Joint Astronomy Centre Annual Report 2006/7

Total Page:16

File Type:pdf, Size:1020Kb

Joint Astronomy Centre Annual Report 2006/7 Joint Astronomy Centre Annual Report 2006/7 660 North A`ohoku Place Hilo, Hawai`i 96720 USA Tel: +1 808 961 3756 Fax: +1 808 961 6516 Web: http://www.jach.hawaii.edu/ Introduction by the Director Welcome to the JAC Annual Report for at the UK ATC. Through a combination of increased 2006/07. I am pleased to report that the sensitivity, a larger field of view and full sampling of the year has once again been a busy, pro- focal plane, SCUBA-2 will map the submillimetre sky up ductive and exciting one. to 1,000 times faster than SCUBA. Delivery is scheduled for Autumn 2007. In preparation for this revolutionary The JCMT is, by any objective measure, instrument, the JCMT was closed from mid-February to the world’s most productive submillimetre mid-August 2006 for major structural engineering work. telescope. A review of observatory productivity by Trim- A summary of this very successful project is provided in ble & Zaich (PASP, 118, 933, 2006) ranked the JCMT this report. first in the world amongst its competitors according to all three metrics they used (number of papers, number The JCMT is also preparing for a programme of sub- of citations, and number of citations per paper). This arcsecond astronomy in collaboration with the SMA and rewarding result is based heavily on the success of the the CSO. Tests of the integrated eSMA system have SCUBA instrument, which continues to dominate the progressed throughout 2006/07, and we envisage issu- scientific output of the observatory despite its retirement ing a call to the community for observing proposals with in 2005. this system before the end of 2007. RxW was upgraded during this reporting period for compatibility with the Building on this success, the JCMT is in the midst of eSMA, and will also provide enhanced sensitivity in two a profound transformation to its third-generation suite polarisations for single-dish JCMT users. of instruments. Driven by the scientific requirement for larger sample sizes, the new suite is optimised for Finally, the agreement between the three JCMT funding large-area mapping. I reported last year that the DAS agencies contains a break point in 2009. In order to fully had been replaced by ACSIS, our new multi-channel exploit the investment made in the new scientific capa- backend spectrometer. During this reporting period, bilities, which is on the order of US$40M, the agencies RxB3 was retired after many years of service and was are currently negotiating an extension of operations until replaced by HARP, the world’s first array receiver for the 2012. I expect the outcome to be announced in Autumn 345-GHz atmospheric window. HARP and ACSIS were 2007. both commissioned during 2006/07 and were released for community use in semester 07A. The HARP/ACSIS Turning now to UKIRT, the ambitious seven-year combination brings an unprecedented spectral imaging UKIDSS survey is now up and running at full speed. The capability to the JCMT, and some of the early science second full data release contained over a terabyte of results are compelling; the first megapixel image ever data, and some exciting science results have emerged. recorded in the submillimetre, for example, is presented Some of these are highlighted in this report, including, in this report. in particular, the coolest brown dwarf yet detected. The regime between planets and brown dwarfs is not well- The flagship of the JCMT’s transformation is SCUBA-2, explored, and this was one of the primary goals of the the successor to SCUBA, currently under development UKIDSS Large-Area Survey. ii The strategic review of UKIRT in 2005, chaired by Finally, in recognition of the work load and challenges Professor Richard Ellis of CalTech, recommended that at both telescopes, the JAC senior management was the future role of UKIRT, as an excellent 4-m-class re-organised in early 2007. Dr Antonio Chrysostomou telescope on a superb site, should be to concentrate on was recruited to the new position of Associate Director, “campaign-style” science. Accordingly, the Board issued JCMT, mirroring the position held by Dr Andy Adamson a call for campaign proposals in 2006, and a total of 21 for UKIRT. The organisation is now symmetrical be- proposals was received requesting more than nine years tween the two telescopes, allowing me to split my own of telescope time! This extremely high level of demand time more equitably between them than has been the demonstrates the very high regard in which UKIRT is case in the past. The new arrangements are working held by its user community. In the end, nine of these well and we are now fit for purpose to address the chal- proposals were awarded time, including renewals of the lenges