Saccharide Recognition : Boronic Acids As Receptors in Polymeric Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design and Synthesis of FRET-Based Boronic Acid Receptors to Detect Carbohydrate Clustering and Development of Diacylglycerol-Ba
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2009 Design and Synthesis of FRET-Based Boronic Acid Receptors to Detect Carbohydrate Clustering and Development of Diacylglycerol-Based Lipid Probesto Investigate Lipid-Protein Binding Interactions Manpreet Kaur Cheema University of Tennessee - Knoxville Recommended Citation Cheema, Manpreet Kaur, "Design and Synthesis of FRET-Based Boronic Acid Receptors to Detect Carbohydrate Clustering and Development of Diacylglycerol-Based Lipid Probesto Investigate Lipid-Protein Binding Interactions. " Master's Thesis, University of Tennessee, 2009. https://trace.tennessee.edu/utk_gradthes/517 This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Manpreet Kaur Cheema entitled "Design and Synthesis of FRET-Based Boronic Acid Receptors to Detect Carbohydrate Clustering and Development of Diacylglycerol-Based Lipid Probesto Investigate Lipid-Protein Binding Interactions." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Chemistry. Michael Best, Major -
Contemporary Organosilicon Chemistry
Contemporary organosilicon chemistry Edited by Steve Marsden Generated on 05 October 2021, 02:13 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Contemporary organosilicon chemistry Steve Marsden Editorial Open Access Address: Beilstein Journal of Organic Chemistry 2007, 3, No. 4. School of Chemistry, University of Leeds, Leeds LS2 9JT, UK doi:10.1186/1860-5397-3-4 Email: Received: 06 February 2007 Steve Marsden - [email protected] Accepted: 08 February 2007 Published: 08 February 2007 © 2007 Marsden; licensee Beilstein-Institut License and terms: see end of document. Abstract Editorial for the Thematic Series on Contemporary Organosilicon Chemistry. The field of organosilicon chemistry has a rich and varied the 1990s, and equivalent to the number appearing in the much history, and has long since made the progression from chemical longer established field of organoboron chemistry -
1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G
j1 1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G. Hall 1.1 Introduction and Historical Background Structurally, boronic acids are trivalent boron-containing organic compounds that possess one carbon-based substituent (i.e., a CÀB bond) and two hydroxyl groups to fill the remaining valences on the boron atom (Figure 1.1). With only six valence electrons and a consequent deficiency of two electrons, the sp2-hybridized boron atom possesses a vacant p-orbital. This low-energy orbital is orthogonal to the three substituents, which are oriented in a trigonal planar geometry. Unlike carbox- ylic acids, their carbon analogues, boronic acids, are not found in nature. These abiotic compounds are derived synthetically from primary sources of boron such as boric acid, which is made by the acidification of borax with carbon dioxide. Borate esters, one of the key precursors of boronic acid derivatives, are made by simple dehydration of boric acid with alcohols. The first preparation and isolation of a boronic acid was reported by Frankland in 1860 [1]. By treating diethylzinc with triethylborate, the highly air-sensitive triethylborane was obtained, and its slow oxidation in ambient air eventually provided ethylboronic acid. Boronic acids are the products of a twofold oxidation of boranes. Their stability to atmospheric oxidation is considerably superior to that of borinic acids, which result from the first oxidation of boranes. The product of a third oxidation of boranes, boric acid, is a very stable and relatively benign compound to humans (Section 1.2.2.3). Their unique properties and reactivity as mild organic Lewis acids, coupled with their stability and ease of handling, are what make boronic acids a particularly attractive class of synthetic intermediates. -
Synthesis and Improvement of Self-Healing Boronate Ester Hydrogels
SYNTHESIS AND IMPROVEMENT OF SELF-HEALING BORONATE ESTER HYDROGELS By CHRISTOPHER CHI-LONG DENG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Christopher Chi-long Deng To friends and family and loved ones departed ACKNOWLEDGMENTS Numerous people have supported me to this point. I would like to thank all of my previous teachers throughout my education for the foundation they gave to me and the valuable work that they do for all students. I thank Dr. Yi Zhang for allowing me to work in her lab and gain valuable experience. I would also like to thank Dr. Bill Dolbier for sharing his passion for organic chemistry and assisting me in entering graduate school. Of course, I am grateful towards Dr. Brent Sumerlin for accepting me in his group. His expectations and guidance have been valuable in my scientific growth. Also, I would like to thank my committee of Dr. Ken Wagener, Dr. Stephen Miller, Dr. Adam Veige, and Dr. Anthony Brennan. I appreciate the time taken from their busy schedules and their advice over the years. I would also like to acknowledge the University of Florida, the Department of Chemistry, and the Butler Polymer Laboratory for the opportunity to pursue my doctorate and providing a supportive environment for myself and all graduate students. I am grateful to the members of the Sumerlin group. I have the most interaction with them on a daily basis, and it has been a tremendous source of support both personally and professionally. -
