The Correlation Between Herbivory and Medicinal Activity in Thespesia Populnea, Hibiscus Tiliaceus and Hibiscus Rosa‐Sinensis on Mo’Orea, French Polynesia

Total Page:16

File Type:pdf, Size:1020Kb

The Correlation Between Herbivory and Medicinal Activity in Thespesia Populnea, Hibiscus Tiliaceus and Hibiscus Rosa‐Sinensis on Mo’Orea, French Polynesia THE CORRELATION BETWEEN HERBIVORY AND MEDICINAL ACTIVITY IN THESPESIA POPULNEA, HIBISCUS TILIACEUS AND HIBISCUS ROSA‐SINENSIS ON MO’OREA, FRENCH POLYNESIA HAYLEY A. COX Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. While secondary compounds are produced by plants in low abundance, these bioactive compounds are essential to human survival for their medicinal applications. These same compounds are crucial to plants, having evolved as defense mechanisms against herbivory. Chief among the theories of plant responses to herbivory, the Optimal Defense Theory (ODT) hypothesizes that plants will allocate defenses in direct proportion to the risk of a particular plant part to herbivory and the value of that part in terms of loss of fitness to the entire plant. Through insect damage assessments and antimicrobial assays, this study investigates the correlation between herbivory and medicinal activity and whether or not the within‐plant ODT is followed in three ethnobotanically useful Malvaceae species, Thespesia populnea, Hibiscus tiliaceus and Hibiscus rosa‐sinensis. All three plant species demonstrated an inverse relationship between herbivory and medicinal activity. Variation in secondary composition data from both insect damage assessment and antimicrobial tests supported the ODT. Keywords: Thespesia populnea, Hibiscus tiliaceus, Hibiscus rosa‐sinensis, coevolution, secondary compounds, herbivory, Optimal Defense Theory (ODT), antifungal INTRODUCTION (Stamp 2003), which are typically used for medicinal applications. Since the beginning of human history, The antagonistic arms race between plants plants have played an integral role in human and insects is evidenced by the diversification survival. However, while scientists have of insects and plants which occurred over the calculated that humans in their modern form same approximate time periods, and many of speciated only approximately 200,000 years these insect/ host plant relationships have ago, primitive vascular plants originated in been conserved (Farrell 1994). Today there are the Silurian period, roughly 430 million years about 240,000 species of flowering plants, ago. The oldest fossils identified definitively which greatly outnumber all other kinds of as angiosperms date from the early Cretaceous plants. As the flowering plants became more Period, around 127 million years ago (Raven diverse, so did the insects whose feeding and Johnson 1989). Thus the origin of habits were closely linked with the medicinal activity in plants must have been in characteristics of the flowering plants, response to environmental, not human, supporting the idea that insects and flowering pressures. There is a considerable amount of plants coevolved with one another (Raven and evidence that herbivory was a major selective Johnson 1989). In response to attacks by force on the evolution of plant defenses herbivores, plants have evolved a variety of mechanisms for defense. Insects have in turn countered with their own defenses (Stamp During this project I screened three 2003) because once the members of a species in the Malvaceae family (Thespesia particular group acquired the ability to feed populnea, Hibiscus tiliaceus, and Hibiscus rosa‐ on a certain bioactive plant, these herbivores sinensis), all with known bioactivity, for the gained access to a new resource which they purpose of assessing how the bioactivity of could exploit without competition from other these species correlates with damage from herbivores (Raven and Johnson 1989). The herbivores. Specifically, I ask: (1) does the defense mechanisms in plants that act as insect amount of herbivory damage on a given plant deterrents are known as “secondary” relate to the amount of insecticidal secondary compounds since they do not contribute to compound in the plant; and (2) do these any primary photosynthetic or metabolic species allocate more secondary compounds activities to the plants (Stamp 2003). While to their younger and/or reproductively active secondary compounds are produced in low parts as compared to their older parts, abundance, they are essential to human and following the predictions of the ODT? plant use. There are many possible ways plants can METHODS respond to herbivory. According to Stamp (2003), the within‐plant Optimal Defense Study Sites Theory (ODT) predicts that a plant will allocate its defenses in direct proportion to the Mo’orea (GPS location: 06K 0192036 E, risk of a particular plant part to herbivory and 8062786 N) is a volcanic, high island the value of that part in terms of loss of fitness (maximum elevation 1207 m) that is part of to the entire plant. Further, there will be the Society Islands archipelago in French within‐plant variation in the distribution of Polynesia. Three species in the Malvaceae these bioactive compounds for defense; the family were selected for study for two reasons: plant will invest the greatest amount of first, each species has documented medicinal defensive secondary compounds in its most activity (Whistler 1992) and second, reproductively active parts (flowers, fruits and Anderson’s (2005) study on the model young leaves) (Anderson, 2005). Anderson Malvaceae species, cotton, found evidence for (2005) found support for this idea in a study the presence of anti‐herbivore defensive focused on a model system using cotton compounds. Thespesia populnea, Hibiscus (Gossypium hirsutum: