diseases, reflected in a renewed explosion of interest and investment in retinal gene therapy. Rod McNeil reports recent clinical trial readouts across a diverse range of investigational ocular gene and cell therapy candidates. ene therapy is literally giving transfer clinical trials to date involving (VA) at 24 months in patients treated with sight to children who would subretinal and intravitreal delivery. The timrepigene emparvovec compared with otherwise not see,” said Dr majority of these studies use an adeno- untreated patients in the natural history GJean Bennett, delivering the associated virus (AAV) vector. study. At two years over 90% of patients “ treated with timrepigene emparvovec Charles L Schepens MD Lecture jointly with Prof Albert Maguire at the American Gene therapy for choroideremia maintained VA. In a subset of treated Academy of Ophthalmology 2019 Retina Investigational gene therapy timrepigene patients with moderate to severe VA loss, Subspecialty Day. Dr Bennett has developed emparvovec (BIIB111/AAV2-REP1, Biogen) 21% experienced a VA improvement of at gene transfer approaches to test treatment is an AAV2 vector administered by least 15 letters from baseline compared with strategies for retinal degenerative and subretinal injection being evaluated as a 1.0% of untreated patients. ocular neovascular diseases and her work treatment for choroideremia (CHM). Biogen led to the first approved gene therapy announced November 2019 completion GenSight Biologics targets novel product targeting a retinal disease of patient enrolment in the global phase gene therapies for LHON and worldwide.” 3 STAR clinical trial of 170 adult males retinitis pigmentosa patients Gene therapy has definitely arrived.
    [Show full text]
  • Stem Cells Set Their Sights on Retinitis Pigmentosa
    INSIGHT elife.elifesciences.org OPHTHALMOLOGY Stem cells set their sights on retinitis pigmentosa Skin cells from a patient with a form of inherited blindness have been reprogrammed into retinal cells and successfully transplanted into mice. JEANNETTE L BENNICELLI AND JEAN BENNETT loss to identify the genetic mutations leading Related research article Tucker BA, to their blindness; the Iowa team also generate induced pluripotent stem cells (iPSCs) from these Mullins RF, Streb LM, Anfinson K, Eyestone individuals to create patient-specific models of ME, Kaalberg E, Riker MJ, Drack AV, Braun disease. Now, in eLife, Stone and co-workers— TA, Stone EM. 2013. Patient-specific including Budd Tucker as first author—report that iPSC-derived photoreceptor precursor they have used stem cell technology to create a personalized model of a recessive form of retinitis cells as a means to investigate retinitis pigmentosa, and that they have also successfully pigmentosa. eLife 2:e00824. doi: 10.7554/ transplanted the cells into mice (Tucker et al., eLife.00824 2013). These results are an important step toward Image Photoreceptors derived from human autologous transplantation, the regeneration of tissues damaged by disease using stem cells stem cells can colonize a mouse retina derived from the patient’s own cells (Figure 1). (arrow) In addition to benefiting basic research, these findings represent a means to develop specific understanding of, and treatment for, a range of genetic conditions—in particular, the large set of nherited blindness encompasses a wide highly idiosyncratic syndromes that constitute spectrum of pathologies that can be caused inherited blindness. Iby mutations in more than 220 genes.
    [Show full text]
  • Scheie Vision Department of Opthalmology
    summer 2018 scheie vision Department of Opthalmology Like Watching a Miracle: From Landmark Gene Therapy to the Stage of America’s Got Talent IN THIS ISSUE A MESSAGE FROM THE CHAIR Dear Friends, VISION Penn Medicine’s Department of Ophthalmology, Scheie Eye Institute, is dedicated to cutting edge research, 02 Like Watching a Miracle providing the highest quality of care in Philadelphia and around the world, and training the next generation 04 Landmark FDA Approval of ophthalmologists. Our faculty and staff strive to cultivate an environment of continued learning and 08 Studying Individual Photoreceptors mentoring, where young minds with great potential grow and thrive. Our alumni go on to lead impactful 10 Intraocular Bleeding from careers, maintaining relationships with peers and mentors and returning to the Annual Alumni Meeting Blood Clot Meds? each spring. This event is always a reminder of the outstanding accomplishments of Scheie’s alumni, 11 New Options for Dry Eye students, staff, and faculty, and their daily commitment to improving the lives of patients and colleagues. This issue of Scheie Vision covers the people behind SCHEIE COMMUNITY Scheie’s advances and mission of excellence. We 13 Beautiful Inside and Out feature Lang Lourng Ung, an ophthalmic technician who brings inspirational resilience and passion to working with patients; Sonul Mehta, MD, who travels 15 Faces of Scheie around the world to provide ophthalmic care in underserved communities; Jessica Morgan, PhD, whose 19 Eye Care Across the World research on photoreceptor function has tremendous implications for the diagnosis and treatment of retinal 20 Remembering Walker Kirby disease; and Jean Bennett, MD, PhD, and Al Maguire, MD, who have demonstrated unwavering commitment for over 25 years to making it possible for blind 21 144th Anniversary Weekend children to see.