of the future. five UKIDSS surveys. The Board also decided to alter the split of UK telescope time between campaign and PI Professor Gary Davis observing from 48%:52% to 64%:36%. Director UKIRT continues to turn out science results using its entire range of capabilities, as described in this report. The observatory has always been characterised by a high level of user support and by an extremely efficient operation, and this continued through 2006/07: the operational fault rate of only 3% is exceptionally low in absolute terms but is typical of UKIRT. PPARC Council decided, in May 2005, to reduce its fi- nancial commitment to UKIRT operations to roughly 50% of its current level by 2010 at the latest. This perturbation exceeds any internal savings that we could generate at the observatory, and we are therefore searching for new partners to participate in UKIRT’s future programme. UKIRT is unique amongst world-class observatories in being funded exclusively by one agency, so its conver- sion to an international telescope would bring it into line with the norm. I am optimistic that this challenge will be met and that UKIRT will continue to deliver world-leading science for many years to come. JCMT (top) and UKIRT (bottom) on Mauna Kea in Hawai’i. Photos by Inge Heyer. iii Foreword by the UKIRT Board Chair A number of important events have one being 6.7 in magnitude. As we now know, UKIRT, punctuated this year at UKIRT. These unlike some of the other telescopes on the mountain, include big data releases, big observing was relatively unscathed and, thanks to the efforts of programmes, a big earthquake and many the observatory staff, was back on the sky in two days. apparently small changes but with big Indeed, UKIRT could have been observing even sooner consequences. had the weather cooperated. Interestingly, the telescope was back in operation long before power was restored to During this year the first two data releases from UKIDSS some places on Oahu! were made. In terms of number of sources detected, the second UKIDSS data release, DR2, is now the larg- During my time on the UKIRT Board I have continu- est-ever infrared survey. The Board look forward to the ally been impressed with the reliability of UKIRT, as exploitation of these data by the community and the sub- measured, for example, by its very small loss of usable sequent UKIDSS data releases, which will provide even observing time due to technical faults. Furthermore, the more extensive views of the infrared universe. observatory staff are continually striving to improve this efficiency. To mention just two examples from this past In April, following a recommendation of the Ellis review year, the ETS Division have reduced the down time of of UKIRT in 2005, the Board issued a call for propos- the telescope during change-over between wide-field als for large observing campaigns or surveys. This call and Cassegrain modes to just two nights. This translates was intended to serve as the formal review of UKIDSS into saving hundreds of hours over the seven-year dura- after two years of operation, as well as to solicit new tion of UKIDSS. At the same time, work on the WFCAM proposals. For the November deadline, 21 propos- data acquisition system has saved two seconds per rea- als were received, with a range of compelling science dout. This amount may appear to be small, but with the cases. The size of this response and the total request short, five-second exposures often used, it represents for over nine years of observing time were very gratify- saving about a hundred nights of observing time over ing. It clearly demonstrates the community’s regard for the same seven-year time frame. This is an impressive UKIRT as a productive facility with a long term future. achievement, squeezing even more science out of each These proposals were reviewed by a set of international night’s observing. referees and then discussed at a special two-day Board meeting in February. The outcome of this meeting was So once again, I would like to congratulate the Director, that the Board reaffirmed its commitment to UKIDSS, Associate Director, and all the staff at UKIRT and at JAC adjusting the allocations and observing priorities of the on a highly successful and productive year and wish five UKIDSS sub-surveys and allocating time to four new them, and the telescope, well for the coming year. campaigns. Dr Gary Fuller In October, an ordinary night’s observing for me on University of Manchester Mauna Kea ended over breakfast when the Big Is- UKIRT Board Chair land was rocked by two major earthquakes, the first iv Foreword by the JCMT Board Chair On behalf of the JCMT Board, I am very herein, are starting to flow. The legacy programme is pleased to welcome the JAC Annual Re- now underway through the Spectral Line Survey.