Malvaceae) in which tiliaceus, and Hibiscus rosa‐sinensis, were damage resulted in higher concentrations of collected from two sites on Mo’orea– site A secondary compounds in the young and/or along the coastline just south of Gump Station reproductive tissue. This type of defense is (06K 0199841 E, 8063792 N) and site B along known as an induced defense reaction because the coastline on Mari Mari Kellum’s property it involves new production or the (06K 0197422 E, 8061475 N) (Figure 1). All translocation of secondary compounds within plant species collected were deposited into the the plant in response to tissue damage University of California Herbarium, Berkeley. (Anderson 2005). Anderson’s study further revealed that an induced response occurs after Sample Species insect damage throughout the entire plant regardless of where plant damage originally Thespesia populnea, Soland ex. Correa 1807, occurred. Another major type of plant defense of the Malvaceae family (Tahitian name is constitutive defense, a defense always “Miro”) is a native tree that is widespread present in a plant. Anderson’s (2005) study from East Africa to Eastern Polynesia and is documented the presence of both constitutive common both along beaches (Medicinal Plants and induced defenses in cotton plants. in the South Pacific, 1998), and in the valleys Site A. Gump 500 m elevation. H. rosa‐sinensis, widely Station introduced throughout the South Pacific (Medicinal Plants in the South Pacific 1998) has been reported to have antioestrogentic, Site B. Mari Mari anti‐cancer, analgesic, anti‐inflammatory and Kellum’s Property antifungal properties (Medicinal Plants in the South Pacific 1998). Traditionally, H. rosa‐ sinensis has been used by Tahitians to induce abortion, ease menstrual cramps, assist in childbirth and to treat boils, sores and FIG. 1. Site locations on Mo’orea. inflammations (Medicinal Plants in the South Pacific, 1998). of Mo’orea (Chabouis, 1970). It is known to contain antibacterial, antifungal, anti‐yeast, Plant Material Collection antiimplantation and antispasmotic properties (Medicinal Plants in the South Pacific 1998) At each site, plant material was collected and has a wide range of traditional uses from three individuals of each species (n=18). throughout the South Pacific. These include In order to asses if the amount of herbivory the use of an infusion of the crushed seeds to damage on a given plant correlated to the soothe headaches and the use of sap from the amount of insecticidal secondary compound fruit stalk to topically treat skin ailments such in the plant, samples were collected from each as centipede bites (Whistler, 1992), jellyfish individual, separating each tree into four stings and cuts (Tom Carlson, personal quadrants: water‐side left (A), water‐side right communication). (B), mountain‐side left (C), and mountain‐side Hibiscus tiliaceus, Linnaeus 1753 (common right (D) (Figure 2). Each quadrant was name yellow or beach hibiscus or Tahitian separated into the highest and lowest four name “Purau”) is a native, medium‐sized tree branches that could be reached. To determine abundantly distributed throughout the if these species allocated more secondary tropics. It is found along coastlines worldwide compounds to their younger and/or and is common on beaches and thickets reproductively active parts as compared to (Medicinal Plants in the South Pacific 1998), their older parts, four “young” and four “old” yet can spread up to the highest points on leaves were collected from each height within Mo’orea (Murdock, 2008). H. tiliaceus has each quadrant from each individual (n=1152). traditionally been used by the Polynesians to “Young” leaves were categorized as the first treat a wide range of ailments including sizable leaf at the tip of each branch and “old” fractured bones, sprained muscles, gonorrhea, leaves as the tenth leaf down on the same menstrual cramps, abrasions, and fever branch. Additionally, five haphazardly (Medicinal Plants in the South Pacific 1998). A collected fruit samples for T. populnea and five student paper (Achrekar 1995) additionally flowers
Recommended publications
  • Calophyllum Inophyllum (Kamani) Clusiaceae (Syn
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Calophyllum inophyllum (kamani) Clusiaceae (syn. Guttiferae) (mangosteen family) Alexandrian laurel, beach mahogany, beauty leaf, poon, oil nut tree (English); beach calophyllum (Papua New Guinea), biyuch (Yap); btaches (Palau); daog, daok (Guam, N. Marianas); dilo (Fiji); eet (Kosrae); feta‘u (Tonga); fetau (Samoa); isou (Pohnpei); kamani, kamanu (Hawai‘i); lueg (Marshalls); rakich (Chuuk); tamanu (Cook Islands, Society Islands, Marquesas); te itai (Kiribati) J. B. Friday and Dana Okano photo: J. B. Friday B. J. photo: Kamani trees are most commonly seen along the shoreline (Hilo, Hawai‘i). IN BRIEF Growth rate May initially grow up to 1 m (3.3 ft) in height Distribution Widely dispersed throughout the tropics, in- per year on good sites, although usually much more slowly. cluding the Hawaiian and other Pacific islands. Main agroforestry uses Mixed-species woodlot, wind- break, homegarden. Size Typically 8–20 m (25–65 ft) tall at maturity. Main products Timber, seed oil. Habitat Strand or low-elevation riverine, 0–200 m (660 ft) Yields No timber yield data available; 100 kg (220 lb) in Hawai‘i, up to 800 m (2000 ft) at the equator; mean an- nuts/tree/yr yielding 5 kg (11 lb) oil. nual temperatures 18–33°C (64–91°F); annual rainfall 1000– Intercropping Casts a heavy shade, so not suitable as an 5000 mm (40–200 in). overstory tree; has been grown successfully in mixed-species Vegetation Occurs on beach and in coastal forests. timber stands. Soils Grows best in sandy, well drained soils.