    [Show full text]
  • Novel Adeno-Associated Viral Vectors for Retinal Gene Therapy
    Gene Therapy (2012) 19, 162–168 & 2012 Macmillan Publishers Limited All rights reserved 0969-7128/12 www.nature.com/gt REVIEW Novel adeno-associated viral vectors for retinal gene therapy This article has been corrected since Advance Online Publication and an erratum is also printed in this issue LH Vandenberghe1 and A Auricchio2,3 Vectors derived from adeno-associated virus (AAV) are currently the most promising vehicles for therapeutic gene delivery to the retina. Recently, subretinal administration of AAV2 has been demonstrated to be safe and effective in patients with a rare form of inherited childhood blindness, suggesting that AAV-mediated retinal gene therapy may be successfully extended to other blinding conditions. This is further supported by the great versatility of AAV as a vector platform as there are a large number of AAV variants and many of these have unique transduction characteristics useful for targeting different cell types in the retina including glia, epithelium and many types of neurons. Naturally occurring, rationally designed or in vitro evolved AAV vectors are currently being utilized to transduce several different cell types in the retina and to treat a variety of animal models of retinal disease. The continuous and creative development of AAV vectors provides opportunities to overcome existing challenges in retinal gene therapy such as efficient transfer of genes exceeding AAV’s cargo capacity, or the targeting of specific cells within the retina or transduction of photoreceptors following routinely used intravitreal
    [Show full text]
  • A Nonhuman Primate Model of Achromatopsia
    The Journal of Clinical Investigation COMMENTARY Blinded by the light: a nonhuman primate model of achromatopsia Katherine E. Uyhazi and Jean Bennett Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA. sitely light-sensitive rod photoreceptors for both night- and daytime vision. How- Achromatopsia is an inherited retinal degeneration characterized by the ever, rods are specialized to function well loss of cone photoreceptor function. In this issue of the JCI, Moshiri et in dimly lit conditions, but are too sensitive al. characterize a naturally occurring model of the disease in the rhesus to work efficiently in bright light, resulting macaque caused by homozygous mutations in the phototransduction in glare. Rods also have low spatial resolu- enzyme PDE6C. Using retinal imaging, and electrophysiologic and tion, leading to decreased acuity. biochemical methods, the authors report a clinical phenotype nearly There are currently six known caus- identical to the human condition. These findings represent the first genetic ative genes of achromatopsia, almost all of nonhuman primate model of an inherited retinal disease, and provide an which are components of the phototrans- ideal testing ground for the development of novel gene replacement, gene duction cascade in cone photoreceptors editing, and cell replacement therapies for cone dystrophies. (3). Approximately 75% of affected individ- uals have mutations in cyclic nucleotide- gated channel beta 3 or alpha 3 (CNGB3 or CNGA3), while the remainder of cases are caused by mutations in the remaining four Color blindness vivors, one of whom was a heterozygous genes (GNAT2, PDE6C, PDE6H, or ATF6) On the remote South Pacific island of carrier of the disease (2).