Recommended publications
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • Observing List
    day month year Epoch 2000 local clock time: 23.98 Observing List for 23 7 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 20 50 Andromeda Gamma Andromedae (*266) 2.3 5.5 9.8 yellow & blue green double star 2 3.9 42 19 28 69 Andromeda Pi Andromedae 4.4 8.6 35.9 bright white & faint blue 0 36.9 33 43 30 55 Andromeda STF 79 (Struve) 6 7 7.8 bluish pair 1 0.1 44 42 16 52 Andromeda 59 Andromedae 6.5 7 16.6 neat pair, both greenish blue 2 10.9 39 2 45 67 Andromeda NGC 7662 (The Blue Snowball) planetary nebula, fairly bright & slightly elongated 23 25.9 42 32.1 31 60 Andromeda M31 (Andromeda Galaxy) large sprial arm galaxy like the Milky Way 0 42.7 41 16 31 61 Andromeda M32 satellite galaxy of Andromeda Galaxy 0 42.7 40 52 32 60 Andromeda M110 (NGC205) satellite galaxy of Andromeda Galaxy 0 40.4 41 41 17 55 Andromeda NGC752 large open cluster of 60 stars 1 57.8 37 41 17 48 Andromeda NGC891 edge on galaxy, needle-like in appearance 2 22.6 42 21 45 69 Andromeda NGC7640 elongated galaxy with mottled halo 23 22.1 40 51 46 57 Andromeda NGC7686 open cluster of 20 stars 23 30.2 49 8 30 121 Aquarius 55 Aquarii, Zeta 4.3 4.5 2.1 close, elegant pair of yellow stars 22 28.8 0 -1 12 120 Aquarius 94 Aquarii 5.3 7.3 12.7 pale rose & emerald 23 19.1 -13 28 32 152 Aquarius M72 globular cluster 20 53.5 -12 32 31 151 Aquarius M73 Y-shaped asterism of 4 stars 20 59 -12 38 16 117 Aquarius NGC7606 Galaxy 23 19.1 -8 29 32 149 Aquarius NGC7009 Saturn Neb planetary nebula, large & bright pale green oval 21 4.2 -11 21.8 38 135
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Download This Article in PDF Format
    A&A 502, 139–153 (2009) Astronomy DOI: 10.1051/0004-6361/200911818 & c ESO 2009 Astrophysics Star formation in Perseus V. Outflows detected by HARP J. Hatchell1 and M. M. Dunham2 1 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK e-mail: [email protected] 2 Department of Astronomy, The University of Texas at Austin, 1 University Station, C1400, Austin, Texas 78712-0259, USA Received 9 February 2009 / Accepted 8 April 2009 ABSTRACT Aims. Molecular outflows provide an alternative method of identifying protostellar cores, complementary to recent mid-infrared studies. Continuing our studies of Perseus, we investigate whether all Spitzer-identified protostars, and particularly those with low luminosities, drive outflows and if any new protostellar cores (perhaps harbouring low-mass sources) can be identified via their outflows alone. Methods. We have used the heterodyne array receiver HARP on JCMT to make deep 12CO 3–2 maps of submm cores in Perseus, extending and deepening our earlier study with R×B and bringing the total number of SCUBA cores studied up to 83. Our survey includes 23/25 of the Spitzer low-luminosity objects believed to be embedded protostars, including three VeLLOs. Results. All but one of the cores identified as harbouring embedded YSOs have outflows, confirming outflow detections as a good method for identifying protostars. We detect outflows from 20 Spitzer low-luminosity objects. We do not conclusively detect any outflows from IR-quiet cores, though confusion in clustered regions such as NGC1333 makes it impossible to identify all the individual driving sources.
    [Show full text]
  • Star Formation in Perseus-V. Outflows Detected by HARP
    Astronomy & Astrophysics manuscript no. harp c ESO 2021 June 15, 2021 Star formation in Perseus V. Outflows detected by HARP J. Hatchell1, M.M.Dunham2 1 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom 2 Department of Astronomy, The University of Texas at Austin, 1 University Station, C1400, Austin, Texas 78712-0259, United States of America ABSTRACT Aims. Molecular outflows provide an alternative method of identifying protostellar cores, complementary to recent mid-infrared studies. Continuing our studies of Perseus, we investigate whether all Spitzer-identified protostars, and particularly those with low luminosities, drive outflows, and if any new protostellar cores (perhaps harbouring low-mass sources) can be identified via their outflows alone. Methods. We have used the heterodyne array receiver HARP on JCMT to make deep 12CO 3–2 maps of submm cores in Perseus, extending and deepening our earlier study with RxB and bringing the total number of SCUBA cores studied up to 83. Our survey includes 23/25 of the Dunham et al. (2008) Spitzer low-luminosity objects believed to be embedded protostars, including three VeLLOs. Results. All but one of the cores identified as harbouring embedded YSOs have outflows, confirming outflow detections as a good method for identifying protostars. We detect outflows from 20 Spitzer low-luminosity objects. We do not conclusively detect any outflows from IR-quiet cores, though confusion in clustered regions such as NGC1333 makes it impossible to identify all the individual driving sources. This similarity in detection rates despite the difference in search methods and detection limits suggests either that the sample of protostars in Perseus is now complete, or that the existence of an outflow contributes to the Spitzer detectability, perhaps through the contribution of shocked H2 emission in the IRAC bands.
