Copper in Cross-Coupling Reactions Copper in Cross-Coupling Reactions
Total Page:16
File Type:pdf, Size:1020Kb
Mechanistic Studies in Copper Catalysis Jen Alleva May 1st 2013 Timeline of Achievements in Copper Chemistry General Historical Overview first cross-couplings Ullmann–Goldberg 1869 Glaser 1903 Glaser, C. Ann. D. Chemie U. Pharm, 1869, 2, 137–171 Timeline of Achievements in Copper Chemistry General Historical Overview first cross-couplings Ullmann–Goldberg 1869 Glaser 1903 Ullman, F. Ber. 1903, 36, 2382–2384 Goldberg, I. Ber. 1906, 39, 1691–1692 Timeline of Achievements in Copper Chemistry General Historical Overview first cross-couplings Ullmann–Goldberg 1869 1923 1952 Glaser 1903 Reich Gilman synthesis of first copper organometallic reagents Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem, 1952, 17, 1630–1634 Timeline of Achievements in Copper Chemistry General Historical Overview first cross-couplings "Click" Chemistry Ullmann–Goldberg Huisgen 1869 1923 1952 2001 Glaser 1903 Reich Gilman 1961 Sharpless synthesis of first copper organometallic reagents Huisgen, R. Proc. Chem Soc., 1961, 357–396 Timeline of Achievements in Copper Chemistry General Historical Overview first cross-couplings "Click" Chemistry Ullmann–Goldberg Huisgen 1869 1923 1952 1998 2001 Glaser 1903 Reich Gilman 1961 Sharpless synthesis of first copper Chan-Evans-Lam organometallic reagents Cu C–N couplings Huisgen, R. Proc. Chem Soc., 1961, 357–396 Copper in Cross-Coupling Reactions Copper in Cross-Coupling Reactions RO OR B X Nu X O X HN O X = N, O, S X = halide nucleophile X = halide oxidative coupling standard cross-coupling oxidative coupling X Nu X Chan-Evans-Lam Ullmann-Goldberg "Aromatic Glaser-Hay" Electronic Properties of Copper E1/2= 0.16V E1/2= 2.4V CuI CuII CuIII d10 d9 d8, metal cation isoelectronic with isoelectronic with Ni(0) Pd(II) * Vs. SCE in MeCN, Bratsch, S. G. J. Phys. Chem. Ref. Data 1989, 18, 1–21 Electronic Properties of Copper E1/2= 0.16V E1/2= 2.4V CuI CuII CuIII d10 d9 d8, metal cation isoelectronic with isoelectronic with Ni(0) Pd(II) ■ forms shorter bonds than Pd ■ harder Lewis acidity than Pd ■ higher affinity for O, N ligands ■ smaller coordination shell can not accomodate large ancillary ligands Beletskaya, I. P; Cheprakov, A. V. Organometallics 2012, 31, 7753–7808 * Vs. SCE in MeCN, Bratsch, S. G. J. Phys. Chem. Ref. Data 1989, 18, 1–21 Electronic Properties of Copper E1/2= 0.16V E1/2= 2.4V CuI CuII CuIII d10 d9 d8, metal cation isoelectronic with isoelectronic with Ni(0) Pd(II) ■ forms shorter bonds than Pd ■ highly electrophilic and unstable ■ harder Lewis acidity than Pd ■ potent oxidizer ■ higher affinity for O, N ligands ■ requires highly stabilizing ligands ■ smaller coordination shell can not accomodate large ancillary ligands Br N H CuIII H N N R Beletskaya, I. P; Cheprakov, A. V. Organometallics 2012, 31, 7753–7808 * Vs. SCE in MeCN, Bratsch, S. G. J. Phys. Chem. Ref. Data 1989, 18, 1–21 Electronic Properties of Copper E1/2= 0.16V E1/2= 2.4V CuI CuII CuIII d10 d9 d8, metal cation isoelectronic with isoelectronic with Ni(0) Pd(II) ■ forms shorter bonds than Pd ■ highly electrophilic and unstable ■ harder Lewis acidity than Pd ■ potent oxidizer ■ higher affinity for O, N ligands ■ requires highly stabilizing ligands ■ smaller coordination shell can not ■ unstable towards the reverse accomodate large ancillary ligands reductive elimination ■ can not take part in ligand exchange ■ requires the nucleophile to be in the coordination sphere prior to oxidative addition Beletskaya, I. P; Cheprakov, A. V. Organometallics 2012, 31, 7753–7808 * Vs. SCE in MeCN, Bratsch, S. G. J. Phys. Chem. Ref. Data 1989, 18, 1–21 Cross-Coupling Classifications regular cross-coupling: transition metal mediated nucleophilic substitution H R1 ML R1 X N B X N BH R2 R3 R2 R3 organic N–H base electrophile nucleophile Cross-Coupling Classifications regular cross-coupling: transition metal mediated nucleophilic substitution H R1 ML R1 X N B X N BH R2 R3 R2 R3 organic N–H base electrophile nucleophile R1 X H PdII N R R R1 X 2 3 B Pd0/PdII Pd0 R2 R1 N R PdII 3 R1 N BH R2 R3 Cross-Coupling