Downloaded From

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded From bioRxiv preprint doi: https://doi.org/10.1101/852368; this version posted November 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Intra-Species Differences in Population Size shape Life History and Genome Evolution 2 Authors: David Willemsen1, Rongfeng Cui1, Martin Reichard2, Dario Riccardo Valenzano1,3* 3 Affiliations: 4 1Max Planck Institute for Biology of Ageing, Cologne, Germany. 5 2The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic. 6 3CECAD, University of Cologne, Cologne, Germany. 7 *Correspondence to: [email protected] 8 Key words: life history, evolution, genome, population genetics, killifish, Nothobranchius 9 furzeri, lifespan, sex chromosome, selection, genetic drift 10 11 1 bioRxiv preprint doi: https://doi.org/10.1101/852368; this version posted November 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 The evolutionary forces shaping life history trait divergence within species are largely unknown. 14 Killifish (oviparous Cyprinodontiformes) evolved an annual life cycle as an exceptional 15 adaptation to life in arid savannah environments characterized by seasonal water availability. The 16 turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate known to science and 17 displays differences in lifespan among wild populations, representing an ideal natural experiment 18 in the evolution and diversification of life history. Here, by combining genome sequencing and 19 population genetics, we investigate the evolutionary forces shaping lifespan among turquoise 20 killifish populations. We generate an improved reference assembly for the turquoise killifish 21 genome, trace the evolutionary origin of the sex chromosome, and identify genes under strong 22 positive and purifying selection, as well as those evolving neutrally. We find that the shortest- 23 lived turquoise killifish populations, which dwell in fragmented and isolated habitats at the outer 24 margin of the geographical range of the species, are characterized by small effective population 25 size and accumulate throughout the genome several small to large-effect deleterious mutations 26 due to genetic drift. The genes most affected by drift in the shortest-lived turquoise killifish 27 populations are involved in the WNT signalling pathway, neurodegenerative disorders, cancer 28 and the mTOR pathway. As the populations under stronger genetic drift are the shortest-lived 29 ones, we propose that limited population size due to habitat fragmentation and repeated 30 population bottlenecks, by causing the genome-wide accumulation of deleterious mutations, 31 cumulatively contribute to the short adult lifespan in turquoise killifish populations. 2 bioRxiv preprint doi: https://doi.org/10.1101/852368; this version posted November 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 32 Main 33 Killifish are a highly successful teleost group, dwelling in a range of diverse habitats and, 34 uniquely among teleosts, evolved an annual life cycle to survive in arid climates characterized by 35 cycles of rainfalls and drought1. While on the one hand intermittent precipitation and periodic 36 drought pose strong selective pressures leading to the evolution of embryonic diapause, an 37 adaptation that enables killifish to survive in absence of water2,3, on the other hand they cause 38 habitat and population fragmentation, promoting genetic drift. The co-occurrence of strong 39 selective pressure for early-life and extensive drift characterizes life history evolution in African 40 annual killifishes4. 41 The turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate with a thoroughly 42 documenteda post-embryonic life, which, in the shortest-lived strains, amounts to four 43 months2,3,5,6. Turquoise killifish has recently emerged as a powerful new laboratory model to 44 study experimental biology of aging due to its short lifespan and to its wide range of aging- 45 related changes, which include neoplasias7, decreased regenerative capacity8, cellular 46 senescence9,10, and loss of microbial diversity11. At the same time, while sharing physiological 47 adaptations that enable embryonic diapause and rapid sexual maturation, different wild turquoise 48 killifish populations display differences in lifespan, both in the wild and in captivity12-14, making 49 this species an ideal evolutionary model to study the genetic basis underlying life history trait 50 divergence within species. a Eviota sigillata has been reported to be the shortest-known living vertebrate5, but no information is available regarding the duration of its larval stage and its complete post-hatching lifespan in laboratory conditions. 3 bioRxiv preprint doi: https://doi.org/10.1101/852368; this version posted November 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 51 Characterisation of life history traits in wild-derived laboratory strains of turquoise killifish 52 revealed that while different populations have similar rates of sexual maturation6, populations 53 from arid regions exhibit the shortest lifespans, while populations from more semi-arid regions 54 exhibit longer lifespans6,12. Hence, speed of sexual maturation and adult lifespan appear to be 55 independent in turquoise killifish populations. The evolutionary mechanisms responsible for the 56 lifespan differences among turquoise killifish populations are not yet clearly understood. 