ISONIAZID (INH): Chemical Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Items
Essential Medicines List (EML) 2019 Application for the inclusion of imipenem/cilastatin, meropenem and amoxicillin/clavulanic acid in the WHO Model List of Essential Medicines, as reserve second-line drugs for the treatment of multidrug-resistant tuberculosis (complementary lists of anti-tuberculosis drugs for use in adults and children) General items 1. Summary statement of the proposal for inclusion, change or deletion This application concerns the updating of the forthcoming WHO Model List of Essential Medicines (EML) and WHO Model List of Essential Medicines for Children (EMLc) to include the following medicines: 1) Imipenem/cilastatin (Imp-Cln) to the main list but NOT the children’s list (it is already mentioned on both lists as an option in section 6.2.1 Beta Lactam medicines) 2) Meropenem (Mpm) to both the main and the children’s lists (it is already on the list as treatment for meningitis in section 6.2.1 Beta Lactam medicines) 3) Clavulanic acid to both the main and the children’s lists (it is already listed as amoxicillin/clavulanic acid (Amx-Clv), the only commercially available preparation of clavulanic acid, in section 6.2.1 Beta Lactam medicines) This application makes reference to amendments recommended in particular to section 6.2.4 Antituberculosis medicines in the latest editions of both the main EML (20th list) and the EMLc (6th list) released in 2017 (1),(2). On the basis of the most recent Guideline Development Group advising WHO on the revision of its guidelines for the treatment of multidrug- or rifampicin-resistant (MDR/RR-TB)(3), the applicant considers that the three agents concerned be viewed as essential medicines for these forms of TB in countries. -
Zinforo, INN Ceftaroline Fosamil
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Zinforo 600 mg powder for concentrate for solution for infusion 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains ceftaroline fosamil acetic acid solvate monohydrate equivalent to 600 mg ceftaroline fosamil. After reconstitution, 1 ml of the solution contains 30 mg of ceftaroline fosamil. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for concentrate for solution for infusion. A pale yellowish-white to light yellow powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Zinforo is indicated in adults for the treatment of the following infections (see sections 4.4 and 5.1): • Complicated skin and soft tissue infections (cSSTI) • Community-acquired pneumonia (CAP) Consideration should be given to official guidance on the appropriate use of antibacterial agents. 4.2 Posology and method of administration Posology For the treatment of cSSTI and CAP, the recommended dose is 600 mg administered every 12 hours by intravenous infusion over 60 minutes in patients aged 18 years or older. The recommended treatment duration for cSSTI is 5 to 14 days and the recommended duration of treatment for CAP is 5 to 7 days. Special populations Elderly patients (≥ 65 years) No dosage adjustment is required for the elderly with creatinine clearance values > 50 ml/min (see section 5.2). Renal impairment The dose should be adjusted when creatinine clearance (CrCL) is ≤ 50 ml/min, as shown below (see sections 4.4 and 5.2). Creatinine clearance Dosage regimen Frequency (ml/min) > 30 to ≤ 50 400 mg intravenously (over 60 minutes) every 12 hours 2 There is insufficient data to make specific dosage adjustment recommendations for patients with severe renal impairment (CrCL ≤ 30 ml/min) and end-stage renal disease (ESRD), including patients undergoing haemodialysis (see section 4.4). -
Summary of Product Characteristics
SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Augmentin 125 mg/31.25 mg/5 ml powder for oral suspension Augmentin 250 mg/62.5 mg/5 ml powder for oral suspension 2. QUALITATIVE AND QUANTITATIVE COMPOSITION When reconstituted, every ml of oral suspension contains amoxicillin trihydrate equivalent to 25 mg amoxicillin and potassium clavulanate equivalent to 6.25 mg of clavulanic acid. Excipients with known effect Every ml of oral suspension contains 2.5 mg aspartame (E951). The flavouring in Augmentin contains maltodextrin (glucose) (see section 4.4). This medicine contains less than 1 mmol sodium (23 mg) per ml, that is to say essentially ‘sodium- free’. When reconstituted, every ml of oral suspension contains amoxicillin trihydrate equivalent to 50 mg amoxicillin and potassium clavulanate equivalent to 12.5 mg of clavulanic acid. Excipients with known effect Every ml of oral suspension contains 2.5 mg aspartame (E951). The flavouring in Augmentin contains maltodextrin (glucose) (see section 4.4). This medicine contains less than 1 mmol sodium (23 mg) per ml, that is to say essentially ‘sodium- free’. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for oral suspension. Off-white powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Augmentin is indicated for the treatment of the following infections in adults and children (see sections 4.2, 4.4 and 5.1): • Acute bacterial sinusitis (adequately diagnosed) • Acute otitis media • Acute exacerbations of chronic bronchitis (adequately diagnosed) • Community acquired pneumonia • Cystitis • Pyelonephritis 2 • Skin and soft tissue infections in particular cellulitis, animal bites, severe dental abscess with spreading cellulitis • Bone and joint infections, in particular osteomyelitis. -
