Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor 
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multi-Scale Impact of Chronic Exposure to Environmental Concentrations Of
Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta Romain Colpaert, Pierre-Henri Villard, Laetitia de Jong, Marina Mambert, Karim Benbrahim, Joelle Abraldes, Claire Cerini, Valérie Pique, Maxime Robin, Xavier Moreau To cite this version: Romain Colpaert, Pierre-Henri Villard, Laetitia de Jong, Marina Mambert, Karim Benbrahim, et al.. Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta. Environmental Science and Pollution Research, Springer Verlag, 2020, 27 (33), pp.41052-41062. 10.1007/s11356-019-06859-4. hal-02451113 HAL Id: hal-02451113 https://hal-amu.archives-ouvertes.fr/hal-02451113 Submitted on 23 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta. Romain COLPAERT1, Pierre-Henri VILLARD1, Laetitia DE JONG1, Marina MAMBERT1, Karim BENBRAHIM1, Joelle ABRALDES1, Claire CERINI2, Valérie PIQUE1, Maxime ROBIN1, Xavier MOREAU1 1 : Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France 2 : Aix Marseille Univ, Inserm U1263, C2VN, Marseille, France Corresponding author: email : [email protected] phone : +33-(0)4-91-83-56-38 Abstract Chlordecone (CLD) is an organochlorine pesticide widely used by the past to control pest insects in banana plantations in the French West Indies. -
Development and Validation of an HPLC-DAD Method for The
separations Article Development and Validation of an HPLC-DAD Method for the Simultaneous Extraction and Quantification of Bisphenol-A, 4-Hydroxybenzoic Acid, 4-Hydroxyacetophenone and Hydroquinone in Bacterial Cultures of Lactococcus lactis Angelos T. Rigopoulos 1, Victoria F. Samanidou 2 ID and Maria Touraki 1,* ID 1 Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece; [email protected] 2 Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-231-099-8292 Received: 8 January 2018; Accepted: 31 January 2018; Published: 6 February 2018 Abstract: Bisphenol-A, a synthetic organic compound with estrogen mimicking properties, may enter bloodstream through either dermal contact or ingestion. Probiotic bacterial uptake of bisphenol can play a major protective role against its adverse health effects. In this paper, a method for the quantification of BPA in bacterial cells of L. lactis and of BPA and its potential metabolites 4-hydroxybenzoic Acid, 4-hydroxyacetophenone and hydroquinone in the culture medium is described. Extraction of BPA from the cells was performed using methanol–H2O/TFA (0.08%) (5:1 v/v) followed by SPE. Culture medium was centrifuged and filtered through a 0.45 µm syringe filter. Analysis was conducted in a Nucleosil column, using a gradient of A (95:5 v/v H2O: ACN) and B (5:95 v/v H2O: ACN, containing TFA, pH 2), with a flow rate of 0.5 mL/min. -
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Activated Peripheral-Blood-Derived Mononuclear Cells
Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays. -
Coumestrol and Genistein
DISSOCIATION OF UTEROTROPHIC ACTION FROM IMPLANTATION-INDUCING ACTIVITY IN TWO NON-STEROIDAL OESTROGENS (COUMESTROL AND GENISTEIN) E. PEREL and H. R. LINDNER Department of Biodynamics, Weizmann Institute of Science, Rehovot, Israel (Received 19th June 1969) Summary. The phyto-oestrogens coumestrol (7,12-dihydroxycoume- stan) and genistein (5,7,4'-trihydroxyisoflavone) induced uterine growth in ovariectomized rats, but failed to induce ovum implantation in mated ovariectomized, gestagen-maintained rats and in intact lactating rats when given at dose levels effective in uterine weight assays. Oestradiol- 17ß, under similar conditions, induced ovum implantation even at dose levels below those required for a uterine weight response. Diethyl- stilboestrol and large doses of oestradiol- 17a (5 to 10 pg) were effective in both assays. It is suggested that different uterine receptors may be involved in mediating the uterine-growth-promoting and implantation- inducing actions of oestrogen. The phyto-oestrogens coumestrol (7,12-dihydroxycoumestan) and genistein (5,7,4'-trihydroxyisoflavone) are able to mimic some of the actions of steroidal oestrogens, e.g. to stimulate uterine growth