Management of Cerebral Edema in Acute Liver Failure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patient-Monitoring Systems
17 Patient-Monitoring Systems REED M. GARDNER AND M. MICHAEL SHABOT After reading this chapter,1 you should know the answers to these questions: ● What is patient monitoring, and why is it done? ● What are the primary applications of computerized patient-monitoring systems in the intensive-care unit? ● How do computer-based patient monitors aid health professionals in collecting, analyzing, and displaying data? ● What are the advantages of using microprocessors in bedside monitors? ● What are the important issues for collecting high-quality data either automatically or manually in the intensive-care unit? ● Why is integration of data from many sources in the hospital necessary if a computer is to assist in critical-care-management decisions? 17.1 What Is Patient Monitoring? Continuous measurement of patient parameters such as heart rate and rhythm, respira- tory rate, blood pressure, blood-oxygen saturation, and many other parameters have become a common feature of the care of critically ill patients. When accurate and imme- diate decision-making is crucial for effective patient care, electronic monitors frequently are used to collect and display physiological data. Increasingly, such data are collected using non-invasive sensors from less seriously ill patients in a hospital’s medical-surgical units, labor and delivery suites, nursing homes, or patients’ own homes to detect unex- pected life-threatening conditions or to record routine but required data efficiently. We usually think of a patient monitor as something that watches for—and warns against—serious or life-threatening events in patients, critically ill or otherwise. Patient monitoring can be rigorously defined as “repeated or continuous observations or meas- urements of the patient, his or her physiological function, and the function of life sup- port equipment, for the purpose of guiding management decisions, including when to make therapeutic interventions, and assessment of those interventions” (Hudson, 1985, p. -
Tbi): Progress in Treating the Sig- Nature Wounds of the Current Conflicts
S. HRG. 111–866 OVERSIGHT HEARING ON TRAUMATIC BRAIN IN- JURY (TBI): PROGRESS IN TREATING THE SIG- NATURE WOUNDS OF THE CURRENT CONFLICTS HEARING BEFORE THE COMMITTEE ON VETERANS’ AFFAIRS UNITED STATES SENATE ONE HUNDRED ELEVENTH CONGRESS FIRST SESSION MAY 5, 2010 Printed for the use of the Committee on Veterans’ Affairs ( Available via the World Wide Web: http://www.access.gpo.gov/congress/senate U.S. GOVERNMENT PRINTING OFFICE 64–440 PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 12:21 Feb 28, 2011 Jkt 000000 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 H:\ACTIVE\050510.TXT SVETS PsN: PAULIN COMMITTEE ON VETERANS’ AFFAIRS DANIEL K. AKAKA, Hawaii, Chairman JOHN D. ROCKEFELLER IV, West Virginia RICHARD BURR, North Carolina, Ranking PATTY MURRAY, Washington Member BERNARD SANDERS, (I) Vermont LINDSEY O. GRAHAM, South Carolina SHERROD BROWN, Ohio JOHNNY ISAKSON, Georgia JIM WEBB, Virginia ROGER F. WICKER, Mississippi JON TESTER, Montana MIKE JOHANNS, Nebraska MARK BEGICH, Alaska SCOTT P. BROWN, Massachusetts ROLAND W. BURRIS, Illinois ARLEN SPECTER, Pennsylvania WILLIAM E. BREW, Staff Director LUPE WISSEL, Republican Staff Director (II) VerDate Nov 24 2008 12:21 Feb 28, 2011 Jkt 000000 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 H:\ACTIVE\050510.TXT SVETS PsN: PAULIN CONTENTS MAY 5, 2010 SENATORS Page Akaka, Hon. Daniel K., Chairman, U.S. Senator from Hawaii ........................... 1 Burr, Hon. -
Capnography 101 Oxygenation and Ventilation
It’s Time to Start Using it! Capnography 101 Oxygenation and Ventilation What is the difference? Oxygenation and Ventilation Ventilation O Oxygenation (capnography) 2 (oximetry) CO Cellular 2 Metabolism Capnographic Waveform • Capnograph detects only CO2 from ventilation • No CO2 present during inspiration – Baseline is normally zero CD AB E Baseline Capnogram Phase I Dead Space Ventilation • Beginning of exhalation • No CO2 present • Air from trachea, posterior pharynx, mouth and nose – No gas exchange occurs there – Called “dead space” Capnogram Phase I Baseline A B I Baseline Beginning of exhalation Capnogram Phase II Ascending Phase • CO2 from the alveoli begins to reach the