RSC Advances PAPER
View Article Online / Journal Homepage / Table of Contents for this issue RSC Advances Dynamic Article Links Cite this: RSC Advances, 2012, 2, 3968–3977 www.rsc.org/advances PAPER Palladium nanoshells coated with self-assembled monolayers and their catalytic properties Jun-Hyun Kim,*a Joon-Seo Park,b Hae-Won Chung,c Brett W. Bootea and T. Randall Lee*c Received 13th October 2011, Accepted 6th February 2012 DOI: 10.1039/c2ra00883a This report describes the preparation and characterization of palladium nanoshells protected with alkanethiol self-assembled monolayers (SAMs) and their application as efficient catalysts. Monodispersed silica core particles (y100 nm in diameter) were prepared and coated with a thin layer of palladium (y20 nm in thickness). Subsequently, the palladium nanoshells were treated with two separate alkanethiol adsorbates having different alkyl chain lengths: dodecanethiol (C12SH) and hexadecanethiol (C16SH). The optical properties, morphology, and chemical structure/composition of these nanoshells were thoroughly examined by ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. Additional studies revealed that these SAM-coated palladium nanoshells possessed enhanced colloidal stability in nonpolar solvents and in the solid state. Further, palladium nanoshells modified with C16SH SAM coatings were employed in the Suzuki coupling of phenylboronic acid with iodobenzene in organic solvents. Notably, these SAM-coated nanoshells afforded a greater conversion yield than that of related bare palladium nanoshells. Downloaded on 19 February 2013 Introduction palladium nanoparticles as catalysts depend largely on their size, shape, surrounding medium, and dispersion ability in organic The controlled fabrication of nanoscale metallic particles offers the solvents, which facilitates their manipulation and incorporation 1–5 opportunity to develop novel catalysts. -
Electronic Supporting Information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017 Electronic Supporting Information for Ratiometric Electrochemical Detection of Hydrogen Peroxide and Glucose by Sean Goggins,a* Ellen A. Apsey,a Mary F. Mahona and Christopher G. Frosta a Department of Chemistry, 1 South, University of Bath, Claverton Down, Bath, BA2 7AY, UK * Corresponding author: [email protected] Contents General Information ................................................................................................................................... S4 Instruments and Analysis ........................................................................................................................ S4 Materials ................................................................................................................................................. S4 Chemicals ................................................................................................................................................ S4 Electrochemistry ..................................................................................................................................... S5 Diagnostic Assays .................................................................................................................................... S5 Synthetic Routes ......................................................................................................................................... S6 Synthetic Route -
Chemistry Research Report
Contents 3 Welcome 5 Profiles 37 Publications 51 Staff and students 55 Student prizes & scholarships 58 Ruth Gall profile 60 Graduates of 2017 Front cover: Portrait of A/Prof. Ruth Gall (1923-2017), the first woman to Head the School of Chemistry at the University of Sydney, painted by local artist Dr Kate Gradwell. The School of Chemistry at the University of Sydney is one of the main centres for chemical research and education in Australia and has access to a comprehensive range of modern research and teaching facilities. The School attracts an outstanding cohort of undergraduate students including talented students from all states of Australia. It has a large cohort of both local and international postgraduate research students and offers a vibrant and world class research