in ovariectomized mice (Bickoff, Booth, Lyman, Livingston, Thompson & DeEds, 1957; Wong & Flux, 1962) and sheep (Braden, Hart & Lamberton, 1967; Lindner, 1967; Shutt, Braden & Lindner, 1969). Another characteristic action of steroidal oestrogens is their ability to induce implantation of the dormant blastocyst in the ovariectomized, progesterone-maintained rat (Krehbiel, 1941; Canivenc & Laffargue, 1956; Shelesnyak, 1959; Mayer & Meunier, 1959; Psychoyos, 1961; Nutting & Meyer, 1963). We wished to examine whether the latter response could also be elicited, or modified, by non-steroidal oestrogens. Three-month-old Wistar-derived rats (with a body weight of 207 g ± 1 -5 S.E.) were fed unrestricted Purina Laboratory Chow (Ralston Purina Co., St. -
Pharmacokinetic Interactions Between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance
life Review Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance Laura Rombolà 1 , Damiana Scuteri 1,2 , Straface Marilisa 1, Chizuko Watanabe 3, Luigi Antonio Morrone 1, Giacinto Bagetta 1,2,* and Maria Tiziana Corasaniti 4 1 Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036 Rende, Italy; [email protected] (L.R.); [email protected] (D.S.); [email protected] (S.M.); [email protected] (L.A.M.) 2 Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy 3 Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan; [email protected] 4 School of Hospital Pharmacy, University “Magna Graecia” of Catanzaro and Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0984-493462 Received: 28 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The therapeutic efficacy of a drug or its unexpected unwanted side effects may depend on the concurrent use of a medicinal plant. In particular, constituents in the medicinal plant extracts may influence drug bioavailability, metabolism and half-life, leading to drug toxicity or failure to obtain a therapeutic response. This narrative review focuses on clinical studies improving knowledge on the ability of selected herbal medicines to influence the pharmacokinetics of co-administered drugs. Moreover, in vitro studies are useful to anticipate potential herbal medicine-drug interactions. -
Nutraceuticals Brian Lockwood
CjigVXZji^XVah HZXdcYZY^i^dc 7g^VcAdX`lddY 00 Prelim 2/3/07 18:51 Page i Nutraceuticals 00 Prelim 2/3/07 18:51 Page ii 00 Prelim 2/3/07 18:51 Page iii Nutraceuticals A guide for healthcare professionals Second edition Brian Lockwood BPharm, PhD, MRPharmS Senior Lecturer in Pharmacy, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK London • Chicago 00 Prelim 2/3/07 18:51 Page iv Published by the Pharmaceutical Press An imprint of RPS Publishing 1 Lambeth High Street, London SE1 7JN, UK 100 South Atkinson Road, Suite 200, Grayslake, IL 60030–7820, USA © Pharmaceutical Press 2007 is a trade mark of RPS Publishing RPS Publishing is the publishing organisation of the Royal Pharmaceutical Society of Great Britain First edition published 2002 Second edition published 2007 Typeset by Type Study, Scarborough, North Yorkshire Printed in Great Britain by TJ International, Padstow, Cornwall ISBN 978 0 85369 659 9 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the copyright holder. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. The right of Brian Lockwood to be identified as the author of this work has been asserted by him in accordance with sections 77 and 78 and subject to section 79(6) of the Copyright, Designs and Patents Act, 1988. -
Is an Activator of the Human Estrogen Receptor Alpha
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Newcastle University E-Prints 1 The ionic liquid 1-octyl-3-methylimidazolium (M8OI) is an activator of the human estrogen receptor alpha Alistair C. Leitch1, Anne F. Lakey1, William E. Hotham1, Loranne Agius1, George E.N. Kass2, Peter G. Blain1, Matthew C. Wright1,* 1Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, United Kingdom NE24HH. 2European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy. *Corresponding author. Address: Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK. [email protected] Email addresses: [email protected] (A. Leitch), [email protected] (A. Lakey), [email protected] (W. Hotham), [email protected] (L Aguis), , [email protected] (G Kass), [email protected] (P. Blain) [email protected] (M. Wright). Abbreviations AhR, aryl hydrocarbon receptor; ICI182780, also known as fulvestrant; E2, 17β estradiol; EE, ethinylestradiol; ERα, estrogen receptor alpha, also known as NR3A1; ERβ, estrogen receptor beta, also known as ER3A2; M8OI, 1-octyl-3-methylimidazolium chloride, also known as C8min; PBC, primary biliary cholangitis; PPARα, peroxisome proliferator activated receptor alpha; TFF1, trefoil factor 1. 