    [Show full text]
  • Reprogramming the Retina: Next Generation Strategies of Retinal Neuroprotection and Gene Therapy Vector Potency Assessment
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 Reprogramming The Retina: Next Generation Strategies Of Retinal Neuroprotection And Gene Therapy Vector Potency Assessment Devin Scott Mcdougald University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Genetics Commons, Molecular Biology Commons, and the Virology Commons Recommended Citation Mcdougald, Devin Scott, "Reprogramming The Retina: Next Generation Strategies Of Retinal Neuroprotection And Gene Therapy Vector Potency Assessment" (2018). Publicly Accessible Penn Dissertations. 3158. https://repository.upenn.edu/edissertations/3158 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3158 For more information, please contact [email protected]. Reprogramming The Retina: Next Generation Strategies Of Retinal Neuroprotection And Gene Therapy Vector Potency Assessment Abstract Mutations within over 250 known genes are associated with inherited retinal degeneration. Clinical success following gene replacement therapy for Leber’s congenital amaurosis type 2 establishes a platform for the development of downstream treatments targeting other forms of inherited and acquired ocular disease. Unfortunately, several challenges relevant to complex disease pathology and limitations of current gene transfer technologies impede the development of gene replacement for each specific form of retinal degeneration. Here we describe gene augmentation strategies mediated by recombinant AAV vectors that impede retinal degeneration in pre-clinical models of acquired and inherited vision loss. We demonstrate distinct neuroprotective effects upon retinal ganglion cell survival and function in experimental optic neuritis following AAV-mediated gene augmentation. Gene transfer of the antioxidant transcription factor, NRF2, improves RGC survival while overexpression of the pro-survival and anti- inflammatory protein, SIRT1, promotes preservation of visual function.
    [Show full text]
  • Adeno-Associated Virus 8-Mediated Gene Therapy for Choroideremia: Preclinical Studies in in Vitro Ind in Vivo Models
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Adeno-Associated Virus 8-Mediated Gene Therapy for Choroideremia: Preclinical Studies in in Vitro ind in Vivo Models Aaron Daniel Black University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Genetics Commons, Ophthalmology Commons, and the Virology Commons Recommended Citation Black, Aaron Daniel, "Adeno-Associated Virus 8-Mediated Gene Therapy for Choroideremia: Preclinical Studies in in Vitro ind in Vivo Models" (2015). Publicly Accessible Penn Dissertations. 1014. https://repository.upenn.edu/edissertations/1014 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1014 For more information, please contact [email protected]. Adeno-Associated Virus 8-Mediated Gene Therapy for Choroideremia: Preclinical Studies in in Vitro ind in Vivo Models Abstract Choroideremia (CHM) is a slowly progressive X-linked retinal degeneration that results ultimately in total blindness due to loss of photoreceptors, retinal pigment epithelium, and choroid. CHM, the gene implicated in choroideremia, encodes Rab escort protein-1 (REP-1), which is involved in the post- translational activation via prenylation of Rab proteins. We evaluated AAV8.CBA.hCHM, a human CHM encoding recombinant adeno-associated virus serotype 8 (rAAV8) vector, which targets retinal cells efficiently, for therapeutic effect and safety in vitro and in vivo in a murine model of CHM. In vitro studies assayed the ability of the vector to produce functional REP-1 protein in established cell lines and in CHM patient derived primary fibroblasts. Assays included Western blots, immunofluorescent labeling, and a REP-1 functional assay which measured the ability of exogenous REP-1 to prenylate Rab proteins.
    [Show full text]
  • 52 N O V E M B E R 2 0
    Retinal alfred t. kamajian t. alfred 52 november 2012 From inherited retinal dystrophies to AMD, the pace of gene therapy is picking up, spurred on by recent success with Leber congenital amaurosis. An update on current research and insights Gene Therapyfrom leaders in the field. BY ANNIE STUART, CONTRIBUTING WRITER fter a few false starts in early gene therapy clinical That’s a far cry from evaluating gene therapy for liver trials in the 1990s, the dramatic success of the Leber disease, for example, where it’s not possible to make direct congenital amaurosis (LCA) trials has spurred re- observations. A newed interest and a great deal of development in the field at large. Although research is progressing in uveitis, Retinal Rewards glaucoma, and cornea, the most promising results in oph- The retina is a desirable target for gene therapy, largely thalmology thus far have emerged with retinal disorders. because it is an essential, irreplaceable part of the central As with so many areas of study, the eye offers a unique nervous system, said Richard A. Lewis, MD, professor of opportunity for gene therapy. “Because of its size, the eye ophthalmology and molecular and human genetics at Bay- requires relatively small doses to achieve a therapeutic ef- lor College of Medicine in Houston. “You can change some fect,” said J. Timothy Stout, MD, PhD, MBA, genetic re- things about the anterior segment of the eye—repair cor- searcher and professor of ophthalmology at Oregon Health neal damage, do transplants, or remove cataracts—but you & Science University in Portland. This was particularly can’t replace the retina.” advantageous at the very earliest stages of eye gene therapy, From inherited retinal dystrophies to AMD, gene therapy he said, when making large amounts of gene vectors was no offers promise for the clinician in two primary ways: “There easy task.
