Glaciar Relief and Pleistocene Glaciation in Retezat Mountains

Total Page:16

File Type:pdf, Size:1020Kb

Glaciar Relief and Pleistocene Glaciation in Retezat Mountains pzc No.5 p 4-7 smooth and rounded levelled surfaces Glaciar Relief and Pleistocene of the Borăscu sculptural complex, pro- ducing a “Godeanu landscape type”. Be- Glaciation in Retezat cause this situation is characteristic of some extended areas from the Roma- nian Carpathians, we tend to speak (Vel- Mountains (Transylvanians cea, 1973) about a Carpathian type gla- ciation. The glacial cirques from the Romanian Carpathians are called by Alps, Romania) the locals “căldări “ (= cauldron) and “zănoage”, their form could be found in Ureda, P.* the general definition given to the gla- cial cirques (Evans and Cox, 1974). The glacial cirques spread between Abstract The article describes the glacial ecause in the international glacio- 1670 m - median floor altitude - (the relief and the development of Pleistocene logical and geomorphological com- Capu Slăveiului cirque) and 2200 m a.sl. glaciation for one of the most representa- Bmunity the glacial relief and the de- (the Păpuşa cirque). The Galeşul cirque tive mountain units of Romania, the Re- velopment of Pleistocene glaciation in reaches the maximum depth of 530 m tezat Mountains, with special attention the Romanian Carpathians are extreme- and the maximum length of 1975 m, to the glacial cirques and valleys. Some ly little known, we present this prob- and the Zănoaga-Judele glacial cirque morphometric elements have been used lem for one of the most representative complex reaches 3.5 km breadth. to analyse the specific way in which the mountain units in Romania, the Retezat Following the orientation of the gla- glaciers have modelled the relief of Re- Mountains. cial cirques and valleys - situated fur- tezat Mountains - the surface area, the The Retezat Mountains are situated ther on the glacial cirques - in the Re- perimeter and circularity index for gla- on the west side of the Southern Car- tezat Mountains, (fig. 1) 64.5 % present cial cirques and depth, valley top width pathians, or the Transylvanian Alps, be- a Northern general orientation (N, NW, and form ratio for glacial valleys, as well longing to the Retezat - Godeanu moun- NE) and 35.5 % present a southern one as the relations between them expressed tain group (fig. 5a), reaching a maxi- (S,SW, SE). Certain morphographic and by regression equations. Assimilating the mum height of 2509 m a.s.l. in Peleaga morphometric features like the form on longitudinal profile of the cirques of a Peak. The whole area extends over 453 the plane, the planimetric form and the logarithmic curve y = k(1-x)e-x that km2, but the relief situated in the alpine N describes the concavity of the longitudi- zone (over 1800 m a.s.l.) represents 27 % NNW NNE nal profile, we found together with the of the surface. As far as geology is con- NW NE known values 0.5, 1 and 2 of the con- cerned, the main characteristic of Retez- stant k, that describes the concavity of at Mountains is given by the presence WNW ENE the longitudinal profile, there are cirques in the central area of the Retezat gran- that need the new value 1.5. The geo- itoid syntectonic body, surrounded at morphological mapping has allowed a re- its edges by crystalline schists, repre- W E construction of the development of the sented especially by amphibolites and Pleistocene glaciation in this mountain gneisses. 10 ESE area. In the Lolaia phase, (Riss II), the The first observations of the glacial WSW 15 maximum phase, the glaciers occupied nature of the relief, belonging to Lehm- 20 SE 25 % of the surface of these mountains, ann (1885), were disputed by von Inkey SW 25 SSW SSE reach down to 1035-1100 m.a.s.l., and (1892), but E. de Martonne (1907) anal- 30% the altitude of the perennial snow limit ysed minutely the morphology of South- is placed at 1646 m, the longest glacier, ern Carpathians, the glacial relief being Fig. 1 Orientation of the glacial cirques Lăpuşnicu Mare having 18.1 km. The presented as an unchallenged morpho- and valleys in the Retezat Mountains. last glaciers existed in the Younger logical certainty. sizes of the rock-walls, their slope and Dryas (Beagu phase) in which there were the slope of the floor of the cirque, the only very small lens shaped glaciers, only Aspects of the Glacial form of the transversal and longitudinal in the cirques situated at an altitude of profiles are elements which make pos- over 2150 m. Relief sible the differentiation of some distinct Glacial relief dominates the geomorpho- types of cirques and reflect certain mor- logical landscape of the Retezat Moun- phogenetical characteristics. For exam- tains. The central part of the