environment. GENERAL INFORMATION 3 WELCOME HEAD OF SCHOOL Professor Phil Gale at such conferences, reflecting both the excellence of the Head of School School of Chemistry research they are undertaking and their outstanding ability to present this to an audience. Highlights of the awards to staff and students in 2017 include the RJW Le Fèvre Memorial Prize to A/Prof Deanna D’Alessandro; Dr Ivan Kassal was the recipient of the Tall Poppy Award; A/Prof Liz New was a finalist in the 3M Eureka Prize for emerging leader in science; Prof Kate Jolliffe was awarded A.J. Birch Medal; Mr Phil Karpati was the global winner of the 2017 Undergraduate Awards - Phil was also awarded a 2017 Westpac Future Leaders scholarship; and the RACI Cornforth Medal for the best PhD thesis in Australia went to Ms Amandeep Kaur. -
Diyl Bis(Phenyl-Methanone) Via Carbonylative Coupling
Asian Journal of Chemistry; Vol. 25, No. 15 (2013), 8611-8613 http://dx.doi.org/10.14233/ajchem.2013.14863 Synthesis of Biphenyl- 4,4'-Diyl bis(phenyl-methanone) via Carbonylative Coupling 1,* 2 1,* DO-HUN LEE , JUNG-TAI HAHN and DAI-IL JUNG 1Department of Chemistry, Dong-A University, Busan 604 714, Republic of Korea 2Department of Beautycare, Youngdong University, Youngdong 370 701, Republic of Korea *Corresponding authors: Tel: +82 51 2007249; +82 51 2001053; E-mail: [email protected]; [email protected] (Received: 23 November 2012; Accepted: 26 August 2013) AJC-14008 Luminescent meterials have a major technological role for human kind in the form of application such as organic and inorganic light emitters for flat panel and flexible displays such as plasma displays, LCD displays and OLED displays. To develop a luminescent material with high colour purity, luminous efficiency and stability, we synthesized diketone by carbonylative Suzuki coupling in the presence of Pd(NHC) (NHC = N-heterocyclic carbene) complex as the catalyst. Carbonylative coupling of 4,42-diiodobiphenyl and phenylboronic acid was investigated to study in detail the catalytic ability of the Pd(NHC) complex. Reactions were carried out using both CO and metal carbonyls. Bis-(1,3-dihydro-1,3-dimethyl-2H-imidazol-2-ylidene) diiodo palladium was used as the catalytic complex. Reaction products biphenyl-4,4'-diyl bis(phenyl methanone) 3 and (4'-iodobiphenyl-4-yl)(phenyl)methanone 4 were obtained as a result of CO insertion into the palladium(II)-aryl bond. However, when pyridine-4-yl boronic acid was used in place of phenylboronic acid as the starting reagent, synthetic reaction yielding 3 and 4 were found not to occur. -
Supporting Information for Boronic Acid–DMAPO Cooperative Catalysis for Dehydrative Condensation Between Carboxylic Acids and Amines
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015 Supporting Information for Boronic Acid–DMAPO Cooperative Catalysis for Dehydrative Condensation between Carboxylic Acids and Amines Kazuaki Ishihara*†‡ and Yanhui Lu† †Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan ‡Japan Science and Technology (JST), CREST, Japan E-mail: [email protected] Contents General Methods……………………………………………………………….….……..……S2 Detailed Synthetic Procedures and Characterization of the Products…………….….…....S2 Inert Species 9…………………..………………………………….………………………....S11 Control Experiments for the Chemoselective Dehydrative Condensation of Unsaturated Carboxylic Acids………………………………………………….…....S15 References…………………………………………………………………………………….S17 1H and 13C NMR Charts of New Compounds……………………………………….……..S18 S1 Experimental section General Methods. IR spectra were recorded on a JASCO FT/IR-460 plus spectrometer. 1H NMR spectra were measured on a JEOL ECS-400 spectrometer (400 MHz) at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethysilane on the δ scale, multiplicity (s = singlet; d = doublet; t = triplet; m = multiplet), coupling constant (Hz), and integration. 13C NMR spectra were measured on a JEOL ECS-400 (100 MHz). Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (CDCl3 at 77.0 11 ppm). B NMR spectra were taken on a JEOL ECS-400 (128 MHz) spectrometer using B(OMe)3 as an external reference. Analytical HPLC was performed on a Shimadzu Model LC-10AD instrument coupled diode array-detector SPD-MA-10A-VP using a column of Daicel CHIRALCEL OD-H (4.6 # 250 mm). Optical rotations were measured on a RUDOLPH AUTOPOL IV digital polarimeter. -
Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Heterocyclic Acceptors