    [Show full text]
  • The Evolution of Retinal Gene Therapy: from DNA to FDA
    COVER STORY The Evolution of Retinal Gene Therapy: From DNA to FDA BY JEAN BENNETT, MD, PHD; AND ALBERT M. MAGUIRE, MD The Gertrude D. Pyron Award was created by the Retina Research Foundation to recognize outstanding vision scientists whose work contributes to knowledge about vitreoretinal disease. At the American Society of Retina Specialists 2011 Annual Meeting, the Pyron Award recipients were Jean Bennett, MD, PhD, and Albert M. Maguire, MD, whose pioneering work with retinal gene therapy is ongoing at the University of Pennsylvania and the Children’s Hospital of Philadelphia. The husband-and-wife team shared the privilege of delivering the Gertrude D. Pyron Award Lecture, titled “The Evolution of Retinal Gene Therapy: From DNA to FDA.” Highlights of the award lecture are summarized in the following article. JEAN BENNETT, MD, PHD I had the opportunity of working with the senior author There is currently no US Food and Drug of the report, W. French Anderson, MD, a few years before Administration (FDA)-approved gene therapy product that publication. Later, Al and I discussed whether it in the United States. However, genetic research contin- would it be possible to use gene therapy to treat a retinal ues to grow. It may be that early successes in ocular disease. In 1990 we performed the first retinal gene trans- gene therapy may lead the way for all sorts of gene ther- fer in vivo in a large animal.5 Although we were pleased apies and to more widespread research in the field. with the results of this study, we found that the trans- Decades of scientific developments have led to the ferred reporter gene stayed active for only about 2 weeks.
    [Show full text]
  • Research Funding Provided by Choroideremia Research Foundation Curechm.Org
    Research Funding provided by Choroideremia Research Foundation CureCHM.org Funded Researcher Name Institution Project Title USD $ Miguel Seabra, MD, PhD, Professor, CEDOC, Chronic 2002 Nova Medical School, University of Lisbon, Portugal Choroideremia Research Lab Supplies 1,500 Diseases Research Center Miguel Seabra, MD, PhD, Professor, CEDOC, Chronic 2003 Nova Medical School, University of Lisbon, Portugal Development of CHM Mouse Model 14,500 Diseases Research Center Miguel Seabra, MD, PhD, Professor, CEDOC, Chronic 2004 Nova Medical School, University of Lisbon, Portugal Generation of CHM Viral Vector, pt. 1 20,550 Diseases Research Center 2005 Kirill Alexandrov, PhD Max Planck Institute, Germany Forced Expression of REP2 to the Retina 13,000 Miguel Seabra, MD, PhD, Professor, CEDOC, Chronic 2005 Nova Medical School, University of Lisbon, Portugal Generation of CHM Viral Vector, pt. 2 50,000 Diseases Research Center Miguel Seabra, MD, PhD, Professor, CEDOC, Chronic 2006 Nova Medical School, University of Lisbon, Portugal Preclinical Gene Therapy Study Year 1 80,460 Diseases Research Center Miguel Seabra, MD, PhD, Professor, CEDOC, Chronic 2007 Nova Medical School, University of Lisbon, Portugal Preclinical Gene Therapy Study Year 2 69,880 Diseases Research Center Jean Bennett, MD, PhD, F.M. Kirby Professor of Scheie Eye Institute, Perelman School of Medicine, Mouse Study Testing for Three Viral Vector 2010 100,000 Ophthalmology University of Pennsylvania, Philadelphia, PA Candidates Jean Bennett, MD, PhD, F.M. Kirby Professor of Scheie Eye Institute, Perelman School of Medicine, Alternative In-Vitro Assay to Evaluate Three Viral 2011 75,000 Ophthalmology University of Pennsylvania, Philadelphia, PA Vector Candidates Miguel Seabra, MD, PhD, Professor, CEDOC, Chronic 2011 Nova Medical School, University of Lisbon, Portugal Pre-Clinical Gene Therapy Study Year 3 90,000 Diseases Research Center Jean Bennett, MD, PhD, F.M.