57 Mapping genetic loci associated with lifespan differences among turquoise killifish populations 58 showed that adult survival has a complex genetic architecture13,15. Here, combining genome 59 sequencing and population genetics, we investigate to what extent genomic divergence in natural 60 turquoise killifish populations that differ in lifespan is driven by adaptive or neutral evolution. 61 Genome assembly improvement and gene annotation 62 To identify the genomic mechanism that led to the evolution of differences in lifespan between 63 natural populations of the turquoise killifish (Nothobranchius furzeri), we combined the currently 64 available reference genomes13,16 into an improved reference turquoise killifish genome assembly. 65 Due to the high repeat content, assembly from short reads required a highly integrated and multi- 66 platform approach. We ran Allpaths-LG with all the available pair-end sequences, producing a 67 combined assembly with a contig N50 of 7.8kb, corresponding to a ~2kb improvement from the 68 previous versions. Two newly obtained 10X Genomics linked read libraries were used to correct 69 and link scaffolds, resulting in a scaffold N50 of 1.5Mb, i.e. a three-fold improvement from the 70 best previous assembly. With the improved continuity, we assigned 92.2% of assembled bases to 71 the 19 linkage groups using two RAD-tag maps13. Gene content assessment using the BUSCO 72 method improved “complete” BUSCOs from 91.43%13 and 94.59%16 to 95.20%. We mapped 4 bioRxiv preprint doi: https://doi.org/10.1101/852368; this version posted November 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 73 Genbank N. furzeri RefSeq RNA to the new assembly to predict gene models. The predicted gene 74 model set is 96.1% for “complete” BUSCOs. 75 Population genetics of natural turquoise killifish populations 76 Natural populations of turquoise killifish occur along an aridity gradient in Zimbabwe and 77 Mozambique and populations from more arid regions are associated with shorter captive 78 lifespan6,12. A QTL study performed between short-lived and long-lived turquoise killifish 79 populations showed a complex genetic architecture of lifespan (measured as age at death), with 80 several genome-wide loci associated with lifespan differences among long-lived and short-lived 81 populations13. To further investigate the evolutionary forces shaping genetic differentiation in the 82 loci associated with lifespan among wild turquoise killifish populations, we performed pooled 83 whole-genome-sequencing (WGS) of killifish collected from four sampling sites within the 84 natural turquoise killifish species distribution, which vary in altitude, annual precipitation and 85 aridity (Figure S1, Table S1). Population GNP is located within the Gonarezhou National Park 86 at high altitude and in an arid climate (Koeppen-Geiger classification “BWh”, Figure S1), in a 87 region at the outer edge of the turquoise killifish distribution (Figure S1)17-19, which corresponds 88 to the place of origin of the “GRZ” laboratory strain, which has the shortest lifespan of all 89 laboratory strains
Recommended publications
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • Nothobranchius As a Model for Aging Studies. a Review
    Volume 5, Number 2; xxx-xx, April 2014 http://dx.doi.org/10.14336/AD Review Article Nothobranchius as a model for aging studies. A review Alejandro Lucas-Sánchez 1, *, Pedro Francisco Almaida-Pagán 2, Pilar Mendiola 1, Jorge de Costa 1 1 Department of Physiology. Faculty of Biology. University of Murcia. 30100 Murcia, Spain. 2 Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK. [Received October 17, 2013; Revised December 4, 2013; Accepted December 4, 2013] ABSTRACT: In recent decades, the increase in human longevity has made it increasingly important to expand our knowledge on aging. To accomplish this, the use of animal models is essential, with the most common being mouse (phylogenetically similar to humans, and a model with a long life expectancy) and Caenorhabditis elegans (an invertebrate with a short life span, but quite removed from us in evolutionary terms). However, some sort of model is needed to bridge the differences between those mentioned above, achieving a balance between phylogenetic distance and life span. Fish of the genus Nothobranchius were suggested 10 years ago as a possible alternative for the study of the aging process. In the meantime, numerous studies have been conducted at different levels: behavioral (including the study of the rest-activity rhythm), populational, histochemical, biochemical and genetic, among others, with very positive results. This review compiles what we know about Nothobranchius to date, and examines its future prospects as a true alternative to the classic models for studies on aging. Key words: Aging, Fish, killifish, Nothobranchius Aging is a multifactorial process that involves numerous To be considered a model for aging, an animal must mechanisms that operate during the normal life cycle of have a number of features.