2 ABSTRACT Recent environmental sampling around a landfill site in the UK demonstrated that unidentified xenoestrogens were present at higher levels than control sites; that these xenoestrogens were capable of super-activating (resisting ligand-dependent antagonism) the murine variant 2 ERβ and that the ionic liquid 1-octyl-3-methylimidazolium chloride (M8OI) was present in some samples. -
Memorandum Date: June 6, 2014
DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service Food and Drug Administration Memorandum Date: June 6, 2014 From: Bisphenol A (BPA) Joint Emerging Science Working Group Smita Baid Abraham, M.D. ∂, M. M. Cecilia Aguila, D.V.M. ⌂, Steven Anderson, Ph.D., M.P.P.€* , Jason Aungst, Ph.D.£*, John Bowyer, Ph.D. ∞, Ronald P Brown, M.S., D.A.B.T.¥, Karim A. Calis, Pharm.D., M.P.H. ∂, Luísa Camacho, Ph.D. ∞, Jamie Carpenter, Ph.D.¥, William H. Chong, M.D. ∂, Chrissy J Cochran, Ph.D.¥, Barry Delclos, Ph.D.∞, Daniel Doerge, Ph.D.∞, Dongyi (Tony) Du, M.D., Ph.D. ¥, Sherry Ferguson, Ph.D.∞, Jeffrey Fisher, Ph.D.∞, Suzanne Fitzpatrick, Ph.D. D.A.B.T. £, Qian Graves, Ph.D.£, Yan Gu, Ph.D.£, Ji Guo, Ph.D.¥, Deborah Hansen, Ph.D. ∞, Laura Hungerford, D.V.M., Ph.D.⌂, Nathan S Ivey, Ph.D. ¥, Abigail C Jacobs, Ph.D.∂, Elizabeth Katz, Ph.D. ¥, Hyon Kwon, Pharm.D. ∂, Ifthekar Mahmood, Ph.D. ∂, Leslie McKinney, Ph.D.∂, Robert Mitkus, Ph.D., D.A.B.T.€, Gregory Noonan, Ph.D. £, Allison O’Neill, M.A. ¥, Penelope Rice, Ph.D., D.A.B.T. £, Mary Shackelford, Ph.D. £, Evi Struble, Ph.D.€, Yelizaveta Torosyan, Ph.D. ¥, Beverly Wolpert, Ph.D.£, Hong Yang, Ph.D.€, Lisa B Yanoff, M.D.∂ *Co-Chair, € Center for Biologics Evaluation & Research, £ Center for Food Safety and Applied Nutrition, ∂ Center for Drug Evaluation and Research, ¥ Center for Devices and Radiological Health, ∞ National Center for Toxicological Research, ⌂ Center for Veterinary Medicine Subject: 2014 Updated Review of Literature and Data on Bisphenol A (CAS RN 80-05-7) To: FDA Chemical and Environmental Science Council (CESC) Office of the Commissioner Attn: Stephen M. -
OECD Environment Health and Safety Publications Series on Testing and Assessment No
OECD Environment Health and Safety Publications Series on Testing and Assessment No. 21 Detailed Review Paper Appraisal of Test Methods for Sex Hormone Disrupting Chemicals Environment Directorate ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Paris May 2001 1 Also Published in the Series Testing and Assessment: No. 1, Guidance Document for the Development of OECD Guidelines for Testing of Chemicals (1993; reformatted 1995) No. 2, Detailed Review Paper on Biodegradability Testing (1995) No. 3, Guidance Document for Aquatic Effects Assessment (1995) No. 4, Report of the OECD Workshop on Environmental Hazard/Risk Assessment (1995) No. 5, Report of the SETAC/OECD Workshop on Avian Toxicity Testing (1996) No. 6, Report of the Final Ring-test of the Daphnia magna Reproduction Test (1997) No. 7, Guidance Document on Direct Phototransformation of Chemicals in Water (1997) No. 8, Report of the OECD Workshop on Sharing Information about New Industrial Chemicals Assessment (1997) No. 9 Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides During Agricultural Application (1997) No. 10, Report of the OECD Workshop on Statistical Analysis of Aquatic Toxicity Data (1998) No. 11, Detailed Review Paper on Aquatic Testing Methods for Pesticides and industrial Chemicals (1998) No. 12, Detailed Review Document on Classification Systems for Germ Cell Mutagenicity in OECD Member Countries (1998) No. 13, Detailed Review Document on Classification Systems for Sensitising Substances in OECD Member Countries 1998) No. 14, Detailed Review Document on Classification Systems for Eye Irritation/Corrosion in OECD Member Countries (1998) No. 15, Detailed Review Document on Classification Systems for Reproductive Toxicity in OECD Member Countries (1998) No. -