massif ple, taking into consideration the form with glacial cirques and valleys, peaks on the plane in the Retezat Mountains, and sharpened ridges, grouped togeth- there are all the type of cirques quoted er into two gipfelflur levels, creates a in literature (Benn and Evans, 1998). Tak- typical alpine landscape called “Făgăraș ing into account three representative type relief” by Romanian geomorphol- morphometric and morphographic ele- ogists. In fact, the glacial cirques and ments, the surface (S), the perimeter (P) valleys are the most representative land- and circularity index (CI = 4 S/P2), and 2 * Petru Urdea, West University of forms of the glacial morphogenesis in their variations, (S max. = 2.1 km , S min 2 Timişoara, Dept. of Geography, B-dul. the Southern Carpathians. In area ad- = 0.12 km , P max. = 7.4 km, P min. 2 km, V.Parvan 4, 1900 -Timişoara, Romania, jacent to the central zone, the glacial CI max. = 1.51, CI min. = 0.33 ), we estab- [email protected] cirques and valleys are moulded in the lished that the relations between these 4 pzc Urtdea, P. morphometrical elements being defined nal profile, there are cirques that need orthocline cirques (e.g. Lazăru, Gruniu, by the following equations: the new values 1.5 (fig. 3). Taking into ac- Văcarea). Following the azimuthal and count the aspect of the longitudinal pro- height distribution of the cirques differ- CI = 1.206 - 0.091 P (r = 0.366) file and the morphogenetic effect of the entiated by the value of k (fig. 3a), one CI = 1.039 - 0.119 S (r = 0.209) ice rotational movement (Haynes, 1968), may notice that, for example, the major- Because “r” has small values, this Table 1 Some morphometric data of glacial cirques in the Retezat Mountains suggest a very limited dependence of the circularity index in rapport with the surface and of the perimeter of the gla- cial cirques. It has also been followed other mor- phometrical elements as length (L), width (W), depth (D), L/W ratio, L/D ratio and D/W ratio, their values (Table 1) being able to be compared with the specific ones for Bendor Range - Bridge River District(British Columbia) (Evans, 1974), Swedish Lapland (Vilborg, 1977), Central Sweden (Vilborg, 1984), Austrian Alps and Highland of Britain (Embleton and Hamann, 1988; Evans and Cox, 1995). Fol- lowing, for example, the rapartition on classes of values of the cirques width, 26 of them (56.5 %) had the width between 500 and 1000 m (fig. 2), the situation re- sembling those from the Scandinavian Mountains (Rudberg, 1994). Starting from the comparison of the longitudinal profile of the cirques with a logarithmic curve of the form y = k(1- x)e-x (Haynes, 1968), for the cirques in the Retezat Mountains together with the values 0.5, 1 and 2 of the constant k, that describes the concavity of the longitudi- 60 % 50 40 30 20 10 Fig. 3 Logarithmic curves fitted to longitudinal profiles of the cirques from Retezat Mts.; a. altitudinal and azimuthal distribution of the cirques differentiated by the value of k. the values of k of 2 and 1.5 indicate just ity of the cirques with k = 2 are situated 0 the increased efficiency of the glacial ero- at over 2000 m a.s.l. and oriented north. m m m sion even in harder rocks, represented In order to estimate the asymmetry m especially by granites and granodiorites. of the Pleistocene glaciation in this part 500 m 000 It is revealed that the small values char- of the Carpathians, we proceeded to the acterize either the cirques situated at construction of a cumulative vector dia- 000-1 500-2000 > 2000 1 < 500 500-1 1 lower altitudes, affected by smaller gla- gram (Evans, 1969, 1977). We can find in cial phases (e.g. Buta, Pustnicu, Radeşu this way that the length of resultant vec- Fig. 2 The histograme of width of glacial Mic), or cirques situated in the area of tor has the value of 10.6, the azimuth of cirque in the Retezat Mountains. crystalline schists, and with a status of resultant vector has the value of 35° and 5 pzc the strength of resultant vector is 23 % close value to the minimal ones from constituted glaciers were large (Table 2). (fig. 4). According to Evans’ suggestions Beartooth Mts. in the Rocky Mountains The Lăpuşnicu Mare glacier, the biggest for interpretation, with this value, the (Graf, 1970). Consequently the values de- in the Retezat Mountains and maybe Retezat Mountains would belong to the crease from upstream to downstream, in all the Romanian Carpathians had a areas with weakly asymmetric manifes- that is from the sectors shaped in sever- length of 18.1 km and extended over an tation of the glacial phenomenon. In al glacial stages to the lower ones, affect- area of 40.1 km2. It was formed by the our opinion, this situation is due to the ed by a single glacial stage.