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]
  • (Ap) Mag Size Distance Rise Transit Set Gal NGC 6217 Arp 185 Umi
    Herschel 400 Observing List, evening of 2015 Oct 15 at Cleveland, Ohio Sunset 17:49, Twilight ends 19:18, Twilight begins 05:07, Sunrise 06:36, Moon rise 09:51, Moon set 19:35 Completely dark from 19:35 to 05:07. Waxing Crescent Moon. All times local (EST). Listing All Classes visible above the perfect horizon and in twilight or moonlight before 23:59. Cls Primary ID Alternate ID Con RA (Ap) Dec (Ap) Mag Size Distance Rise Transit Set Gal NGC 6217 Arp 185 UMi 16h31m48.9s +78°10'18" 11.9 2.6'x 2.1' - 15:22 - Gal NGC 2655 Arp 225 Cam 08h57m35.6s +78°09'22" 11 4.5'x 2.8' - 7:46 - Gal NGC 3147 MCG 12-10-25 Dra 10h18m08.0s +73°19'01" 11.3 4.1'x 3.5' - 9:06 - PNe NGC 40 PN G120.0+09.8 Cep 00h13m59.3s +72°36'43" 10.7 1.0' 3700 ly - 23:03 - Gal NGC 2985 MCG 12-10-6 UMa 09h51m42.0s +72°12'01" 11.2 3.8'x 3.1' - 8:39 - Gal Cigar Galaxy M 82 UMa 09h57m06.5s +69°35'59" 9 9.3'x 4.4' 12.0 Mly - 8:45 - Gal NGC 1961 Arp 184 Cam 05h43m51.6s +69°22'44" 11.8 4.1'x 2.9' 180.0 Mly - 4:32 - Gal NGC 2787 MCG 12-9-39 UMa 09h20m40.5s +69°07'51" 11.6 3.2'x 1.8' - 8:09 - Gal NGC 3077 MCG 12-10-17 UMa 10h04m31.3s +68°39'09" 10.6 5.1'x 4.2' 12.0 Mly - 8:52 - Gal NGC 2976 MCG 11-12-25 UMa 09h48m29.2s +67°50'21" 10.8 6.0'x 3.1' 15.0 Mly - 8:36 - PNe Cat's Eye Nebula NGC 6543 Dra 17h58m31.7s +66°38'25" 8.3 22" 4400 ly - 16:49 - Open NGC 7142 Collinder 442 Cep 21h45m34.2s +65°51'16" 10 12.0' 5500 ly - 20:35 - Gal NGC 2403 MCG 11-10-7 Cam 07h38m20.9s +65°33'36" 8.8 20.0'x 10.0' 11.0 Mly - 6:26 - Open NGC 637 Collinder 17 Cas 01h44m15.4s +64°07'07" 7.3 3.0' 7000 ly - 0:33
    [Show full text]
  • The Sidereal Times December 2020
    Observe—Educate—Have Fun The December 2020 Sidereal Times The Official Newsletter of The Albuquerque Astronomical Society P.O. Box 50581, Albuquerque, New Mexico 87181-0581 www.TAAS.org taas — 2011 winner of astronomy magazine’s out-of-this-world award for outstanding public programming since 1959 General Meeting News Lynne Olson TAAS ASTRONOMY syndicated TV show “Star Gazers.” His topic: “I Want to Believe: 101 TAAS GENERAL Returning to an Age of Reason” Viola Sanchez: “Solar Eclipse MEETING After 20 years of public speaking Observing” Dean Regas: “I Want to at the Cincinnati Observatory, SATURDAY, NOVEMBER 28 - Believe: Returning to an Regas has heard every astronomy 6:00 P.M. conspiracy theory and doomsday Online via Zoom* Age of Reason” prediction in the universe – and SATURDAY, NOVEMBER 28, frankly, he’s worried; worried Prior to our General Meeting on Nov. 28, we will feature TAAS member 7:00 P.M. that we are slipping into an age of superstition. Viola Sanchez with Astronomy 101, Online via Zoom* online on Zoom. He’ll discuss the Mayan Calendar, Our featured speaker for the TAAS the Moon landing, UFO sightings, Viola writes: Many TAAS members virtual General Meeting on Nov. Doomsday Comets, Astrology traveled to the path of totality of the 28 will be astronomer, author and the Star of Bethlehem; all last total solar eclipse in the United and television host Dean Regas, topics that many Americans States on August 21, 2017. At least best known as co-host of the daily two TAAS members went to Chile continued on page 2 .
