Calcium Channel Blockers in Hypertension: the Debate Reawakens

Total Page:16

File Type:pdf, Size:1020Kb

Calcium Channel Blockers in Hypertension: the Debate Reawakens Journal of Human Hypertension (2001) 15, 85–87 2001 Nature Publishing Group All rights reserved 0950-9240/01 $15.00 www.nature.com/jhh COMMENTARY Calcium channel blockers in hypertension: the debate reawakens GYH Lip and DG Beevers University Department of Medicine, City Hospital, Birmingham B18 7QH, UK Keywords: calcium channel blockers; meta-analysis; mortality; morbidity Ever since the publication of the Puget Sound phar- the confidence of any one study to be sure of these macosurveillance study in 1995,1 there has been a such differences.7,8 continuing debate on the effectiveness or safety of Then as the millennium year ground to its sodden the calcium channel blockers (CCBs) in the treat- halt (in England at least) came a ‘rush’ of meta- ment of hypertension and heart disease. Various analyses. To highlight a few, The Lancet published retrospective case-control studies had raised the two papers on 9 December9,10 and a ‘mini’ meta- possibility that these drugs may cause haemorrhage, analysis in their correspondence columns on 2nd suicide, cancer and excess cardiovascular morbidity December.11 Another appeared in the British Journal and mortality.2 Several observational studies and of Cardiology in November.12 There probably have some individual randomised trials in hypertension been many others. Perhaps meta-analyses begat have even suggested that, compared with other further meta-analyses. drugs, CCBs may be associated with a higher risk of The Blood Pressure Lowering Treatment Trialists’ coronary events, despite similar blood pressure con- Collaboration is a programme of overviews of trol. randomised trials which was established to investi- Many of these anxieties seemed to have been gate the effects of angiotensin-converting enzyme allayed by the placebo-controlled SYST-EUR Trial3 (ACE) inhibitors, CCBs, and other blood pressure- where the CCB, nitrendipine, bought about a major lowering drugs on mortality and major cardiovascu- reduction in stroke and a large but nonsignificant lar morbidity.9 Their overview of placebo-controlled fall in heart attacks, with no excess of cancer of trials of ACE inhibitors (four trials, 12124 patients haemorrhage. Similarly, the use of the CCB, felodip- mostly with coronary heart disease) revealed ine, was beneficial in the HOT study.4 Was the reductions in stroke (30% [95% CI 15–43]), coron- debate over? So it seemed, but the focus of the argu- ary heart disease (20% [11–28]), and major cardio- ment changed slightly. No one doubted that CCBs vascular events (21% [14–27]), which the meta- were better than placebo, but how do they compare analysis of placebo-controlled trials of CCBs (two with other agents? The STOP-H2 trial perported to trials, 5520 patients mostly with hypertension) show evidence of equivalence of calcium channel showed reductions in stroke (39% [15–56]) and blockers (felodipine or isradipine) with the older major cardiovascular events (28% [13–41]). In the agents (diuretics and beta-blockers) and was deemed overview of trials comparing blood pressure-lower- by a Lancet commentary to be ‘a draw’.5,6 However, ing strategies of different intensity (three trials, there was still the tendency for the CCBs to be 20408 patients with hypertension), there were ‘slightly better’ than other agents at preventing reduced risks of stroke (20% [2–35]), coronary heart stroke but to be ‘slightly less effective’ at preventing disease (19% [2–33]), and major cardiovascular myocardial infarction and heart failure, with no dif- events (15% [4–24]) with more intensive therapy. In ference in all-cause mortality. Two more trials with the trials that compared CCB-based regimens with CCBs which were published in 2000 (INSIGHT and diuretic-based or beta-blocker-based regimens, NORDIL) broadly produced similar findings but stat- patients assigned CCB-based therapy had a signifi- istical and methodological considerations limited cant 13% lower risk of stroke (95% CI 2–23) than among those assigned diuretic-based or beta- blocker-based therapy. Additionally, there was a Correspondence: Dr GYH Lip, University Department of Medi- 12% greater risk of coronary heart disease events of cine, City Hospital, Birmingham B18 7QH, UK. E-mail: g.y.h.lipȰbham.ac.uk borderline significance (0–26) amongst those assigned CCB-based therapy. Calcium channel blockers in hypertension GYH Lip and DG Beevers 86 The meta-analysis by Psaty et al10 of nine eligible as second-line agents. In