NIH Public Access Author Manuscript Chemistry. Author manuscript; available in PMC 2014 January 02. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Chemistry. 2013 January 2; 19(1): 74–77. doi:10.1002/chem.201203643. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Heterocyclic Acceptors Jeffrey C. Holder#, Dr. Alexander N. Marziale#, Dr. Michele Gatti, Bin Mao, and Prof. Brian M. Stoltz Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 101-20, Pasadena, CA 91125 (USA) Keywords Heterocycles; Conjugate Addition; Asymmetric Catalysis; Palladium; Arylboronic Acids Palladium-catalyzed asymmetric conjugate additions are an increasingly versatile class of enantioselective reactions that allow for stereoselective alkylation and arylation of α,β- unsaturated conjugate acceptors.[1] These processes often utilize easily-handled, air- and water-stable boron nucleophiles that render these reactions highly tolerant of oxygen and moisture.[2] Recently, our group disclosed the asymmetric conjugate addition of arylboronic acids to cyclic enones facilitated by a palladium catalyst derived in situ from palladium(II) trifluoroacetate and a chiral pyridinooxazoline (PyOX) ligand (5).[3] Notably, our catalyst system was generally applicable for 5-, 6-, and 7-membered carbocyclic enones. The numerous advantages of this system encouraged us to seek application to heterocyclic molecules, in order to demonstrate the broad utility of this reaction for the synthesis of pharmaceutically relevant molecules. Herein, we report the first general enantioselective conjugate addition of arylboronic acids to heterocyclic conjugate acceptors derived from chromones and 4-quinolones utilizing the Pd/PyOX catalyst system. -
Applications of Boronic Acids in Organic Synthesis
Applications of Boronic Acids in Organic Synthesis A dissertation presented by Pavel Starkov in partial fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY at UNIVERSITY COLLEGE LONDON Department of Chemistry Christopher Ingold Laboratories University College London 20 Gordon Street WC1H 0AJ London Declaration This dissertation is the result of my own work. Where information has been derived from other sources it has been clearly indicated so and acknowledged accordingly. /Pavel Starkov/ ii Abstract This thesis describes progress on the application of boronic acids and borate esters as catalysts and reagents in synthetic organic synthesis, focusing on two areas: one-pot enolate formation/aldol reactions and amide bond formation. Chapter 1 introduces the reader to boronic acids and derivatives thereof, their methods of preparation and their use in synthetic organic chemistry as reactants, reagents and catalysts. Chapter 2 covers current chemical methods and cellular alternatives for amide bond formation. Here, we also discuss our use of boron reagents for the activation of carboxylic acids as well as amides. Chapter 3 introduces a new concept in catalytic aldol reactions, i.e. an alternative strategy to access boron enolates in situ. The work covers successful demonstration of the feasibility of such an approach on an intramolecular system. A novel variation of aerobic Chan–Evans– Lam coupling, an intramolecular coupling of an aliphatic alcohol with a boronic acid using catalytic copper, is also introduced Chapter 4 builds on our observations on gold catalysis and especially that in relation to electrophilic halogenations. Chapter 5 contains full details of the experimental procedures. -
Boronic Acid Reagents
T10E-H10E Boronic acid reagents Boronic acids are alkyl or aryl substituted carbon to a boron di-iol group (class of organoboranes): . R-B(OH)2 . As Lewis acids, this chemical functional group is capable of forming reversible covalent complexes with sugars, amino acids, hydroxamic acids, etc. The pKa of a boronic acid is ~9, but upon complexion in aqueous solutions, they form tetrahedral boronate complexes with pKa ~7. Hence, boronic acids drive unique features and applications: Boronic acids chemical building blocks are also used in organic chemistry (i.e. Suzuki coupling: R-B(OH)2 + R’-X ► R-R’ ; transmetallation of its organic residue to a transition metal). =>ask at [email protected] See exemples in article and in catalog [cat.Fine.201606] . Boronic acid conjugates of fluorescent dyes are used in biosciences to bind to saccharides for fluorescent detection, for selective transport of saccharides across membranes, or to block certain proteasomes. =>see Fluorescent boronic conjugates: Boronic derivate with Dansyl #FP-M1201A and Eosin #FP-CJ0760 Coumarin Boronic Acid (Cba) Onoo Fluorescent Probe (332/400NM), #FP-1D1401, 10-50-100mg Boronic acid conjugated supports are used for affinity =>see Boronic functionalized supports for affinity purification. See PH-BB190b Boronic acid on magnetic beads, 1µm, 2.5% (w/v) #7A2610, 2ml Related products lines Interbiotec - BioSciences innovation – proposes a complete range of products for protein biochemistry. Products HighLights Overview, including: Remarkable conjugation tools: PEO crosslinkers (hydrophilic spacers), Hydrazone chemistry (flexible method using stable activation step), Click Chemistry & Staudinger ligation (versatile and mild conjugation), Multifunctional cross-linkers, Boronic acid (modifying saccharides) Photoreactive Amino Acids & UV Lamps for crosslinking Label Transfer Reagents Other crosslinkers (i.e.