    [Show full text]
  • Gene Editing Workshop
    Gene Editing Workshop 21st Annual Meeting ASGCT CHICAGO, ILLINOIS 2018 MAY 16-19 May 15, 2018 Hilton Chicago Continental C Chicago Gene Editing Workshop Table of Contents Workshop Supporters . p 2 Committee Listing . p 3 Faculty Listing . p 3 Faculty Bios . p 4 Disclosure of Relevant Financial Relationships . p 8 Program Schedule . p 9 Notes . p 11 American Society of Gene & Cell Therapy 1 May 15, 2018 Chicago Hilton Chicago Gene Editing Workshop Gene Editing Workshop Supporters The American Society of Gene & Cell Therapy is honored to acknowledge the following organizations for their support of the Gene Editing Workshop: American Society of Gene & Cell Therapy 2 May 15, 2018 Chicago Hilton Chicago Gene Editing Workshop Committee Listing Co-Chairs J. Keith Joung, MD, PhD Matthew H. Porteus, MD, PhD Massachusetts General Hospital Stanford University School of Medicine Charlestown, MA Stanford, CA Members Paula M. Cannon, PhD Toni Cathomen, PhD Charles A. Gersbach, PhD University of Southern California Medical Center - University of Freiburg Duke University Los Angeles, CA Freiburg, Germany Durham, NC Faculty Listing Omar Abudayyeh Beverly L. Davidson, PhD J. Keith Joung, MD, PhD Broad Institute of MIT and Harvard Children’s Hospital of Philadelphia Massachusetts General Hospital Cambridge, MA Philadelphia, PA Charlestown, MA Charlie Albright, PhD Suk See De Ravin, MD, PhD Alexis C. Komor, PhD Editas Medicine National Institutes of Health, NIAID UC San Diego Cambridge, MA Bethesda, MD La Jolla, CA Leonela Amoasii, PhD Daniel Dever, PhD Vikram Pattanayak, MD, PhD UTSW Medical Center Stanford University Medical Center Massachusetts General Hospital Dallas, TX Stanford, CA Boston, MA Thomas Barnes, PhD Justin Eyquem, PhD Krishanu Saha, PhD Intellia Therapeutics Memorial Sloan Kettering Cancer Center University of Wisconsin-Madison Cambridge, MA New York, NY Madison, WI Mark A.
    [Show full text]
  • Market Deep Dive Report CRISPR Therapeutics June 2020
    Market Deep Dive Report CRISPR Therapeutics June 2020 Contents 1. Summary 3 2. Market Overview 3 2.1 Industry Challenges 4 2.2 Intellectual Property 5 2.3 Regulatory Requirements 5 2.4 Pitchbook Market Statistics 6 3. Technology Overview 6 3.1 Basic Summary 6 3.2 Base Editing 7 3.3 Prime Editing 8 3.4 Ex-Vivo CRISPR 9 3.5 In-Vivo CRISPR 10 3.6 Alternative techniques and platforms 11 3.7 Late stage privates & publics 13 3.8 Key People and Labs 13 4. Therapeutic Landscape 14 4.1 Present day status 14 4.2 Future Indications 16 4.3 Startups to Watch 17 5. Conclusions 18 5.1 Vertical Strengths 18 5.2 Vertical Weaknesses 18 5.3 Opportunity Cost of Capital 19 5.4 Investment Theses 19 6. References 20 2 1. Summary Since its initial discovery as a genetic reprogramming tool in 2012, CRISPR has widely been regarded as a breakthrough scientific discovery and quickly become one of the hottest new biotechnologies in the industry. However, the CRISPR therapeutics market is still in early stages, with leading therapies only just reaching human clinical trials. Furthermore, the industry is highly defended by IP, and currently addresses a narrow set of indications. Top companies including Beam Therapeutics, Editas Medicine, and Prime Medicine have been founded by the same scientists, and have formed a highly collaborative moat. Remaining companies have partnered with large pharmaceutical companies to fund operations. The future of CRISPR therapeutics development is dependent on technological advances in delivery methods and editing safety and granularity.
    [Show full text]