upper airway and mix with the dead space air – Causes a rapid rise in the amount of CO2 • CO2 now present and detected in exhaled air Alveoli Capnogram Phase II Ascending Phase C Ascending II Phase Early A B Exhalation CO2 present and increasing in exhaled air Capnogram Phase III Alveolar Plateau • CO2 rich alveolar gas now constitutes the majority of the exhaled air • Uniform concentration of CO2 from alveoli to nose/mouth Capnogram Phase III Alveolar Plateau Alveolar Plateau CD III AB CO2 exhalation wave plateaus Capnogram Phase III End-Tidal • End of exhalation contains the highest concentration of CO2 – The “end-tidal CO2” – The number seen on your monitor • Normal EtCO2 is 35-45mmHg Capnogram Phase III End-Tidal End-tidal C D AB End of the the wave of exhalation Capnogram Phase IV Descending Phase • Inhalation begins • Oxygen fills airway • CO2 level quickly -
Proceedings of Réanimation 2019, the French Intensive Care Society International Congress
Ann. Intensive Care 2019, 9(Suppl 1):40 https://doi.org/10.1186/s13613-018-0474-7 MEETING ABSTRACTS Open Access Proceedings of Réanimation 2019, the French Intensive Care Society International Congress France. 23–25 January 2019 Published: 29 March 2019 Oral communications Oral communications: Physiotherapists Conclusion: We found that peak expiratory was higher with than with- out collapsible tube. In vivo measurements in patients should be done COK‑1 to confrm this fnding. Bench assessment of the efect of a collapsible tube on the efcacy of a mechanical insufation‑exsufation device Romain Lachal (speaker) Réanimation médicale, Hôpital de la Croix‑Rousse, Hospices Civils de Lyon, Lyon, FRANCE Correspondence: Romain Lachal ‑ [email protected] Annals of Intensive Care 2019, 9(Suppl 1):COK-1 Introduction: Mechanical Insufation-Exsufation (MI-E) by using a specifc device is commonly used to increase weak cough, as in patients with chronic neuromuscular weakness or in intensive care unit (ICU) patients with ICU-acquired neuro-myopathy. The assess- ment of the efcacy of MI-E device is commonly done by measuring peak cough fow (PCF). Upper airways collapse is frequently associated with neuromuscular disease and may compromise MI-E efcacy. Tra- cheomalacia is another disease that may impede PCF to increase with MI-E device. The goal of present study was to carry out a bench study to assess the efect of MI-E on PCF with and without the presence of a collapsible tube. Our hypothesis was that PCF was lower with than without collapsible tube. COK‑2 Patients and methods: We used a lung simulator (TTL Michigan Early verticalization in neurologic intensive care units Instruments) with adjustable compliance (C) and resistance (R) to with a weight suspension system which a MI-E (CoughAssist E70, Philips-Respironics) was attached, Margrit Ascher (speaker), Francisco Miron Duran, Fanny Pradalier, Claire with or without a latex collapsible tube. -
Monitoring Anesthetic Depth
ANESTHETIC MONITORING Lyon Lee DVM PhD DACVA MONITORING ANESTHETIC DEPTH • The central nervous system is progressively depressed under general anesthesia. • Different stages of anesthesia will accompany different physiological reflexes and responses (see table below, Guedel’s signs and stages). Table 1. Guedel’s (1937) Signs and Stages of Anesthesia based on ‘Ether’ anesthesia in cats. Stages Description 1 Inducement, excitement, pupils constricted, voluntary struggling Obtunded reflexes, pupil diameters start to dilate, still excited, 2 involuntary struggling 3 Planes There are three planes- light, medium, and deep More decreased reflexes, pupils constricted, brisk palpebral reflex, Light corneal reflex, absence of swallowing reflex, lacrimation still present, no involuntary muscle movement. Ideal plane for most invasive procedures, pupils dilated, loss of pain, Medium loss of palpebral reflex, corneal reflexes present. Respiratory depression, severe muscle relaxation, bradycardia, no Deep (early overdose) reflexes (palpebral, corneal), pupils dilated Very deep anesthesia. Respiration ceases, cardiovascular function 4 depresses and death ensues immediately. • Due to arrival of newer inhalation anesthetics and concurrent use of injectable anesthetics and neuromuscular blockers the above classic signs do not fit well in most circumstances. • Modern concept has two stages simply dividing it into ‘awake’ and ‘unconscious’. • One should recognize and familiarize the reflexes with different physiologic signs to avoid any untoward side effects and complications • The system must be continuously monitored, and not neglected in favor of other signs of anesthesia. • Take all the information into account, not just one sign of anesthetic depth. • A major problem faced by all anesthetists is to avoid both ‘too light’ anesthesia with the risk of sudden violent movement and the dangerous ‘too deep’ anesthesia stage. -