    [Show full text]
  • Jlb Smith Institute of Ichthyology
    ISSN 0075-2088 J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY GRAHAMSTOWN, SOUTH AFRICA SPECIAL PUBLICATION No. 56 SCIENTIFIC AND COMMON NAMES OF SOUTHERN AFRICAN FRESHWATER FISHES by Paul H. Skelton November 1993 SERIAL PUBLICATIONS o f THE J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY The Institute publishes original research on the systematics, zoogeography, ecology, biology and conservation of fishes. Manuscripts on ancillary subjects (aquaculture, fishery biology, historical ichthyology and archaeology pertaining to fishes) will be considered subject to the availability of publication funds. Two series are produced at irregular intervals: the Special Publication series and the Ichthyological Bulletin series. Acceptance of manuscripts for publication is subject to the approval of reviewers from outside the Institute. Priority is given to papers by staff of the Institute, but manuscripts from outside the Institute will be considered if they are pertinent to the work of the Institute. Colour illustrations can be printed at the expense of the author. Publications of the Institute are available by subscription or in exchange for publi­ cations of other institutions. Lists of the Institute’s publications are available from the Publications Secretary at the address below. INSTRUCTIONS TO AUTHORS Manuscripts shorter than 30 pages will generally be published in the Special Publications series; longer papers will be considered for the Ichthyological Bulletin series. Please follow the layout and format of a recent Bulletin or Special Publication. Manuscripts must be submitted in duplicate to the Editor, J.L.B. Smith Institute of Ichthyology, Private Bag 1015, Grahamstown 6140, South Africa. The typescript must be double-spaced throughout with 25 mm margins all round.
    [Show full text]
  • Intra-Species Differences in Population Size Shape Life History and Genome Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/852368; this version posted December 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Intra-Species Differences in Population Size shape Life History and Genome Evolution 2 Authors: David Willemsen1, Rongfeng Cui1, Martin Reichard2, Dario Riccardo Valenzano1,3* 3 Affiliations: 4 1Max Planck Institute for Biology of Ageing, Cologne, Germany. 5 2The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic. 6 3CECAD, University of Cologne, Cologne, Germany. 7 *Correspondence to: [email protected] 8 Key words: life history, evolution, genome, population genetics, killifish, Nothobranchius 9 furzeri, lifespan, sex chromosome, selection, genetic drift 10 11 1 bioRxiv preprint doi: https://doi.org/10.1101/852368; this version posted December 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 The evolutionary forces shaping life history trait divergence within species are largely unknown. 14 Killifish (oviparous Cyprinodontiformes) evolved an annual life cycle as an exceptional 15 adaptation to life in arid savannah environments characterized by seasonal water availability. The 16 turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate known to science and 17 displays differences in lifespan among wild populations, representing an ideal natural experiment 18 in the evolution and diversification of life history.