Australian Public Assessment Refport for Ceftaroline Fosamil (Zinforo)
Australian Public Assessment Report for ceftaroline fosamil Proprietary Product Name: Zinforo Sponsor: AstraZeneca Pty Ltd May 2013 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) • The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health and Ageing, and is responsible for regulating medicines and medical devices. • The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance), when necessary. • The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. • The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. • To report a problem with a medicine or medical device, please see the information on the TGA website <http://www.tga.gov.au>. About AusPARs • An Australian Public Assessment Record (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. • AusPARs are prepared and published by the TGA. • An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations, and extensions of indications. • An AusPAR is a static document, in that it will provide information that relates to a submission at a particular point in time. • A new AusPAR will be developed to reflect changes to indications and/or major variations to a prescription medicine subject to evaluation by the TGA. -
DICLOXACILLIN MYLAN Dicloxacillin Sodium Capsules
AUSTRALIAN PRODUCT INFORMATION DICLOXACILLIN MYLAN Dicloxacillin sodium capsules 1 NAME OF THE MEDICINE Dicloxacillin (as dicloxacillin sodium) 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each capsule contains dicloxacillin sodium equivalent to 250 mg or 500 mg dicloxacillin as the active ingredient. For the full list of excipients, see Section 6.1 LIST OF EXCIPIENTS. 3 PHARMACEUTICAL FORM DICLOXACILLIN : Dicloxacillin 250 mg capsule: Size 2 capsule with white opaque body and cap, MYLAN 250 marked ‘DX’ on the cap and ‘250’ on the body in black DICLOXACILLIN : Dicloxacillin 500 mg capsule: Size 0 capsule with white opaque body and cap, MYLAN 500 marked ‘DX’ on the cap and ‘500’ on the body in black 4 CLINICAL PARTICULARS 4.1 THERAPEUTIC INDICATIONS Treatment of confirmed or suspected staphylococcal and other Gram positive coccal infections, including skin and skin structure and wound infections, infected burns, cellulitis, osteomyelitis and pneumonia (note: benzylpenicillin is the drug of choice for the treatment of streptococcal pneumonia). Bacteriological studies should be performed to determine the causative organisms and their susceptibility to dicloxacillin. Dicloxacillin has less intrinsic antibacterial activity and a narrower spectrum than benzylpenicillin. Dicloxacillin should therefore not be used in infections due to organisms susceptible to benzylpenicillin. Important Note: When it is judged necessary that treatment is initiated before definitive culture and sensitivity results are known, if the microbiology report later indicates that the infection is due to an organism other than a benzylpenicillin resistant staphylococcus sensitive to dicloxacillin, the physician is advised to continue therapy with a drug other than dicloxacillin or any other penicillinase-resistant penicillin. 4.2 DOSE AND METHOD OF ADMINISTRATION Microbiological studies to determine the causative organism and their susceptibility to the penicillinase resistant penicillins should be performed. -
Approximately 15 Units of Penicillinase Were Preincubated with 4 Ml of Phenylisoxazolyl Penicillins (5 Mg/Ml) at 30°C
INACTIVATION OF STAPHYLOCOCCAL PENICILLINASE BY DICLOXACILLIN Hitoshi Sagai and Tetsu Saito Research Laboratories, Toyo Jozo Co., Ltd. Ohito-cho, Shizuoka-ken, 410-23, Japan (Received for publication February 12, 1973) Staphylococcal penicillinase was inactivated by treatment with a relatively low concentration of methyldichlorophenyl-isoxazolyl penicillin (dicloxacillin). Inactivated enzyme was isolated by gel-filtration and reactivated by incubation at 37°C. It is suggested that the inactivated enzyme is penicilloyl enzyme which is readily hydrolyzed to active enzyme. The rates of hydrolysis of /3-lactamase-sensitive penicillins (such as benzylpenicillin and aminobenzylpenicillin) by penicillinase were greatly decreased by the addition of /3-lactamase resistant penicillins1'23. Gourevitch and his coworkers reported that the inactivation of cell-bound staphylococcal penicillinase occurred when the enzyme was preincubated with dimethoxyphenyl penicillin (methicillin), and the amount of inactivated enzyme corresponded to the amount of hydrolyzed methicillin3). On the other hand, Richmond demonstrated that the purified exo-enzyme of