reality, more than half of trials (27743 participants), found that CCBs and all hypertensive patients need an additional drug, other drugs achieved similar control of both systolic and a third require three drugs or more, to bring and diastolic blood pressure. Compared with about adequate control of blood pressure. patients assigned diuretics, beta-blockers, ACE Perhaps one may extend the debate by speculating inhibitors, or clonidine (n = 15 044), those assigned on the mechanisms whereby the CCB’s may differ CCBs (n = 12699) had a significantly higher risk of from other antihypertensive agents, either ben- acute myocardial infarction (odds ratio 1.26 [95% CI efically or adversely.2,13 The CCB’s might be pro- 1.11–1.43], P = 0.0003), congestive heart failure arrhythmic, pro-haemorrhagic and may also cause (1.25 [1.07–1.46], P = 0.005), and major cardiovascu- coronary steal; they may also encourage apoptosis lar events (1.10 [1.02–1.18], P = 0.018). There was and activate the renin system. However, there are no significant difference for the outcomes of stroke equal arguments in their favour, particularly as they and all-cause mortality. may be antithrombotic. Sadly, laboratory-based The ‘mini’ meta-analysis of the INSIGHT, NORDIL scientists can provide theoretical mechanisms and STOP-H2 trials11 also showed a trend in favour hereby anything might happen and other scientists of CCBs for cerebrovascular events (with a 14.7% can equally speculate why the same thing might reduction), and in favour of diuretics and beta- not happen. blockers for coronary events, with CCBs use As with the last calcium channel blocker crises, resulting in a 20% increase in myocardial infarc- there will be some anxiety amongst hypertensive tions. In the ‘solid’ meta-analysis of eight trials by patients when the ‘anti-CCB’ papers are reported in Rafflenbeul,12 for the end point of acute myocardial the newspapers or become available on the INTER- infarction, there was a relative difference of 19% in NET. This also follows on from the recent concerns favour of the diuretics, a 14% reduction in stroke over the use of doxazosin in the Antihypertensive favouring CCBs (vs diuretics/beta-blockers), whilst and Lipid Lowering treatment to prevent Heart heart failure end points were no different. Attack Trial (ALLHAT) study, with an increased risk These overviews, armed with large numbers, seem of heart failure and stroke.14 Clinicians have to have to confirm the same trends of the three major trials, a sensible answer when questioned by their patients that there was no difference between CCBs and other about the pros and cons of their antihypertensive therapies on all-cause mortality, but a trend, which therapy. Perhaps the best response is to emphasise reaches statistical significance, for an inferior effect that the highest priority is to control the blood press- on heart disease and a superior effect on stroke. It is ure, and that there are subtle differences in outcome clear that treating blood pressure is beneficial, with comparing the CCB’s with other agents, but these are strong evidence of benefits of ACE inhibitors and very controversial and may be unproven. We await CCBs by the overviews of placebo-controlled trials. the results of proper prospective randomised trials, If the question is no longer ‘do we treat hyperten- such as ALLHAT and ASCOT (Anglo-Scandinavian sion?’, but ‘how to treat?’ and ‘who to treat?’, some Cardiac Outcomes Trial) with increased interest. uncertainties arise. The meta-analyses suggest that there is weaker evidence of differences between treatment regimens of differing intensities and of Conflict of interest statement differences between treatment regimens based on DGB and GYHL are local co-principal investigators different drug classes. The meta-analysis by Psaty et for ASCOT in Birmingham, UK. Both have received al10 even goes as far as suggesting that CCBs are research funding and honoraria for educational sym- inferior to other types of antihypertensive drugs as posia, meetings, etc from various antihypertensive first-line agents in reducing the risks of several drug manufacturers. major complications of hypertension, and conclude that ‘the longer-acting calcium antagonists cannot be recommended as first-line therapy for hypertension’. References Because meta-analyses look impressive, clinicians 1 Psaty BM et al. The risk of myocardial infarction asso- tend to believe them, but in fact they have many ciated with antihypertensive drug therapies. JAMA problems. Some of the trials included were designed 1995; 274: 620–625. to demonstrate drug equivalence, whilst others 2 Lip GYH, Beevers DG. Are calcium antagonists safe in hoped to detect drug superiority. Some were open hypertension? Postgrad Med J 1996; 72: 193–194. label studies with the risk of bias in randomisation. 