Recommended publications
  • Climatic Implications of Cirque Distribution in the Romanian Carpathians: Palaeowind Directions During Glacial Periods
    JOURNAL OF QUATERNARY SCIENCE (2010) Copyright ß 2010 John Wiley & Sons, Ltd. Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/jqs.1363 Climatic implications of cirque distribution in the Romanian Carpathians: palaeowind directions during glacial periods MARCEL MIˆNDRESCU,1 IAN S. EVANS2* and NICHOLAS J. COX2 1 Department of Geography, University of Suceava, Suceava, Romania 2 Department of Geography, Durham University, Durham, UK Mıˆndrescu, M., Evans, I. S. and Cox, N. J. Climatic implications of cirque distribution in the Romanian Carpathians: palaeowind directions during glacial periods. J. Quaternary Sci., (2010). ISSN 0267-8179. Received 10 May 2009; Revised 23 October 2009; Accepted 2 November 2009 ABSTRACT: The many glacial cirques in the mountains of Romania indicate the distribution of former glacier sources, related to former climates as well as to topography. In the Transylvanian Alps (Southern Carpathians) cirque floors rise eastward at 0.714 m kmÀ1, and cirque aspects tend ENE, confirming the importance of winds from some westerly direction. There is a contrast between two neighbouring ranges: the Fa˘ga˘ras¸, where the favoured aspect of cirques is ENE, and the Iezer, where the tendency is stronger and to NNE. This can be explained by the Iezer Mountains being sheltered by the Fa˘ga˘ras¸, which implies precipitation-bearing winds from north of west at times of mountain glaciation. Palaeoglaciation levels also suggest winds from north of west, which is consistent with aeolian evidence from Pleistocene dunes, yardangs and loess features in the plains of Hungary and south- western Romania. In northern Romania (including Ukrainian Maramures¸) the influence of west winds was important, but sufficient only to give a northeastward tendency in cirque aspects.
    [Show full text]
  • FIELD TRIP 1 – Duration 3 Days
    FIELD TRIP 1 – duration 3 days. Transportation: bus Tuesday August 26, 2014 - Thursday August 28, 2014 IGCP609 Field trip on Cretaceous cyclic sedimentation in the Eastern Carpathians. Lower Cretaceous Urgonian/platform facies, Lower Cretaceous black shales Deep-water sections with Cretaceous cyclic CORBs Degree of difficulty and weather: low, most of the stops are beside or near roads, although a couple of short (less than 1 km) hikes will be involved. Sturdy footwear is recommended. First day 26th of August Bucharest-Focsani-Lepsa Outcrops displaying Lower Cretaceous black shales, followed by Albian up to Coniacian red shales will be examined in the Putna Valley Basin (Marginal Fold Nappe, Vrancea Halfwindow). Albian black shales and red shales at Lepsa Turonian red shales in Putna Valley Overnight in Lepsa Second day 27th of August Lepsa-Covasna-Cernatu-Brasov-Bran-Dambovicioara Covasna Valley: mid Cretaceous black shales and red shales; mid-Cretaceous anoxic events; Upper Cretaceous red variegated marlstones (Outer Moldavides, Tarcau Nappe). Mid Cretaceous red shales Upper Cretaceous red marlstones Cernatu Valley: Albian turbidites, followed by Upper Albian dark grey shales and uppermost Albian-lowermost Cenomanian red shales, including OAE1d. Visit of the medieval Braşov town. Braşov known as Kronstadt in German óor Brass in Hungarian is the 7th largest city in Romania. The town is located almost in the centre of Romania (176 km from Bucharest), being surrounded by the Carpathian Mountains. The city provides a mix of wonderful mountain scenery in the nearby Poiana Braşov (a renown winter resort) and medieval history with German influences in the old town. Small outcrops of Urgonian rocks could be seen in the town.