Classifications regular cross-coupling: transition metal mediated nucleophilic substitution H R1 ML R1 X N B X N BH R2 R3 R2 R3 organic N–H base electrophile nucleophile R R X 2 1 H I PdII N H N Cu R R N R1 X 2 3 R3 R2 R3 B R1 X Pd0/PdII CuI/CuIII R Pd0 R2 2 I N CuIII R1 N R Cu II 3 R Pd 3 R1 R1 R 1 N N BH R2 R3 R2 R3 nucleophile plays the role of ancillary ligand in CuI/CuIII Cross-Coupling Classifications oxidative cross-coupling: transition metal mediated coupling of two nucleophiles H R1 ML R1 M N M N M R2 R3 R2 R3 –2e– organic N–H nucleophile nucleophile Cross-Coupling Classifications oxidative cross-coupling: transition metal mediated coupling of two nucleophiles H R1 ML R1 M N M N M R2 R3 R2 R3 –2e– organic N–H nucleophile nucleophile R M H 1 N PdII R R R1 M 2 3 R2 II IV Pd /Pd R1 N R3 PdII PdII O2 R2 R N R1 1 R PdIV 3 N R2 R3 Cross-Coupling Classifications oxidative cross-coupling: transition metal mediated coupling of two nucleophiles H R1 ML R1 M N M N M R2 R3 R2 R3 –2e– organic N–H nucleophile nucleophile R2 H N II H Cu R1 M N N R R R R1 X PdII R R 2 3 3 R1 M 2 3 R II 2 Cu R2 PdII/PdIV I II III II R1 N R Cu /Cu /Cu N Cu II 3 II Pd R Pd 3 R1 O2 O2 CuI R2 CuII R N R 1 R R2 1 IV 3 Pd N III N R1 Cu R2 R3 R N 3 R1 R2 R3 Cross-Coupling Classifications inverse or Umpolung cross-coupling: transition metal mediated electrophilic substitution LG R1 ML R1 X N LG N R2 R3 R2 R3 organic N–H nucleofugal leaving nucleophile electrophile group Cross-Coupling Classifications inverse or Umpolung cross-coupling: transition metal mediated electrophilic substitution LG R1 ML R1 X N LG N R2 R3 R2 R3 organic N–H nucleofugal leaving nucleophile electrophile group R2 LG R N LG 3 II N Pd R2 R3 R1 X Pd0/PdII 0 Pd R2 R1 N R PdII 3 R1 N R2 R3 Cross-Coupling Classifications inverse or Umpolung cross-coupling: transition metal mediated electrophilic substitution LG R1 ML R1 X N LG N R2 R3 R2 R3 organic N–H nucleofugal leaving nucleophile electrophile group R2 LG N LG R3 PdII I N R1 Cu X R R R1 X LG 2 3 R1 X N R2 R3 Pd0/PdII CuI/CuIII R Pd0 R 2 2 III CuI N Cu R1 N R3 R PdII 3 R1 R1 R 1 N N R2 R3 R2 R3 Copper in Cross-Coupling Reactions RO OR B X Nu X O X HN O X = N, O, S X = halide nucleophile X = halide oxidative coupling standard cross-coupling oxidative coupling X Nu X Chan-Evans-Lam Ullmann-Goldberg "Aromatic Glaser-Hay" Mechanistic Studies in Copper Catalysis Shannon Stahl Xavi Ribas Ted Cohen Copper in Cross-Coupling Reactions RO OR B X Nu X O X HN O X = N, O, S X = halide nucleophile X = halide oxidative coupling standard cross-coupling oxidative coupling X Nu X Chan-Evans-Lam Ullmann-Goldberg "Aromatic Glaser-Hay" Chan-Evans-Lam Coupling oxidative cross-coupling OH HO OH B O 2 equiv. Cu(OAc)2 4Å mol sieves, O 2 Me EtOAc Me heteroatom boronic acid diaryl ether nucleophile Chan D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933. Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937. Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. T., Combs, A. Tetrahedron Lett. 1998, 39, 2941. Chan-Evans-Lam Coupling oxidative cross-coupling OH HO OH B O 2 equiv. Cu(OAc)2 4Å mol sieves, O 2 Me EtOAc Me heteroatom boronic acid diaryl ether nucleophile R2 H N CuII N R X R2 R3 R3 1 II Cu R2 CuI/CuII/CuIII N CuII R 3 R1 can be made catalytic with an O2 added oxidant CuI CuII CEL is stoichiometric in CuII R2 N III R1 Cu R N 3 R1 R2 R3 Chan-Evans-Lam Coupling select catalytic methods HO OH H B N 20 mol% [Cu(OH)•TMEDA]2Cl2 N N 72% CH Cl , O , r.t. N 2 2 2 Collman, J. P.; Zhong, M. Org. Lett. 2000, 2, 1233–1236 Chan-Evans-Lam Coupling select catalytic methods HO OH H B N 20 mol% [Cu(OH)•TMEDA]2Cl2 N N 72% CH Cl , O , r.t. N 2 2 2 Si(OMe)3 1.1 equiv Cu(OAc) H 2 N NH2 61% N N TBAF, DMF, O2, r.t. O O Lam, P. S.; Deudon, S.; Hauptman, E.; Clark, C. G. Tetrahedron Lett. 2001, 42, 2427–2429 Collman, J. P.; Zhong, M. Org. Lett. 2000, 2, 1233–1236 Chan-Evans-Lam Coupling select catalytic methods HO OH H B N 20 mol% [Cu(OH)•TMEDA]2Cl2 N N 72% CH Cl , O , r.t. N 2 2 2 Si(OMe)3 1.1 equiv Cu(OAc) H 2 N NH2 61% N N TBAF, DMF, O2, r.t. O O HO OH H NH 5 mol% Cu(OAc)2 N 2 B 91% 10 mol% myristic acid 2,6-lutidine, PhMe, r.t.