3 Staessen JA et al. Randomised double-blind compari- There were also major differences in the methods of son of placebo and active treatment for older patients all trials included. Furthermore, the meta-analyses with isolated systolic hypertension (SYST-EUR Trial). themselves may be prone to bias as to which end Lancet 1997; 350: 754–764. 4 Hansson L et al. Effects of intensive blood-pressure points are examined. There is also the problem that lowering and low-dose aspirin in patients with hyper- they rely heavily on the larger trials, some of which tension: principal results of the Hypertension Optimal can be criticised for their design. Finally, the biggest Treatment (HOT) randomised trial.
Recommended publications
  • Angiotensin-Converting Enzyme (ACE) Inhibitors Single Entity Agents
    Therapeutic Class Overview Angiotensin-Converting Enzyme (ACE) Inhibitors Single Entity Agents Therapeutic Class Overview/Summary: The renin-angiotensin-aldosterone system (RAAS) is the most important component in the homeostatic regulation of blood pressure.1,2 Excessive activity of the RAAS may lead to hypertension and disorders of fluid and electrolyte imbalance.3 Renin catalyzes the conversion of angiotensinogen to angiotensin I. Angiotensin I is then cleaved to angiotensin II by angiotensin- converting enzyme (ACE). Angiotensin II may also be generated through other pathways (angiotensin I convertase).1 Angiotensin II can increase blood pressure by direct vasoconstriction and through actions on the brain and autonomic nervous system.1,3 In addition, angiotensin II stimulates aldosterone synthesis from the adrenal cortex, leading to sodium and water reabsorption. Angiotensin II exerts other detrimental cardiovascular effects including ventricular hypertrophy, remodeling and myocyte apoptosis.1,2 The ACE inhibitors block the conversion of angiotensin I to angiotensin II, and also inhibit the breakdown of bradykinin, a potent vasodilator.4 Evidence-based guidelines recognize the important role that ACE inhibitors play in the treatment of hypertension and other cardiovascular and renal diseases. With the exception of Epaned® (enalapril solution) and Qbrelis® (lisinopril solution), all of the ACE inhibitors are available generically. Table 1. Current Medications Available in Therapeutic Class5-19 Generic Food and Drug Administration
    [Show full text]
  • Anticoagulant Effects of Statins and Their Clinical Implications
    Review Article 1 Anticoagulant effects of statins and their clinical implications Anetta Undas1; Kathleen E. Brummel-Ziedins2; Kenneth G. Mann2 1Institute of Cardiology, Jagiellonian University School of Medicine, and John Paul II Hospital, Krakow, Poland; 2Department of Biochemistry, University of Vermont, Colchester, Vermont, USA Summary cleavage, factor V and factor XIII activation, as well as enhanced en- There is evidence indicating that statins (3-hydroxy-methylglutaryl dothelial thrombomodulin expression, resulting in increased protein C coenzyme A reductase inhibitors) may produce several cholesterol-inde- activation and factor Va inactivation. Observational studies and one ran- pendent antithrombotic effects. In this review, we provide an update on domized trial have shown reduced VTE risk in subjects receiving statins, the current understanding of the interactions between statins and blood although their findings still generate much controversy and suggest that coagulation and their potential relevance to the prevention of venous the most potent statin rosuvastatin exerts the largest effect. thromboembolism (VTE). Anticoagulant properties of statins reported in experimental and clinical studies involve decreased tissue factor ex- Keywords pression resulting in reduced thrombin generation and attenuation of Blood coagulation, statins, tissue factor, thrombin, venous throm- pro-coagulant reactions catalysed by thrombin, such as fibrinogen boembolism Correspondence to: Received: August 30, 2013 Anetta Undas, MD, PhD Accepted after major revision: October 15, 2013 Institute of Cardiology, Jagiellonian University School of Medicine Prepublished online: November 28, 2013 80 Pradnicka St., 31–202 Krakow, Poland doi:10.1160/TH13-08-0720 Tel.: +48 12 6143004, Fax: +48 12 4233900 Thromb Haemost 2014; 111: ■■■ E-mail: [email protected] Introduction Most of these additional statin-mediated actions reported are independent of blood cholesterol reduction.