    [Show full text]
  • Water Quality Survey of Streams from Retezat Mountains (Romania)
    JOURNAL OF ENVIRONMENTAL GEOGRAPHY Journal of Environmental Geography 9 (3–4), 27–32. DOI: 10.1515/jengeo-2016-0009 ISSN: 2060-467X WATER QUALITY SURVEY OF STREAMS FROM RETEZAT MOUNTAINS (ROMANIA) Mihai-Cosmin Pascariu1,2, Tiberiu Tulucan3,4, Mircea Niculescu5, Iuliana Sebarchievici2, Mariana Nela Ștefănuț2* 1”Vasile Goldiş” Western University of Arad, Faculty of Pharmacy, 86 Liviu Rebreanu, RO-310414, Arad, Romania 2National Institute of Research & Development for Electrochemistry and Condensed Matter – INCEMC Timișoara, 144 Dr. Aurel Păunescu-Podeanu, RO-300569, Timișoara, Romania 3”Vasile Goldiș” Western University of Arad, Izoi-Moneasa Center of Ecological Monitoring, 94 Revoluției Blvd., RO-310025, Arad, Romania 4Romanian Society of Geography, Arad subsidiary, 2B Vasile Conta, RO-310422, Arad, Romania 5University Politehnica Timișoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Pârvan Blvd., RO- 300223, Timișoara, Romania *Corresponding author, e-mail: [email protected] Research article, received 3 July 2016, accepted 14 November 2016 Abstract The Retezat Mountains, located in the Southern Carpathians, are one of the highest massifs in Romania and home of the Retezat National Park, which possesses an important biological value. This study aimed at the investigation of water quality in creeks of the Southern Retezat (Piule-Iorgovanul Mountains) in order to provide information on pollutants of both natural and anthropogenic origin, which could pose a threat for the human health. Heavy metal and other inorganic ion contents of samples were analyzed with on-site and laboratory measurements to estimate water quality. The samples were investigated using microwave plasma - atomic emission spectrometry to quantify specific elements, namely aluminium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, nickel, lead and zinc.
    [Show full text]
  • Limnological Changes in South Carpathian Glacial Lakes
    This manuscript is contextually identical with the following published paper: Tóth M, Buczkó K, Specziár A, Heiri O, Braun M, Hubay K, Czakó D, Magyari EK (2018) Limnological changes in South Carpathian glacier-formed lakes (Retezat Mountains, Romania) during the Late Glacial and the Holocene: A synthesis. Quaternary International, 477, pp. 138-152. The original published PDF available in this website: https://www.sciencedirect.com/science/article/pii/S1040618216308321?via%3Dihub Limnological changes in South Carpathian glacier-formed lakes (Retezat Mountains, Romania) during the Late Glacial and the Holocene: a synthesis Mónika Tóth1,2*, Krisztina Buczkó3, András Specziár1, Oliver Heiri2, Mihály Braun4, Katalin Hubay4, Dániel Czakó5, Enikő K. Magyari6 1 MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kuno 3, H-8237 Tihany, Hungary 2 Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland 3 Department of Botany, Hungarian Natural History Museum, P.O. Box 222, H-1476 Budapest, Hungary 4 Herteleni Laboratory of Environmental Studies, Institute for Nuclear Research of the HAS, Bem tér 18/C, H-4026 Debrecen, Hungary 5School of Earth Sciences and Geography, Kingston University, Penrhyn road, Kingston Upon Thames, Surrey, KT1 2EE, UK 6 MTA-MTM-ELTE Research Group for Paleontology, Pázmány Péter stny 1/C, H-1117 Budapest, Hungary *Correspondent author: Mónika Tóth; MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kuno 3, H-8237 Tihany, Hungary; E-mail: [email protected] Abstract Remains of aquatic biota preserved in mountain lake sediments provide an excellent tool to study lake ecosystem responses to past climate change.