staphylococci degraded more than 85% of added methicillin without inactivation of the enzyme4). In this paper, we deal with the inactivation of the extracellular staphylococcal enzyme by dicloxacillin and propose a tentative mechanism to account for the inactivation. Materials and Methods Drugs : Benzylpenicillin potassium.salt, aminobenzylpenicillin (ampicillin) sodium salt, methyl- chlorophenylisoxazolyl penicillin (cloxacillin) sodium salt and dicloxacillin sodium salt (Toyo Jozo Co., Ltd.) were used. Organism: Staphylococcus aureus 0003 was used as the penicillinase source. The strain was of clincal origin and its penicillinase was inducible. Preparation of penicillinase: Partially purified enzyme was prepared according to the method reported by Richmond43. The supernatant fluid of methicillin-induced S. -
Informatorium of COVID-19 Drugs in Indonesia" Has Been Compiled and Can Be Published Amidst the COVID-19 Outbreak in Indonesia
THE INDONESIAN FOOD AND DRUG AUTHORITY INFORMATORIUM OF COVID-19 DRUGS IN INDONESIA THE INDONESIAN FOOD AND DRUG AUTHORITY MARCH 2020 1 INFORMATORIUM OF COVID-19 DRUGS IN INDONESIA THE INDONESIAN FOOD AND DRUG AUTHORITY ISBN 978-602-415-009-9 First Edition March 2020 COPYRIGHT PROTECTED BY LAW Reproduction of this book in part or whole, in any form and by any means, mechanically or electronically, including photocopies, records, and others without written permission from the publisher. This informatorium is based on information up to the time of publication and is subject to change if there is the latest data/information 2 3 FOREWORD Our praise and gratitude for the presence of God Almighty for His blessings and gifts, "The Informatorium of COVID-19 Drugs in Indonesia" has been compiled and can be published amidst the COVID-19 outbreak in Indonesia. As we know, the infections due to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) began to plague in December 2019 in Wuhan City, Hubei Province, People's Republic of China. The disease was caused by SARS-CoV-2 infection which was later known as Coronavirus Disease 2019 (COVID-19) which in early 2020 began to spread to several countries and eventually spread to almost all countries in the world. On March 11, 2020, WHO announced COVID-19 as a global pandemic. In Indonesia, the first case was officially announced on March 2, 2020. Considering that the spread of COVID-19 has been widespread and has an impact on social, economic, defense, and public welfare aspects in Indonesia, the President of the Republic of Indonesia established the Task Force for the Acceleration of COVID- 19 Handling aiming to increase readiness and ability to prevent, detect and respond to COVID-19. -
Clinical Pharmacology and Biopharmaceutics Review(S)
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 200327 CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S) CLINICAL PHARMACOLOGY REVIEW NDA: 200-327 Submission Date(s): • 30 Dec 2009 (SDN 1) • 30 Apr 2010 (SDN 14) • 04 Feb 2010 (SDN 7) • 18 Jun 2010 (SDN 19) • 23 Apr 2010 (SDN 10) • 06 Aug 2010 (SDN 31) • 29 Apr 2010 (SDN 13) • 18 Aug 2010 (SDN 34) Drug Ceftaroline Fosamil for Injection Trade Name TEFLARO™ (proposed) OCP Reviewer Aryun Kim, Pharm.D. OCP Team Leader Charles Bonapace, Pharm.D. PM Reviewer Yongheng Zhang, Ph.D. PM Team Leader Pravin Jadhav, Ph.D. OCP Division DCP4 OND division DAIOP (520) Sponsor Cerexa, Inc., Oakland, CA Relevant IND(s) IND 71,371 Submission Type; Code Original New Drug Application (New Molecular Entity), 1S Formulation; Strength(s) Sterile (b) (4) of ceftaroline fosamil and L-arginine supplied as powder in single-use, 20-cc, clear, Type I glass vials containing 600 mg or 400 mg of ceftaroline fosamil Indication For the treatment of complicated skin and skin structure infections (cSSSI) and community-acquired bacterial pneumonia (CABP) caused by designated susceptible isolates of Gram-positive and Gram-negative microorganisms Dosage and 600 mg administered every 12 hours by intravenous infusion over 1 hour Administration in patients ≥18 years of age • for 5-14 days for treatment of cSSSI • for 5-7 days for treatment of CABP 1. EXECUTIVE SUMMARY 5 1.1 Recommendations 5 1.2 Phase 4 Commitments 6 1.3 Summary of Important Clinical Pharmacology and Biopharmaceutics Findings 6 2. QUESTION-BASED REVIEW 11 2.1 General Attributes of the Drug 11 2.2 General Clinical Pharmacology 13 2.3 Intrinsic Factors 37 2.4 Extrinsic Factors 56 2.5 General Biopharmaceutics 58 2.6 Analytical Section 58 3. -
Antibiotic Use for Sepsis in Neonates and Children: 2016 Evidence Update