Air & Surface Transport Nurses Association Position Statement
Air & Surface Transport Nurses Association Position Statement Advanced Airway Management Background In the early 1970s, civilian flight nursing became a recognized nursing specialty and an integral element in the care of critically ill and injured patients. Advanced airway management is an essential procedure in meeting those patient care goals. The procedure can be performed safely and effectively by properly trained transport teams; however, it is not without risks and complications. Individual state Boards of Nursing regulate registered nursing licensure. ASTNA believes transport providers and teams must work collegially and collaboratively with these regulatory bodies. Registered nurses who perform advanced airway management provide care under the direction and protocols of their medical directors. In addition, Registered Nurses who perform advanced airway management skills must have comprehensive initial and ongoing education to optimize clinical knowledge, skill, and decision-making ability. Education programs teaching these advanced airway management skills should include at least the following components: • Comprehensive review of airway/respiratory anatomy and physiology • Basic airway skills and techniques • Clinical assessment skills to evaluate the need for escalated intervention • Extraglottic airway devices • Tracheal intubation using a variety of devices • Surgical airway techniques • Pharmacology and clinical application of sedative, analgesic, hypnotic, and neuromuscular blocking agents used in advanced airway management • Patient safety monitoring equipment, including continuous pulse oximetry, continuous heart rate, and continuous monitoring of waveform capnography • Teamwork and crisis resource management, as applied to the clinical environment both as team leaders and team members Clinical best practices evolve continuously.1 Transport programs performing advanced airway should adopt policies that ensure clinical education and practice components remain current. -
An Introduction to Anaesthesia
What You Need to KNoW about An introduction to anaesthesia Introduction divided into three stages: induction, main- n Central neuraxial block, e.g. spinal or Anaesthetic experience in the undergradu- tenance and emergence. epidural (Figure 1 and Table 1). ate timetable is often very limited so it can In regional anaesthesia, nerve transmis- remain somewhat of a mysterious practice sion is blocked, and the patient may stay Components of a general well into specialist training. This introduc- awake or be sedated or anaesthetized dur- anaesthetic tion to the components of an anaesthetic ing a procedure. Techniques used include: A general anaesthetic always involves an will help readers to get more from clinical n Local anaesthetic field block hypnotic agent, usually an analgesic and attachments in surgery and anaesthetics or n Peripheral nerve block may also include muscle relaxation. The serve as an introduction to the topic for n Nerve plexus block combination is referred to as the ‘triad of novice or non-anaesthetists. anaesthesia’. Figure 1. Schematic vertical longitudinal section The relative importance of each com- Types and sites of anaesthesia of vertebral column and structures encountered ponent depends on surgical and patient The term anaesthesia comes from the when performing central neuraxial blocks. * factors: the intervention planned, site, Greek meaning loss of sensation. negative pressure space filled with fat and surgical access requirement and the Anaesthetic practice has evolved from a venous plexi. † extends to S2, containing degree of pain or stimulation anticipated. need for pain relief and altered conscious- arachnoid mater, CSF, pia mater, spinal cord The technique is tailored to the individu- ness to allow surgery. -
Inpatient Sepsis Management