Changes of Phytoestrogens Daidzein, Genistein and Their Glycosides Daidzin and Genistin and Coumestrol During Processing of Soyabeans
Czech J. Food Sci. Vol. 22, Special Issue Changes of Phytoestrogens Daidzein, Genistein and Their Glycosides Daidzin and Genistin and Coumestrol during Processing of Soyabeans J. LOJZA*, V. SCHULZOVÁ and J. HAJŠLOVÁ Department of Food Chemistry and Analysis, Institute of Chemical Technology, Prague, Czech Republic, *E-mail: [email protected] Abstract: Phytoestrogens represent biologically active compounds showing estrogenic activity similar to that of sex hormones – estrogens. Various adverse effects such as sterility, increase of females’ genitals, lost of males’ copulation activity, etc. were observed in farm animals after exposure to higher amounts of fodder containing phytoestrogens. On the other side, their presence in human diet is nowadays the object of many research stud- ies concerned with prevention of breast and prostate cancer, osteoporosis and other hormone-linked diseases by dietary intake of phytoestrogens. Soya (Glycine max) is one of the main sources of these compounds in diet. Isoflavones daidzein and genistein occurring either free or bound in glycosides are the main phytoestrogens in this food crop. Coumesterol representing coumestans is another effective phytoestrogen contained in some ed- dible plants. In the first part of our study, analytical method for determination of free and total phytoestrogens was developed and validated. Following steps are included: (i) acid hydrolysis (only for “total phytoestrogens” analysis), (ii) extraction with methanol/water mixture, (iii) SPE preconcentration; (iv) identification/quantifica- tion using HPLC/DAD/FLD. The aim of present study was to document the fate of phytoestrogens and their forms during household/industrial processing. As documented in our experiments the most dynamic changes of phytoestrogen levels occur during soyabeans sprouting. -
Ipriflavone in the Treatment of Postmenopausal Osteoporosis a Randomized Controlled Trial
ORIGINAL CONTRIBUTION Ipriflavone in the Treatment of Postmenopausal Osteoporosis A Randomized Controlled Trial Peter Alexandersen, MD Context Data on the efficacy and safety of ipriflavone for prevention of postmeno- Anne Toussaint, MD pausal bone loss are conflicting. Claus Christiansen, MD, PhD Objectives To investigate the effect of oral ipriflavone on prevention of postmeno- pausal bone loss and to assess the safety profile of long-term treatment with iprifla- Jean-Pierre Devogelaer, MD, PhD vone in postmenopausal osteoporotic women. Christian Roux, MD, PhD Design and Setting Prospective, randomized, double-blind, placebo-controlled, 4-year Jacques Fechtenbaum, MD, PhD study conducted in 4 centers in Belgium, Denmark, and Italy from August 1994 to July 1998. Carlo Gennari, MD, PhD Participants Four hundred seventy-four postmenopausal white women, aged 45 Jean Yves Reginster, MD, PhD to 75 years, with bone mineral densities (BMDs) of less than 0.86 g/cm2. for the Ipriflavone Multicenter Interventions Patients were randomly assigned to receive ipriflavone, 200 mg 3 times European Fracture Study per day (n = 234), or placebo (n = 240); all received 500 mg/d of calcium. TUDIES OF IPRIFLAVONE, A SYN- Main Outcome Measures Efficacy measures included spine, hip, and forearm BMD thetic isoflavone derivative, have and biochemical markers of bone resorption (urinary hydroxyproline corrected for cre- atinine and urinary CrossLaps [Osteometer Biotech, Herlev, Denmark] corrected for suggested that it inhibits bone re- creatinine), assessed every 6 months. Laboratory safety measures and adverse events sorption and stimulates osteo- were recorded every 3 months. Sblast activity in vitro in cell cultures1,2 and Results Based on intent-to-treat analysis, after 36 months of treatment, the annual in vivo in experimental models of osteo- 3 percentage change from baseline in BMD of the lumbar spine for ipriflavone vs pla- porosis.