Antibiotic Use for Sepsis in Neonates and Children: 2016 Evidence Update Aline Fuchsa, Julia Bielickia,b, Shrey Mathurb, Mike Sharlandb, Johannes N. Van Den Ankera,c a Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland b Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom c Division of Clinical Pharmacology, Children’s National Health System, Washington, DC, USA WHO-Reviews 1 TABLE OF CONTENTS 1. INTRODUCTION ............................................................................................................................... 3 1.1. Aims ......................................................................................................................................... 3 1.2. Background ............................................................................................................................. 3 1.2.1. Definition and diagnosis ................................................................................................. 3 Neonatal Sepsis ............................................................................................................................... 3 Paediatric Sepsis ............................................................................................................................. 4 Community versus hospital acquired sepsis .................................................................................. 5 1.2.2. Microbiology .................................................................................................................. -
Cephalosporins Can Be Prescribed Safely for Penicillin-Allergic Patients ▲
JFP_0206_AE_Pichichero.Final 1/23/06 1:26 PM Page 106 APPLIED EVIDENCE New research findings that are changing clinical practice Michael E. Pichichero, MD University of Rochester Cephalosporins can be Medical Center, Rochester, NY prescribed safely for penicillin-allergic patients Practice recommendations an allergic reaction to cephalosporins, ■ The widely quoted cross-allergy risk compared with the incidence of a primary of 10% between penicillin and (and unrelated) cephalosporin allergy. cephalosporins is a myth (A). Most people produce IgG and IgM antibodies in response to exposure to ■ Cephalothin, cephalexin, cefadroxil, penicillin1 that may cross-react with and cefazolin confer an increased risk cephalosporin antigens.2 The presence of of allergic reaction among patients these antibodies does not predict allergic, with penicillin allergy (B). IgE cross-sensitivity to a cephalosporin. ■ Cefprozil, cefuroxime, cefpodoxime, Even penicillin skin testing is generally not ceftazidime, and ceftriaxone do not predictive of cephalosporin allergy.3 increase risk of an allergic reaction (B). Reliably predicting cross-reactivity ndoubtedly you have patients who A comprehensive review of the evidence say they are allergic to penicillin shows that the attributable risk of a cross- U but have difficulty recalling details reactive allergic reaction varies and is of the reactions they experienced. To be strongest when the chemical side chain of safe, we often label these patients as peni- the specific cephalosporin is similar to that cillin-allergic without further questioning of penicillin or amoxicillin. and withhold not only penicillins but Administration of cephalothin, cepha- cephalosporins due to concerns about lexin, cefadroxil, and cefazolin in penicillin- potential cross-reactivity and resultant IgE- allergic patients is associated with a mediated, type I reactions. -
WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
Current Use for Old Antibacterial Agents: Polymyxins, Rifamycins, and Aminoglycosides
Current Use for Old Antibacterial Agents: Polymyxins, Rifamycins, and Aminoglycosides a, b,c Luke F. Chen, MBBS (Hons), MPH, CIC, FRACP *, Donald Kaye, MD KEYWORDS Rifaximin Pharmacokinetics Pharmacodynamics Toxicity Polymyxins Aminoglycoside Rifampin The polymyxins, rifamycins, and the aminoglycosides may be considered special use antibacterial agents. They are all old agents and are rarely considered the drugs of choice for common bacterial infections. The polymyxins are increasingly important because of the continued emergence of multidrug resistant (MDR) gram-negative organisms, such as strains of Pseudomonas aeruginosa or carbapenemase-producing Enterobacteriaceae that are susceptible to few remaining drugs. Rifampin is only considered in the context of nonmycobacterial infections where its role is limited and sometimes controversial. Rifaximin is a new enteric rifamycin that is increasingly used for gastrointestinal infections such as trav- eler’s diarrhea and Clostridium difficile infections (CDIs). This article will also review the current role of aminoglycosides in nonmycobacterial systemic infections, with an emphasis on the use of single daily administration. POLYMYXINS The polymyxins were discovered in 1947. Although there are five known polymyxin molecules, sequentially named polymyxin A through polymyxin E, only two polymyxins are available for therapeutic use: polymyxin B and polymyxin E (colistin) (Table 1). Both polymyxin B and polymyxin E are large cyclic cationic polypeptide detergents A version of this article appeared in the 23:4 issue of the Infectious Disease Clinics of North America. a Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Box 102359, Hanes House, Durham, NC 27710, USA b Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA c 1535 Sweet Briar Road, Gladwyne, PA 19035, USA * Corresponding author.