    [Show full text]
  • Astronomy Magazine 2012 Index Subject Index
    Astronomy Magazine 2012 Index Subject Index A AAR (Adirondack Astronomy Retreat), 2:60 AAS (American Astronomical Society), 5:17 Abell 21 (Medusa Nebula; Sharpless 2-274; PK 205+14), 10:62 Abell 33 (planetary nebula), 10:23 Abell 61 (planetary nebula), 8:72 Abell 81 (IC 1454) (planetary nebula), 12:54 Abell 222 (galaxy cluster), 11:18 Abell 223 (galaxy cluster), 11:18 Abell 520 (galaxy cluster), 10:52 ACT-CL J0102-4915 (El Gordo) (galaxy cluster), 10:33 Adirondack Astronomy Retreat (AAR), 2:60 AF (Astronomy Foundation), 1:14 AKARI infrared observatory, 3:17 The Albuquerque Astronomical Society (TAAS), 6:21 Algol (Beta Persei) (variable star), 11:14 ALMA (Atacama Large Millimeter/submillimeter Array), 2:13, 5:22 Alpha Aquilae (Altair) (star), 8:58–59 Alpha Centauri (star system), possibility of manned travel to, 7:22–27 Alpha Cygni (Deneb) (star), 8:58–59 Alpha Lyrae (Vega) (star), 8:58–59 Alpha Virginis (Spica) (star), 12:71 Altair (Alpha Aquilae) (star), 8:58–59 amateur astronomy clubs, 1:14 websites to create observing charts, 3:61–63 American Astronomical Society (AAS), 5:17 Andromeda Galaxy (M31) aging Sun-like stars in, 5:22 black hole in, 6:17 close pass by Triangulum Galaxy, 10:15 collision with Milky Way, 5:47 dwarf galaxies orbiting, 3:20 Antennae (NGC 4038 and NGC 4039) (colliding galaxies), 10:46 antihydrogen, 7:18 antimatter, energy produced when matter collides with, 3:51 Apollo missions, images taken of landing sites, 1:19 Aristarchus Crater (feature on Moon), 10:60–61 Armstrong, Neil, 12:18 arsenic, found in old star, 9:15
    [Show full text]
  • Popular Names of Deep Sky (Galaxies,Nebulae and Clusters) Viciana’S List
    POPULAR NAMES OF DEEP SKY (GALAXIES,NEBULAE AND CLUSTERS) VICIANA’S LIST 2ª version August 2014 There isn’t any astronomical guide or star chart without a list of popular names of deep sky objects. Given the huge amount of celestial bodies labeled only with a number, the popular names given to them serve as a friendly anchor in a broad and complicated science such as Astronomy The origin of these names is varied. Some of them come from mythology (Pleiades); others from their discoverer; some describe their shape or singularities; (for instance, a rotten egg, because of its odor); and others belong to a constellation (Great Orion Nebula); etc. The real popular names of celestial bodies are those that for some special characteristic, have been inspired by the imagination of astronomers and amateurs. The most complete list is proposed by SEDS (Students for the Exploration and Development of Space). Other sources that have been used to produce this illustrated dictionary are AstroSurf, Wikipedia, Astronomy Picture of the Day, Skymap computer program, Cartes du ciel and a large bibliography of THE NAMES OF THE UNIVERSE. If you know other name of popular deep sky objects and you think it is important to include them in the popular names’ list, please send it to [email protected] with at least three references from different websites. If you have a good photo of some of the deep sky objects, please send it with standard technical specifications and an optional comment. It will be published in the names of the Universe blog. It could also be included in the ILLUSTRATED DICTIONARY OF POPULAR NAMES OF DEEP SKY.