    [Show full text]
  • Interaction of the Sympathetic Nervous System with Other Pressor Systems in Antihypertensive Therapy
    Journal of Clinical and Basic Cardiology An Independent International Scientific Journal Journal of Clinical and Basic Cardiology 2001; 4 (3), 185-192 Interaction of the Sympathetic Nervous System with other Pressor Systems in Antihypertensive Therapy Wenzel RR, Baumgart D, Bruck H, Erbel R, Heemann U Mitchell A, Philipp Th, Schaefers RF Homepage: www.kup.at/jcbc Online Data Base Search for Authors and Keywords Indexed in Chemical Abstracts EMBASE/Excerpta Medica Krause & Pachernegg GmbH · VERLAG für MEDIZIN und WIRTSCHAFT · A-3003 Gablitz/Austria FOCUS ON SYMPATHETIC TONE Interaction of SNS J Clin Basic Cardiol 2001; 4: 185 Interaction of the Sympathetic Nervous System with Other Pressor Systems in Antihypertensive Therapy R. R. Wenzel1, H. Bruck1, A. Mitchell1, R. F. Schaefers1, D. Baumgart2, R. Erbel2, U. Heemann1, Th. Philipp1 Regulation of blood pressure homeostasis and cardiac function is importantly regulated by the sympathetic nervous system (SNS) and other pressor systems including the renin-angiotensin system (RAS) and the vascular endothelium. Increases in SNS activity increase mortality in patients with hypertension, coronary artery disease and congestive heart failure. This review summarizes some of the interactions between the main pressor systems, ie, the SNS, the RAS and the vascular endothelium including the endothelin-system. Different classes of cardiovascular drugs interfere differently with the SNS and the other pressor systems. Beta-blockers, ACE-inhibitors and diuretics have no major effect on central SNS activity. Pure vasodilators including nitrates, alpha-blockers and DHP-calcium channel blockers increase SNS activity. In contrast, central sympatholytic drugs including moxonidine re- duce SNS activity. The effects of angiotensin-II receptor antagonist on SNS activity in humans are not clear, experimental data are discussed in this review.