    [Show full text]
  • Forest Stands from Accumulation and Natural Lakes Slopes from the Southern Carpathians
    https://doi.org/10.15551/pesd2020141016 PESD, VOL. 14, no. 1, 2020 FOREST STANDS FROM ACCUMULATION AND NATURAL LAKES SLOPES FROM THE SOUTHERN CARPATHIANS Dincă Lucian1, Voichița Timiș-Gânsac2, Breabăn Iuliana Gabriela3 Keywords: lakes, forests, exposition, field inclination, forest soils. Abstract. The Southern Carpathians are situated in the central part of Romania, between Prahova Valley and the Danube, being the highest and most massive mountains from the Romanian Carpahtians. The relief and vegetation are similar to the Alps. These mountains conserve the most representative glaciar relief from Romania, with cuaternar glaciar tracks. Some of its peaks, namely Moldoveanu, Negoiu, Parângul Mare and Peleaga exceed 2500 m. From its total 217.889 ha occupied by forests with water protection functions, the forests located on lake slopes occupy 9.746 ha, namely 5%. The forests from this area are composed of spruce (Picea abies L.H. Karst) and beech (Fagus sylvatica L.), accompanied by other species such as birch (Alnus glutinosa, L., Gaertn.) and pine (Pinus sp.). From the point of view of the field’s orography, these forests are located on lands with an middle inclination on all exposition categories, but predominantly on the North-East, one at an average altitude of 1050 m. From the point of view of site conditions, the characteristic flora type is Asperula-Dentaria, while the main soils are dystric cambisol and eutric cambisol. 1. Introduction The Southern Carpathians are situated within Prahova Valley in the east, and Timiş-Cerna valleys in the west, Getic Subcarpathians and Mehedinți Plateau in the south and Transylvania’s basin in the north.
    [Show full text]
  • “Just Transition” - Ideas, Projects and Finance for Life After Coal in Jiu Valley West Region (RO42)
    Smart strategies for the transition in coal intensive regions Project No: 836819 “Just Transition” - Ideas, projects and finance for life after coal in Jiu Valley West Region (RO42) - hybrid (both virtual and live physical) event - Thursday, 22nd of October 2020 | Petroșani, ROMÂNIA Event organisers Academic partner WHY TO ATTEND ▪ Organising this event in Jiu Valley will help enabling the energy transition process by merging investment / financing opportunities with potential project promoters / developers and individual projects / investments ideas; ▪ This event might be considered a first step in developing the ability, strength and sustainability of the local administration, businesses, academia and NGOs; ▪ Interactive session will be organised, allowing participants to ask questions and contribute to a constructive dialogue, thus motivating the local actors to action and empowering them to engage with the financial aspects and policies of the energy transition; ▪ The necessary background to implement Jiu Valley ITI (Integrated Territorial Investment) mechanism, including local and regional barriers, and needs will be identified; ▪ Good and proficient connections can be developed with experts/entities to assist local stakeholders’ actions, plan and cultivate future strategic relationships. CHALLENGES The following key topics will be addressed: ▪ Ongoing projects/initiatives in Jiu Valley; ▪ Needs, barriers and opportunities in Jiu Valley in terms of sustainable energy technologies, safe & clean environment and labour market & social
    [Show full text]
  • This Manuscript Is Contextually Identical with the Following Published Paper: Vincze Ildikó; Orbán Ildikó; Birks Hilary H; P
    This manuscript is contextually identical with the following published paper: Vincze Ildikó; Orbán Ildikó; Birks Hilary H; Pál Ilona; Finsinger Walter; Hubay Katalin; Marinova Elena; Jakab Gusztáv; Braun Mihály; Biró Tamás; Tóth Mónika; Dănău Claudia; Ferencz Iosif V; Magyari Enikő K (2017) Holocene treeline and timberline changes in the South Carpathians (Romania): Climatic and anthropogenic drivers on the southern slopes of the Retezat Mountains. - HOLOCENE 27: (11) pp. 1613-1630. DOI 10.1177/0959683617702227 The original published PDF available in this website: http://journals.sagepub.com/doi/10.1177/0959683617702227 Holocene treeline and timberline changes in the South Carpathians Romania): Climatic and anthropogenic drivers on the southern slopes of the Retezat Mountains Ildikó Vincze1,2, Ildikó Orbán3,4, Hilary H. Birks3, Ilona Pál1,2, Walter Finsinger5, Katalin Hubay6, Elena Marinova7, Gusztáv Jakab8,9, Mihály Braun6, Tamás Biró10, Mónika Tóth11,12, Claudia Dănău13, Iosif V Ferencz14, Enikő K. Magyari1,15 1 MTA-MTM-ELTE Research Group for Paleontology, Hungary 2 Department of Physical and Applied Geology, Eötvös Loránd University, Hungary 3 Department of Biology and Bjerknes Centre for Climate Research, University of Bergen, Norway 4 Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Hungary 5 Palaeoecology, ISE-M (UMR 5554 CNRS/UM/EPHE), France 6 Hertelendi Laboratory of Environmental Studies, Institute for Nuclear Research, Hungarian Academy of Sciences, Hungary 7 Center for Archaeological