Inpatient Sepsis Management - Adult Page 1 of 6 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women. PRESENTATION EVALUATION TREATMENT Call Code Blue Team1 Patient exhibits at least two of the Yes following modified SIRS criteria: ● Temperature < 36 or > 38.4°C Is patient ● MERIT team1 to evaluate and notify Primary MD/APP STAT ● Heart rate > 110 bpm unresponsive? ● Prepare transfer to ICU See Page 2: Sepsis ● Respiratory rate > 24 bpm ● Assess for presence of infection (see Appendix A) Management ● WBC count < 3 or > 15 K/microliter ● Assess for organ dysfunction (see Appendix B) No Yes ● Primary team to consider goals of care discussion if appropriate Is 1,2 the patient ● Sepsis APP to notify unstable? Primary MD/APP 1,2 ● Sepsis APP to evaluate ● See Page 2: Sepsis No ● Assess for presence of infection (see Yes Management Appendix A) Sepsis? ● Assess for organ dysfunction (see ● For further work up, Appendix B) No initiate Early Sepsis Order Set ● Follow up evaluation by SIRS = systemic inflammatory response syndrome Primary Team APP = advanced practice provider 1 For patients in the Acute Cancer -
Acute Liver Failure in Adults: an Evidence- Based Management Protocol for Clinicians
Acute Liver Failure in Adults: An Evidence- Based Management Protocol for Clinicians Heather Patton, MD, Michael Misel, PharmD, and Robert G. Gish, MD Dr. Patton is an Assistant Clinical Abstract: With the goal of providing guidance on the provision Professor of Medicine in the Division of optimal intensive care to adult patients with acute liver fail- of Gastroenterology at the University ure (ALF), this paper defines ALF and describes a protocol for of California (UC) San Diego School of appropriately diagnosing this relatively rare clinical entity and Medicine; she is also affiliated with the ascertaining its etiology, where possible. This paper also identi- Center for Hepatobiliary Disease and fies the few known therapies that may be effective for specific Abdominal Transplantation (CHAT) in the UC San Diego Health System, both causes of ALF and provides a comprehensive approach for antici- in San Diego, California. Dr. Misel is an pating, identifying, and managing complications. Finally, one of Assistant Clinical Professor at the UC the more important aspects of care for patients with ALF is the San Diego Skaggs School of Pharmacy determination of prognosis and, specifically, the need for liver & Pharmaceutical Sciences; he is also a transplantation. Prognostic tools are provided to help guide the Pharmacist Specialist in Hepatobiliary clinician in this critical decision process. Management of patients Disease and Abdominal Transplant at CHAT in the UC San Diego Health with ALF is complex and challenging, even in centers where staff System. Dr. Gish is Chief of Clinical members have high levels of expertise and substantial experience. Hepatology and a Professor of Clinical This evidence-based protocol may, therefore, assist in the delivery Medicine in the Division of Gastroen- of optimal care to this critically ill patient population and may terology at the UC San Diego School of substantially increase the likelihood of positive outcomes. -
Case Report of Hyperacute Edema and Cavitation Following Deep Brain Stimulation Lead Implantation Albert J
www.surgicalneurologyint.com Surgical Neurology International Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook. SNI: Stereotactic Editor Veronica Lok-Sea Chiang, MD Yale School of Medicine, New Haven, CT, USA Open Access Case Report Case report of hyperacute edema and cavitation following deep brain stimulation lead implantation Albert J. Fenoy1,2, Christopher R. Conner2, Joseph S. Withrow2, Aaron W. Hocher2 Movement Disorders and Neurodegenerative Disease Program, Departments of 1Neurology, 2Neurosurgery, McGovern Medical School, Houston, Texas, United States. E-mail: *Albert J. Fenoy - [email protected]; Christopher R. Conner - [email protected]; Joseph S. Withrow - joseph.s.withrow@ uth.tmc.edu; Aaron W. Hocher - [email protected] ABSTRACT Background: Postoperative cerebral edema around a deep brain stimulation (DBS) electrode is an uncommonly reported complication of DBS surgery. e etiology of this remains unknown, and the presentation is highly variable; however, the patients generally report a good outcome. Case Description: Here, we report an unusual presentation of postoperative edema in a 66-year-old female *Corresponding author: who has bilateral dentatorubrothalamic tract (specifically, the ventral intermediate nucleus) DBS for a mixed Albert J. Fenoy, type tremor disorder. Initial postoperative computed tomography (CT) was unremarkable and the patient was Department of Neurosurgery, admitted for observation. She declined later on postoperative day (POD) 1 and became lethargic. Stat head CT McGovern Medical School, scan performed revealed marked left-sided peri-lead edema extending into the centrum semiovale with cystic 6431 Fannin St., Houston, Texas cavitation, and trace right-sided edema. -