    [Show full text]
  • Antiplatelets, Anticoagulants and Bleeding Risk and Ppis
    GP INFOSHEET – ANTITHROMBOTICS AND BLEEDING RISK Author(s): Dr. Stuart Rison; Dr. John Robson; Version: 1.6; Last updated 28/11/2019 ANTIPLATELETS, ANTICOAGULANTS AND BLEEDING RISK – WHICH AGENTS AND FOR HOW LONG?; WHY USE PPIs? KEY RECOMMENDATION Patients taking anticoagulants or antiplatelet medicines at high bleed risk should be considered for a Proton Pump Inhibitor (PPI). PPIs reduce bleeding risk by 70% or more. Patients age 65 years or more on anticoagulants or antiplatelet agents are at increased risk because of their age and bleeding risk continues to rise exponentially at older ages. PPIs are recommended in patients on anticoagulants or antiplatelet agents: o At any age with previous GI bleeding o Age 75 years or older o 65 years or older with additional risk factors (see box below) o Interacting medication Dual antiplatelet therapy (DAPT) for cardiac conditions - typically aspirin + clopidogrel - is rarely justified for more than 1 year. Review use for more than one 1 year and in conjunction with the cardiologist consider whether this can revert to a single agent. Dual-pathway therapy for atrial fibrillation - both an anticoagulant and one or more antiplatelet agents- is also rarely justified for longer than 1 year. Consider anticoagulant alone with appropriate specialist advice. ADDITIONAL GI-BLEED RISK FACTORS Anaemia Hb <11g/L Impaired renal function (eGFR<30) Upper GI inflammation (and of course previous GI bleeding) Liver disease Interacting medicines (NSAIDs, SSRI/SNRIs, bisphosphonates, lithium, spironolactone, phenytoin, carbamazepine) WHAT DO WE MEAN BY ANTITHROMBOTICS? Antithrombotics reduce blood clot formation1. There are two main categories: 1. Antiplatelet agent – inhibit platelet aggregation e.g.
    [Show full text]
  • Current Status of Antifibrinolytics in Cardiopulmonary Bypass and Elective Deep Hypothermic Circulatory Arrest Jeffrey A
    Anesthesiology Clin N Am 21 (2003) 527–551 Current status of antifibrinolytics in cardiopulmonary bypass and elective deep hypothermic circulatory arrest Jeffrey A. Green, MD*, Bruce D. Spiess, MD Department of Anesthesiology, Virginia Commonwealth University, Medical College of Virginia Campus, 1200 East Broad Street, PO Box 980695, Richmond, VA 23209 USA Bleeding after cardiopulmonary bypass Cardiopulmonary bypass (CPB) alters the hemostatic balance and predisposes cardiac surgery patients to an increased risk of microvascular bleeding. Bleeding and the need for transfusion are among the most common complications of cardiac surgery. In fact, until recently, blood transfusions seemed to be required for about 50% of all cardiac surgery patients [1]. Currently, CPB accounts for 10% to 20% of the transfusions performed in the United States [2,3]. Transfusion, however, exposes patients to added risks such as infectious disease transmission [4], transfusion reactions [5], graft-versus-host disease [6], transfusion-induced lung injury [7], and decreased resistance to postoperative infection [8,9]. Transfusion increases the risk of infection by 35% to 300% and increases the risk of pneumonia in coronary artery bypass (CABG) patients by 5% per unit transfused [10]. The primary purported benefit of transfusion, increased oxygen carrying capacity, has not been definitively proven. Excessive postoperative bleeding may necessitate surgical reexploration, increasing morbidity, and mortality. Postoperatively, the risk of excessive bleeding is 11% [11], and 5% to 7% of patients lose more than 2 L of blood in the first 24 hours after CPB [12]. Reexploration for hemorrhage is required in 3.6% to 4.2% of patients [13], and mortality rates range from 10% to 22% [14].