    [Show full text]
  • Draft Risk Assessment Report Nothobranchius Furzeri (Turquoise
    APPLICATION TO AMEND THE LIST OF SPECIMENS SUITABLE FOR LIVE IMPORT Draft Risk Assessment Report 1. Taxonomy of the species a. Family name: Aplocheilidae b. Genus name: Nothobranchius c. Species: N. furzeri d. Subspecies: No e. Taxonomic Reference: http://www.uniprot.org/taxonomy/105023 f. Common Names: Turquoise killifish g. Is the species a genetically-modified organism (GMO)? No 2. Status of the species under CITES Species is not listed in the CITES Appendices. 3. Ecology of the species a. Longevity: what is the average lifespan of the species in the wild and in captivity? The average lifespan of the species in captivity is 13 weeks (1). Wild derived N. furzeri from three different habitats showed a maximum lifespan of 25-32 weeks (1). b. What is the maximum length and weight that the species attains? Provide information on the size and weight range for males and females of the species. As per the original formal description of the species, the standard length of N. furzeri from a wild population ranged from 2.5cm to 4.4cm (2). The maximum length the species can attain is 7cm (3). The mean maximal body weight reported for males is 3.8 ± 1.1 g (range: 0.5 – 6.7 g) and 2.2 ± 0.6 g (range: 0.2 - 3.6 g) for females (4). Growth rates of Nothobranchius in the wild have been reported to be similar to those in captivity (5). c. Discuss the identification of the individuals in this species, including if the sexes of the species are readily distinguishable, and if the species is difficult to distinguish from other species.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • The Evolutionary Ecology of African Annual Fishes
    CHAPTER 9 The Evolutionary Ecology of African Annual Fishes Martin Reichard CONTENTS 9.1 Distribution and Biogeography ............................................................................................. 133 9.1.1 Habitat Types ............................................................................................................ 134 9.1.2 Species Distribution and Range Size ........................................................................ 136 9.1.3 Climatic Conditions .................................................................................................. 136 9.1.4 Biogeography ............................................................................................................ 139 9.1.5 Dispersal and Colonization ....................................................................................... 140 9.2 Species Coexistence .............................................................................................................. 142 9.2.1 Community Assembly .............................................................................................. 142 9.2.2 Habitat Use ............................................................................................................... 144 9.2.3 Morphology and Diet ................................................................................................ 144 9.3 Population Ecology ............................................................................................................... 145 9.3.1 Population Genetic Structure ...................................................................................
    [Show full text]
  • Cyprinodontiformes, Nothobranchiidae)
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 10(3): Divergent439–445 (2016) karyotypes of the annual killifish genusNothobranchius ... 439 doi: 10.3897/CompCytogen.v10i3.9863 SHORT COMMUNICATION Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Divergent karyotypes of the annual killifish genus Nothobranchius (Cyprinodontiformes, Nothobranchiidae) Eugene Krysanov1, Tatiana Demidova1, Bela Nagy2 1 Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect, Moscow, 119071 Russia 2 30, rue du Mont Ussy, 77300 Fontainebleau, France Corresponding author: Eugene Krysanov ([email protected]) Academic editor: I. Kuznetsova | Received 13 July 2016 | Accepted 18 August 2016 | Published 16 September 2016 http://zoobank.org/516FBC12-825D-46E0-BAAA-25ABA00F8607 Citation: Krysanov E, Demidova T, Nagy B (2016) Divergent karyotypes of the annual killifish genus Nothobranchius (Cyprinodontiformes; Nothobranchiidae). Comparative Cytogenetics 10(3): 439–445. doi: 10.3897/CompCytogen. v10i3.9863 Abstract Karyotypes of two species of the African annual killifish genus Nothobranchius Peters, 1868, N. brieni Poll, 1938 and Nothobranchius sp. from Kasenga (D.R. Congo) are described. Both species displayed dip- loid chromosome number 2n = 49/50 for males and females respectively with multiple-sex chromosome system type X1X2Y/X1X1X2X2. The karyotypes of studied species are considerably different from those previously reported for the genus Nothobranchius and similar to the Actinopterygii conservative karyotype. Keywords Africa, chromosome number, karyotype, killifish, Nothobranchius Introduction Annual killifishes belonging to the genusNothobranchius Peters, 1868 are mainly dis- tributed in eastern Africa but several species are found in central Africa (Wildekamp 2004). They inhabit temporary pools that dry out during the dry season and have spe- cific adaptations for extreme environments.