    [Show full text]
  • Jiu Valley Microregion – an Area of Economic, Tourist-Carboniferous- Industrial Interest
    Advances in Environmental Science and Energy Planning Jiu Valley Microregion – an area of economic, tourist-carboniferous- industrial interest BĂDĂU ADRIAN-BOGDAN Technological Department “Retezat” Technologic High School of Uricani 16 Republicii St., Uricani, Hunedoara ROMANIA [email protected] Abstract: -Petroşani coal field represents an area that benefits of two great values: the coal fields and the relief, formed by the mountains that surround the depression. In the event the coal fields will get exhausted, the other natural wealth – the relief – available in the micro region, is inexhaustible, being needed to be exploited at its true potential. A way of exploiting the natural area is by developing the industrial tourism closely related to the classical-conventional one, therefore by developing these tourism forms, the Jiu Valley Coal Field can become an area of economic, tourist-carboniferous-industrial interest. Key-Words: technological tourism, reconstruction, tourist sector, the tower of the skip shaft, museum storage of explosive, remaining mining buildings 1 Introduction and also as tourist endowment is Straja, followed by The area and the geography of Petrosani Coal Field Parâng and Pasul Vulcan. fostered during the time and also nowadays many 6) Sport tourism is practiced throughout the coal complementary forms of tourism. The forms belong field, because of the rich hunting and fishing. to the classical-conventional tourism. Another form of the extreme sport tourism, rock Depending on the tourist motivation and destination, climbing, is practiced in the western part of the in Jiu Valley micro region, the following forms of region, especially in the area of Uricani town, in tourism can be practiced: Retezatmountains.
    [Show full text]
  • Report on the Current Role of Coal Mining and Related Policies in the TRACER Target Regions
    Smart strategies for the transition in coal intensive regions Project No: 836819 Report on the current role of coal mining and related policies in the TRACER target regions WP 3 – Tasks 3.1 & 3.2 / D 3.1 September 2019 TRACER Current role of coal mining and related policies Authors: Lulin Radulov, BSERC, Bulgaria Anton Ivanov, BSERC, Bulgaria Angel Nikolaev, BSERC, Bulgaria Vera Genadieva, BSERC, Bulgaria Jan Frouz, CU, Czech Republic Markéta Hendrychová, CULS, Czech Republic Dirk Knoche, FIB, Germany Anne Rademacher, FIB, Germany Rainer Schlepphorst, FIB, Germany Charalampos Malamatenios, CRES, Greece Georgia Veziryianni, CRES, Greece Marcin Pietrzykowski, UAK, Poland Marcin Chodak, UAK, Poland, Justyna Likus-Cieślik, UAK, Poland Marek Pająk, UAK, Poland Bartłomiej Woś, UAK, Poland Sabina Irimie, AISVJ, Romania Emilia Dunca, AISVJ, Romania Marian Dobrin, ISPE - PC, Romania Gloria Popescu, ISPE - PC, Romania Miodrag Zivotic, ENTEL, Serbia Miodrag Mesarovic, ENTEL, Serbia Jasmina Mandic-Lukic, ENTEL, Serbia Igor Volchyn, Ukraine Dmytro Bondzyk, Ukraine Danylo Cherevatskyi, Ukraine Trygve Rees, Welsh Government, Wales Editors: Lulin Radulov, BSERC, Bulgaria Angel Nikolaev, BSERC, Bulgaria Vera Genadieva, BSERC, Bulgaria Reviewers: Rita Mergner, WIP, Germany Rainer Janssen, WIP, Germany Contact: Black Sea Energy Research Centre (BSERC) Lulin Radulov E-mail: [email protected], Tel: +359 2 9806854 7, Viktor Grigorovich Str. 1606 SoFia, Bulgaria www.bserc.eu This project has received Funding From the European Union’s Horizon 2020 research and innovation programme under grant agreement No 836819. The sole responsibility For the content oF this report lies with the authors. It does not necessarily reFlect the opinion oF the European Union. Neither the INEA nor the European Commission are responsible For any use that may be made oF the inFormation contained therein.