    [Show full text]
  • Antithrombotic Therapy for VTE Disease, 10Th Ed, 2016
    [ Evidence-Based Medicine ] Antithrombotic Therapy for VTE Disease CHEST Guideline and Expert Panel Report Clive Kearon, MD, PhD; Elie A. Akl, MD, MPH, PhD; Joseph Ornelas, PhD; Allen Blaivas, DO, FCCP; David Jimenez, MD, PhD, FCCP; Henri Bounameaux, MD; Menno Huisman, MD, PhD; Christopher S. King, MD, FCCP; Timothy A. Morris, MD, FCCP; Namita Sood, MD, FCCP; Scott M. Stevens, MD; Janine R. E. Vintch, MD, FCCP; Philip Wells, MD; Scott C. Woller, MD; and COL Lisa Moores, MD, FCCP BACKGROUND: We update recommendations on 12 topics that were in the 9th edition of these guidelines, and address 3 new topics. METHODS: We generate strong (Grade 1) and weak (Grade 2) recommendations based on high- (Grade A), moderate- (Grade B), and low- (Grade C) quality evidence. RESULTS: For VTE and no cancer, as long-term anticoagulant therapy, we suggest dabigatran (Grade 2B), rivaroxaban (Grade 2B), apixaban (Grade 2B), or edoxaban (Grade 2B) over vitamin K antagonist (VKA) therapy, and suggest VKA therapy over low-molecular-weight heparin (LMWH; Grade 2C). For VTE and cancer, we suggest LMWH over VKA (Grade 2B), dabigatran (Grade 2C), rivaroxaban (Grade 2C), apixaban (Grade 2C), or edoxaban (Grade 2C). We have not changed recommendations for who should stop anticoagulation at 3 months or receive extended therapy. For VTE treated with anticoagulants, we recommend against an inferior vena cava filter (Grade 1B). For DVT, we suggest not using compression stockings routinely to prevent PTS (Grade 2B). For subsegmental pulmonary embolism and no proximal DVT, we suggest clinical surveillance over anticoagulation with a low risk of recurrent VTE (Grade 2C), and anticoagulation over clinical surveillance with a high risk (Grade 2C).
    [Show full text]
  • AHFS Pharmacologic-Therapeutic Classification (2012).Pdf
    AHFS Pharmacologic-Therapeutic Classification 4:00 Antihistamine Drugs 4:04 First Generation Antihistamines 4:04.04 Ethanolamine Derivatives 4:04.08 Ethylenediamine Derivatives 4:04.12 Phenothiazine Derivatives 4:04.16 Piperazine Derivatives 4:04.20 Propylamine Derivatives 4:04.92 Miscellaneous Derivatives 4:08 Second Generation Antihistamines 4:92 Other Antihistamines* 8:00 Anti-infective Agents 8:08 Anthelmintics 8:12 Antibacterials 8:12.02 Aminoglycosides 8:12.06 Cephalosporins 8:12.06.04 First Generation Cephalosporins 8:12.06.08 Second Generation Cephalosporins 8:12.06.12 Third Generation Cephalosporins 8:12.06.16 Fourth Generation Cephalosporins 8:12.07 Miscellaneous -Lactams 8:12.07.04 Carbacephems 8:12.07.08 Carbapenems 8:12.07.12 Cephamycins 8:12.07.16 Monobactams 8:12.08 Chloramphenicol 8:12.12 Macrolides 8:12.12.04 Erythromycins 8:12.12.12 Ketolides 8:12.12.92 Other Macrolides 8:12.16 Penicillins 8:12.16.04 Natural Penicillins 8:12.16.08 Aminopenicillins 8:12.16.12 Penicillinase-resistant Penicillins 8:12.16.16 Extended-spectrum Penicillins 8:12.18 Quinolones 8:12.20 Sulfonamides 8:12.24 Tetracyclines 8:12.24.12 Glycylcyclines 8:12.28 Antibacterials, Miscellaneous 8:12.28.04 Aminocyclitols 8:12.28.08 Bacitracins 8:12.28.12 Cyclic Lipopeptides 8:12.28.16 Glycopeptides 8:12.28.20 Lincomycins 8:12.28.24 Oxazolidinones 8:12.28.28 Polymyxins 8:12.28.30 Rifamycins 8:12.28.32 Streptogramins 8:12.28.92 Other Miscellaneous Antibacterials* 8:14 Antifungals 8:14.04 Allylamines 8:14.08 Azoles 8:14.16 Echinocandins 8:14.28 Polyenes 8:14.32
    [Show full text]
  • Beta-Blockers for Hypertension: Time to Call a Halt
    Journal of Human Hypertension (1998) 12, 807–810 1998 Stockton Press. All rights reserved 0950-9240/98 $12.00 http://www.stockton-press.co.uk/jhh FOR DEBATE Beta-blockers for hypertension: time to call a halt DG Beevers University Department of Medicine, City Hospital, Birmingham B18 7QH, UK Beta-blockers are not very effective at lowering blood the endorsement of beta-blockers by the British Hyper- pressure in elderly hypertensive patients or in Afro- tension Society and other guidelines committees, Caribbeans and these two groups represent a large pro- except possibly for severe resistant hypertension, high portion of people with raised blood pressure. Further- risk post-infarct patients and those with angina pectoris. more they do not prevent more heart attacks than the The time has come to move across to newer, safer, more thiazide diuretics. Beta-blockers can also be dangerous tolerable and more effective antihypertensive agents in many hypertensive patients and even when these whilst continuing to use thiazide diuretics in low doses drugs are not contraindicated, they cause subtle and in the elderly as first choice, providing there are no depressing side effects which should preclude their contraindications. usefulness. The time has come therefore to reconsider Keywords: beta-blockers; hypertension Introduction Safety and tolerability Beta-adrenergic blockers were first introduced in the There is little doubt that the beta-blockers are the early 1960s for the treatment of angina pectoris. most unsafe of all antihypertensive drugs. They can Their antihypertensive properties were not fully precipitate or worsen heart failure in patients with recognised until the celebrated paper by Pritchard myocardial damage and they are contraindicated in and Gillam in 1964.1 They rapidly became popular patients with asthma.