Real and Illusory Perceptions of Patients in Induced Coma
REVIEW Real and illusory perceptions of patients in induced coma Percepções reais e ilusórias de pacientes em coma induzido Percepciones reales e ilusorias de pacientes en coma inducido ABSTRACT Simone Costa SilvaI Objective: To identify, in the scientific literature, real and illusory perceptions of adult patients in induced coma. Methods: This is an integrative review of 15 primary studies from ORCID: 0000-0001-9220-6310 the Medline, Web of Science, LILACS, CINAHL and SCOPUS databases. Results: The main I memories reported after induced coma were thirst, cold, and pain. In some studies, patients Laura Menezes Silveira reported they were unable to tell whether they were awake or dreaming, whether it was ORCID: 0000-0002-2397-2553 real or unreal. Satisfactory memories were reported by patients related to the care received I and the use of bedside journals. Conclusion: Evidence showed a number of studies aiming Leila Maria Marchi-Alves to identify delirium, but without a focus on analyzing real or illusory perceptions of patients ORCID: 0000-0001-9374-8074 after induced coma. Thus, this integrative review identified scientific evidence of memories related to perceptions of sedated patients in the intensive care unit. I Isabel Amélia Costa Mendes Descriptors: Deep Sedation; Memory; Delirium; Critical Care; Nursing. ORCID: 0000-0002-0704-4319 I RESUMO Simone de Godoy Objetivo: Identificar, a partir da literatura científica, percepções reais e ilusórias de pacientes ORCID: 0000-0003-0020-7645 adultos em coma induzido. Método: Revisão integrativa de 15 estudos primários localizados nas bases de dados Medline, Web of Science, LILACS, CINAHL e SCOPUS. Resultados: As principais memórias relatadas após o coma induzido são sede, frio e dor. -
Coma, Delirium, and Cognitive Dysfunction in Critical Illness Robert D
Crit Care Clin 22 (2007) 787–804 Coma, Delirium, and Cognitive Dysfunction in Critical Illness Robert D. Stevens, MD*, Paul A. Nyquist, MD, MPH Departments of Anesthesiology/Critical Care Medicine, Neurology, Neurological Surgery, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21287, USA Syndromes of global cerebral dysfunction associated with critical illness include acute disorders such as coma and delirium, and chronic processes namely cognitive impairment. These syndromes can result from direct cere- bral injury, but in many instances develop as a complication of a systemic in- sult such as cardiac arrest, hypoxemia, sepsis, metabolic derangements, and pharmacological exposures. Coma frequently evolves into phenomenologi- cally distinct disorders of consciousness such as the vegetative state and the minimally conscious state, and it must be differentiated from conditions in which consciousness is preserved, as in the locked-in state. Coma and de- lirium are independently associated with increased short-term mortality, while cognitive impairment has been linked to the poor long term functional status and quality of life observed in critical illness survivors. Advances have been made in defining, scoring, and delineating the epidemiology of cerebral dysfunction in the intensive care unit, but research is needed to elucidate underlying mechanisms, with the goal of identifying targets for prevention and therapy. Acute brain dysfunction A high proportion of patients who are admitted to the ICU develops a global alteration in cognitive function that is associated with an underlying cerebral process that can be structural or metabolic [1,2]. Terms that are used commonly to describe these disturbances include coma, delirium, encephalop- athy, acute confusional state, organic brain syndrome, acute organic reaction, * Corresponding author.