    [Show full text]
  • Munţii Piule-Iorgovanu. Studiu Geomorfologic
    “Babeş-Bolyai” University Cluj-Napoca Faculty of Geography PhD Thesis PIULE – IORGOVANU MOUNTAINS Geomorphologic study Summary Advisor: Professor Virgil Surdeanu, PhD PhD student: Mircea Ardelean 2010 TABLE OF CONTENTS CHAPTER I – INTRODUCTION I. 1. Geographic position and limits ........................................................ 3 I. 2. Background research ....................................................................... 5 CHAPTER II – GEOLOGIC SETTING AND PALEOGEOGRAPHIC EVOLUTION II. 1. Lithology and structure .................................................................. 8 II. 2. Paleogeographic evolution ............................................................. 17 CHAPTER III – PRESENT DAY MORFOLOGIC CONDITIONS ............... 21 CHAPTER IV – MORFOGRAPHY AND MORPHOMETRIC ANALYSIS IV. 1. Morfography ................................................................................. 29 IV. 2. Morfometry ................................................................................... 34 CHAPTER V – GENETIC TYPES OF LANDFORMS V. 1. Structural and petrographic landforms V. 1. 1. Structural landforms ................................................................... 52 V. 1. 2. Petrographic landforms Landforms developed on cristaline schists ..................... 61 Landforms developed on limestone ................................ 62 V. 2. Denudational landforms ................................................................. 120 V. 3. Fluvio-torrential landforms ….......................................................
    [Show full text]
  • The Emergence of the Jiu Valley Coal Basin (Romania) - a Consequence of the Industrial Revolution
    Annals of the University of Petroşani, Economics, 9(3), 2009, 53-80 53 THE EMERGENCE OF THE JIU VALLEY COAL BASIN (ROMANIA) - A CONSEQUENCE OF THE INDUSTRIAL REVOLUTION MIRCEA BARON, OANA DOBRE-BARON * ABSTRACT: The Jiu Valley, or Petrosani coal basin, is an important economic region of Romania, situated at the springs of the Jiu River, between the Eastern Carpathians. It is a geographical area that emerges and develops from a social, economic and cultural point of view after mid-nineteenth century, as a result of the industrial revolution. The influence of the industrial revolution on this mountain area will occur on two coordinates: the extraction of the most important natural assets in the underground - coal - the energy resource that underlies the development of the first stage of the industrial revolution; the implementation of technical methods and technologies without which the coal deposits in the Jiu Valley could not be turned to account by primary extraction and processing. As a Transylvanian region, it will be part of the Habsburg Empire by the end of 1918 - the Austrian - Hungarian Empire since 1867 - and the industrial revolution, the political and economic interests of the state and of private capital will boost development. The state will be involved by developing a stimulating legislation - primarily the General Mine Law of 23 May 1854 - and through direct investment, and private capital by mining companies: Mine şi Cuptoare Company in Braşov; "Salgótarján"; "Uricani- Valea Jiului", "Valea Jiului de Sus". Work force will come from different parts of the Empire - which will trigger a population increase from 6670 inhabitants in 1854 to 50,015 inhabitants in 1910.
    [Show full text]
  • Hațeg Country Dinosaurs Geopark
    HAȚEG COUNTRY DINOSAURS GEOPARK The Hațeg Country Dinosaurs Geopark is located in the central part of Romania, in a very fertile region, surrounded by mountains from all directions. These natural features along with the cultural background make Hațeg Country a miniature Transylvania. The region is called a “country” from the Latin word “terra”, used in all the medieval documents to show the special character of this land. Protected by the mountains, the Romanian community here resisted the Hungarian conquest and managed to keep its forms of organization. The Geopark covers an area of 102.392 hectares, including a town (the town of Hațeg – 13000 inhabitants) and 10 communes, the total population of the Geopark area is about 39000 people. Besides the very picturesque landscapes, deep gorges, caves, alpine forests, meadows, orchards and crops the region hosts remains of the human history from Paleolithic to Roman Antiquity and from the Middle-Age to the Modern time. The most important sites are the ruins of the ancient capital of the Dacia province of the Roman Empire at Sarmizegetusa Ulpia Traiana, the numerous medieval churches among which the magnificent Densus church, a master piece of the Mid Age architecture, as well as the remains of the more recent castles and old nobles’ mansions. The region is world-wide known for its “dwarf dinosaurs” from the end of Cretaceous, 72-65 million years ago. This special paleontological heritage has inspired the name of the Geopark. Fifteen dinosaur species, both herbivorous and carnivorous from the region, were described, based on skeletal remains found in fossil fluvial and lake deposits.
    [Show full text]