    [Show full text]
  • Antithrombotic Therapy in Hypertension: a Cochrane Systematic Review
    Journal of Human Hypertension (2005) 19, 185–196 & 2005 Nature Publishing Group All rights reserved 0950-9240/05 $30.00 www.nature.com/jhh ORIGINAL ARTICLE Antithrombotic therapy in hypertension: a Cochrane Systematic review DC Felmeden and GYH Lip Haemostasis, Thrombosis, and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK Although elevated systemic blood pressure (BP) results on one large trial, ASA taken for 5 years reduced in high intravascular pressure, the main complications myocardial infarction (ARR, 0.5%, NNT 200 for 5 years), of hypertension are related to thrombosis rather than increased major haemorrhage (ARI, 0.7%, NNT 154), and haemorrhage. It therefore seemed plausible that use of did not reduce all cause mortality or cardiovascular antithrombotic therapy may be useful in preventing mortality. In two small trials, warfarin alone or in thrombosis-related complications of elevated BP. The combination with ASA did not reduce stroke or coronary objectives were to conduct a systematic review of the events. Glycoprotein IIb/IIIa inhibitors as well as ticlopi- role of antiplatelet therapy and anticoagulation in dine and clopidogrel have not been sufficiently eval- patients with BP, to address the following hypotheses: uated in patients with elevated BP. To conclude for (i) antiplatelet agents reduce total deaths and/or major primary prevention in patients with elevated BP, anti- thrombotic events when compared to placebo or other platelet therapy with ASA cannot be recommended active treatment; and (ii) oral anticoagulants reduce total since the magnitude of benefit, a reduction in myocar- deaths and/or major thromboembolic events when dial infarction, is negated by a harm of similar magni- compared to placebo or other active treatment.