    [Show full text]
  • Assessing the Species in the CARES Preservation Program and the Role of Aquarium Hobbyists in Freshwater Fish Conservation
    fishes Article Assessing the Species in the CARES Preservation Program and the Role of Aquarium Hobbyists in Freshwater Fish Conservation Jose W. Valdez 1 and Kapil Mandrekar 2,* 1 Department of Bioscience—Biodiversity and Conservation, Aarhus University, Grenåvej 14, 8410 Rønde, Denmark; [email protected] 2 Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA * Correspondence: [email protected] Received: 30 June 2019; Accepted: 17 September 2019; Published: 29 September 2019 Abstract: Freshwater fish represent half of all fish species and are the most threatened vertebrate group. Given their considerable passion and knowledge, aquarium hobbyists can play a vital role in their conservation. CARES is made up of many organizations, whose purpose is to encourage aquarium hobbyists to devote tank space to the most endangered and overlooked freshwater fish to ensure their survival. We found the CARES priority list contains nearly six hundred species from twenty families and two dozen extinct-in-the-wild species. The major families were typically those with the largest hobbyist affiliations such as killifish, livebearers, and cichlids, the latter containing half of CARES species. CARES included every IUCN threatened species of Pseudomugilidae and Valenciidae, but only one percent of threatened Characidae, Cobitidae, and Gobiidae species. No Loricariidae in CARES were in the IUCN red list as they have not been scientifically described. Tanzania and Mexico contained the largest amount of species, with the latter containing the most endemics. Many species were classified differently than the IUCN, including a third of extinct-in-the-wild species classified as least concern by the IUCN.
    [Show full text]
  • Uncovering Adaptive Evolution in the Human Lineage Magdalena Gayà-Vidal1,2 and M Mar Albà1,3*
    Gayà-Vidal and Albà BMC Genomics 2014, 15:599 http://www.biomedcentral.com/1471-2164/15/599 RESEARCH ARTICLE Open Access Uncovering adaptive evolution in the human lineage Magdalena Gayà-Vidal1,2 and M Mar Albà1,3* Abstract Background: The recent increase in human polymorphism data, together with the availability of genome sequences from several primate species, provides an unprecedented opportunity to investigate how natural selection has shaped human evolution. Results: We compared human branch-specific substitutions with variation data in the current human population to measure the impact of adaptive evolution on human protein coding genes. The use of single nucleotide polymorphisms (SNPs) with high derived allele frequencies (DAFs) minimized the influence of segregating slightly deleterious mutations and improved the estimation of the number of adaptive sites. Using DAF ≥ 60% we showed that the proportion of adaptive substitutions is 0.2% in the complete gene set. However, the percentage rose to 40% when we focused on genes that are specifically accelerated in the human branch with respect to the chimpanzee branch, or on genes that show signatures of adaptive selection at the codon level by the maximum likelihood based branch-site test. In general, neural genes are enriched in positive selection signatures. Genes with multiple lines of evidence of positive selection include taxilin beta, which is involved in motor nerve regeneration and syntabulin, and is required for the formation of new presynaptic boutons. Conclusions: We combined several methods to detect adaptive evolution in human coding sequences at a genome-wide level. The use of variation data, in addition to sequence divergence information, uncovered previously undetected positive selection signatures in neural genes.
    [Show full text]
  • Evolutionary Theories of Aging"
    Article ID: WMC003275 ISSN 2046-1690 The Germ-soma Conflict Theory of Aging and Death: Obituary to the "Evolutionary Theories of Aging" Corresponding Author: Prof. Kurt Heininger, Professor, Department of Neurology, Heinrich Heine University Duesseldorf - Germany Submitting Author: Prof. Kurt Heininger, Professor, Department of Neurology, Heinrich Heine University Duesseldorf - Germany Article ID: WMC003275 Article Type: Original Articles Submitted on:20-Apr-2012, 01:51:59 PM GMT Published on: 20-Apr-2012, 05:38:59 PM GMT Article URL: http://www.webmedcentral.com/article_view/3275 Subject Categories:AGING Keywords:Aging, Reproduction, Evolution, Darwinian demon, Resources How to cite the article:Heininger K. The Germ-soma Conflict Theory of Aging and Death: Obituary to the "Evolutionary Theories of Aging" . WebmedCentral AGING 2012;3(4):WMC003275 Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source(s) of Funding: No funding Competing Interests: No competing interests Additional Files: References WebmedCentral > Original Articles Page 1 of 139 WMC003275 Downloaded from http://www.webmedcentral.com on 30-Apr-2012, 10:35:59 AM The Germ-soma Conflict Theory of Aging and Death: Obituary to the "Evolutionary Theories of Aging" Author(s): Heininger K Abstract “cheater” phenotypes that are defective to carry the cost of death at reproductive events are less fit under conditions of feast and famine cycles and have a high risk to go extinct. Tracing both the genomic and Regarding aging, the scientific community persists in a physiological “fossil record” and the phenotypic pattern state of collective schizophrenia.
    [Show full text]