    [Show full text]
  • 2003 Astronomy Magazine Index
    2003 astronomy magazine index Catchall (Martian crater), 11:30 observing Mars from, 7:32 hydrogen, 10:28 Subject index CCD (charge-coupled device) cameras, planets like, 6:48–53 Hydrus (constellation), 10:72–75 3:84–87, 5:84–87 seasons of, 3:72–73 A CCD techniques, 9:100–105 tilt of axis, 2:68, 5:72–73 I accidents, space-related, 7:42–47 Celestron C6-R (refractor), 11:84 EarthExplorer web site, 4:30 Achernar (star), 10:30 iceball, found beyond Pluto, 1:24 Celestron C8-N (reflector), 11:86 eclipses India, plans to visit Moon, 10:29 Advanced Camera for Surveys, 4:28 Celestron CGE-1100 (amateur telescope), in Australia (2003), 4:80–83 ALMA (Atacama Large Millimeter Array), infrared survey, 8:31 11:88 lunar integrating wavelengths, 4:24 3:36 Celestron NexStar 8 GPS (amateur telescope), of 2003, 5:18 Amalthea (Jupiter’s moon), 4:28 interferometry 1:84–87 of May 15, 2003, 5:60, 80–83, 88–89 techniques for, 7:48–53 Amateur Achievement Award, 9:32 Celestron NexStar 8i (amateur telescope), solar Andromeda Galaxy VLT interferometer, 2:32 11:89 of May 31, 2003, 5:80–83, 88–89 International Space Station, 3:31 picture of, 2:12–13 Centaurus A (NGC 5128) galaxy Edgar Wilson Award, 11:30 young stars in, 9:86–89 Internet, virtual observatories on, 9:80–85 1,000 Mira stars discovered in, 10:28 Egg Nebula, 8:36 Intes MK67 (amateur telescope), 11:89 Annefrank (asteroid), 2:32 picture of, 10:12–13 elliptical galaxies, 8:31 antineutrinos, 4:26 Io (Jupiter’s moon), 3:30 ripped apart satellite galaxy, 2:32 Eta Carinae (nebula), 5:29 ISAAC multi-mode instrument, 4:32 antisolar point, 10:18 Centaurus (constellation), 4:74–77 ETX-90EC (amateur telescope), 11:89 Antlia (constellation), 4:74–77 cepheid variable stars, 9:90–91 Europa (Jupiter’s moon), 12:30, 77 aphelion, 6:68–69 Challenger (space shuttle), 7:42–47 exoplanet magnetosphere, 11:28 J Apollo 1 (spacecraft), 7:42–47 J002E3 satellite, 1:30 Chamaeleon (constellation), 12:80–83 extrasolar planets.
    [Show full text]
  • Terry Adrian's Finest NGC Chart/Log System
    RASC FINEST NGC No. NGC Con Type R.A. Dec m_v Size Remarks Seen Date Autumn 1 7009 Aqr PN 21:04.2 -11:02 8.3 25" !! Saturn Nebula; small bright oval 2 7293 Aqr PN 22:29.6 -20:48 6.5 12'50" !! Helix Nebula; large, diffuse; use filter 3 7331 Peg G-Sb 22:37.1 +34:25 9.5 10.7x4.0 !! large, bright spiral galaxy 4 7635 Cas EN 23:20.7 +61:12 - 15x8 Bubble Neb.; very faint; 1/2 deg SW of M52 5 7789 Cas OC 23:57.0 +56:44 6.7 16 !! 300*; faint but very rich cluster 6 185 Cas G-E0 00:39.0 +48:20 11.7 2x2 companion to M31; paired with NGC 147 7 281 Cas EN 00:52.8 +56:36 - 35x30 !! large faint nebulosity near eta Cas 8 457 Cas OC 01:19.1 +58:20 6.4 13 80*; rich; one of the best Cas clusters 9 663 Cas OC 01:46.0 +61:15 7.1 16 80*; look for NGC's 654 and 659 nearby 10 I 289 Cas PN 03:10.3 +61:19 12.3 34" dim oval smudge; use nebula filter 11 7662 And PN 23:25.9 +42:33 9.2 20" !! Blue Snowball; annular at high power 12 891 And G-Sb 02:22.6 +42:21 10 13.5x2.8 !! faint, classic edge-on with dust lane 13 253 Scl G-Scp 00:47.6 -25:17 7.1 25.1x7.4 !! very large and bright but at low altitude 14 772 Ari G-Sb 01:59.3 +19:01 10.3 7.1x4.5 diffuse spiral galaxy 15 246 Cet PN 00:47.0 -11:53 8.0 3'45" faint (closer to 11 m); dark mottling 16 936 Cet G-SBa 02:27.6 -01:09 10.1 5.2x4.4 near M77; NGC 941 in the same field 17 869/84 Per OC 02:20.0 +57:08 ~4.4 30/30 !! Double Cluster; 350*; use low mag.
    [Show full text]