    [Show full text]
  • Use of Antithrombotic Medications in the Presence of Neuraxial Anesthesia
    Guideline: Use of Antithrombotic Medications In The Presence of Neuraxial Anesthesia Use of Antithrombotic Medications In The Presence of Neuraxial Anesthesia Purpose of Guidelines: To establish appropriate administration and timing of antithrombotic medications before, during, and after the use of neuraxial anesthesia to minimize the risk of bleeding. Definitions: Neuraxial Anesthesia = Delivery of anesthetic medication requiring placement of catheters or needles into the epidural or spinal space Antithrombotic Medications = Anticoagulant, antiplatelet, and thrombolytic medications Background1-3: Spinal (or epidural) hematomas are a rare but catastrophic complication of neuraxial anesthesia. The risk of hematoma development is increased in the presence of antithrombotic medication. Patients undergoing neuraxial anesthesia must have the risks of bleeding from neuraxial interventions balanced with the underlying and ongoing risk of thromboembolism necessitating anticoagulation. Recommendations for the management of specific antithrombotics in patients undergoing neuraxial anesthesia are provided in the following Tables: o Table 1. Management of Intravenous and Subcutaneous Anticoagulation Therapy in Patients Undergoing Neuraxial Anesthesia o Table 2. Management of ORAL Anticoagulation Therapy in Patients Undergoing Neuraxial Anesthesia o Table 3. Management of ORAL and Intravenous Antiplatelet and Thrombolytic Therapy in Patients Undergoing Neuraxial Anesthesia Workflow if a Contradicted Medication is Prescribed: Providers will have
    [Show full text]
  • 3. Diuretics for Hypertension-A Review and Update
    REVIEW Diuretics for Hypertension: A Review and Update George C. Roush1 and Domenic A. Sica2 Downloaded from https://academic.oup.com/ajh/article-abstract/29/10/1130/2622231 by Xenia Agorogianni user on 17 July 2019 This review and update focuses on the clinical features of hydrochlo- ectopy and reduce the risk for sudden cardiac death relative to thi- rothiazide (HCTZ), the thiazide-like agents chlorthalidone (CTDN) and azide-type diuretics used alone. A recent synthesis of 44 trials has indapamide (INDAP), potassium-sparing ENaC inhibitors and aldos- shown that the relative potencies in milligrams among spironolac- terone receptor antagonists, and loop diuretics. Diuretics are the sec- tone (SPIR), amiloride, and eplerenone (EPLER) are approximately ond most commonly prescribed class of antihypertensive medication, from 25 to 10 to 100, respectively, which may be important when SPIR and thiazide-related diuretics have increased at a rate greater than is poorly tolerated. SPIR reduces proteinuria beyond that provided by that of antihypertensive medications as a whole. The latest hyper- other renin angiotensin aldosterone inhibitors. EPLER also reduces tension guidelines have underscored the importance of diuretics for proteinuria and has beneficial effects on endothelial function. While all patients, but particularly for those with salt-sensitive and resist- guidelines often do not differentiate among specific diuretics, this ant hypertension. HCTZ is 4.2–6.2 systolic mm Hg less potent than review demonstrates that these distinctions are important for man- CTDN, angiotensin-converting enzyme inhibitors, beta blockers, and aging hypertension. calcium channel blockers by 24-hour measurements and 5.1 mm Hg systolic less potent than INDAP by office measurements.
    [Show full text]
  • Calcium Channel Blockers
    Calcium Channel Blockers Summary In general, calcium channel blockers (CCBs) are used most often for the management of hypertension and angina. There are 2 classes of CCBs: the dihydropyridines (DHPs), which have greater selectivity for vascular smooth muscle cells than for cardiac myocytes, and the non-DHPs, which have greater selectivity for cardiac myocytes and are used for cardiac arrhythmias. The DHPs cause peripheral edema, headaches, and postural hypotension most commonly, all of which are due to the peripheral vasodilatory effects of the drugs in this class of CCBs. The non-DHPs are negative inotropes and chronotropes; they can cause bradycardia and depress AV node conduction, increasing the risk of heart failure exacerbation, bradycardia, and AV block. Clevidipine is a DHP calcium channel blocker administered via continuous IV infusion and used for rapid blood pressure reductions. All CCBs are substrates of CYP3A4, but both diltiazem and verapamil are also inhibitors of 3A4 and have an increased risk of drug interactions. Verapamil also inhibits CYP2C9, CYP2C19, and CYP1A2. Pharmacology CCBs selectively inhibit the voltage-gated L-type calcium channels on cardiac myocytes, vascular smooth muscle cells, and cells within the sinoatrial (SA) and atrioventricular (AV) nodes, preventing influx of extracellular calcium. CCBs act by either deforming the channels, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the major cellular calcium store, the endoplasmic reticulum. Calcium influx via these channels serves for excitation-contraction coupling and electrical discharge in the heart and vasculature. A decrease in intracellular calcium will result in inhibition of the contractile process of the myocardial smooth muscle cells, resulting in dilation of the coronary and peripheral arterial vasculature.
    [Show full text]