    [Show full text]
  • FL0107:Layout 1.Qxd
    S. M. El Naggar & N. Sawady Pollen Morphology of Malvaceae and its taxonomic significance in Yemen Abstract El Naggar, S. M. & Sawady N.: Pollen Morphology of Malvaceae and its taxonomic signifi- cance in Yemen. — Fl. Medit. 18: 431-439. 2008. — ISSN 1120-4052. The pollen morphology of 20 species of Malvaceae growing in Yemen was investigated by light (LM) and scanning electron microscope (SEM). The studied taxa belong to 9 genera and three different tribes. These taxa are: Abelmoschus esculentus, Hibiscus trionum, H. micranthus, H. deflersii, H. palmatus, H. vitifolius, H. rosa-sinensis, H. ovalifolius, Gossypium hirsutum, Thespesia populnea (L.) Solander ex Correa and Senra incana (Cav.) DC. (Hibiscieae); Malva parviflora and Alcea rosea (Malveae); Abutilon fruticosum, A. figarianum, A. bidentatum, A. pannosum, Sida acuta, S. alba and S. ovata (Abutileae). Pollen shape, size, aperture, exine structure and sculpturing as well as the spine characters proved that they are of high taxonom- ic value. Pollen characters with some other morphological characters are discussed in the light of the recent classification of the family in Yemen. Key words: Malvaceae, Morphology, Yemen. Introduction Malvaceae Juss. (s. str.) is a large family of herbs, shrubs and trees; comprising about 110 genera and 2000 species. It is a globally distributed family with primary concentrations of genera in the tropical and subtropical regions (Hutchinson 1967; Fryxell 1975, 1988 & 1998; Heywood 1993; La Duke & Doeby 1995; Mabberley 1997). Due to the high economic value of many taxa of Malvaceae (Gossypium, Hibiscus, Abelmoschus and Malva), several studies of different perspective have been carried out, such as those are: Edlin (1935), Bates and Blanchard (1970), Krebs (1994a, 1994b), Ray (1995 & 1998), Hosni and Araffa (1999), El Naggar (1996, 2001 & 2004), Pefell & al.
    [Show full text]
  • Binalo Thespesia Populnea
    Binalo March 2017 Thespesia populnea Native Plants of Guam inalo is a medium-sized tree that can be found throughout tropical Bareas of the Pacific. It may grow up to 50 ft. tall and is common on beaches, rivers, river mouths and limestone terraces not far from the coast. Other Common Names: Aden apple, Amae, Badrirt, Banalo, Bang-beng, Indian tulip tree, Kilulo, Malapuso, Milo, Mio, Miro, Mulomulo, Pacific rosewood, Panu, Polo, Pone, Portia tree, Seaside mahoe, Surina Synonyms: Hibiscus populneus, Thespesia macrophylla Family Name: Malvaceae Plant Appearance Distinctive feature: The Hibiscus-like a flowers are yellow when they open in Binalo flower . the morning and darken during the day. They fade to a rose purple color before dropping off the tree in the evening. Leaf Shape: Heart-shape Arrangement: Alternate Type: Simple Flower Size: 2-3 in. with five petals Color: Pale yellow with reddish centers Binalo leavesa. Binalo fruita. in the morning, darkening during the day and turning purple before falling off. Shape: Bell-shaped Arrangement: Solitary axillary flower Flowering period: Year-round Habit Typical height: 25-40 ft. Ave. crown radius: 20-35 ft. Fruit Type: Dehiscent fruit (the pods open Binalo seedsa. Binalo seedlingsa. when mature to release the seeds) College of Natural & Applied Sciences USDA is an equal University of Guam | Unibetsedåt Guahan opportunity employer and provider. Size: 1-2 in. in diameter, rounded but https://archive.org/stream/ flattened Risks emergencyfoodpla00merr/ Color: Green to brown/grayish emergencyfoodpla00merr_djvu.txt (mature) Near surface roots: None www.ctahr.hawaii.edu/forestry/trees/ Number of seeds: 4-10 seeds per pod Limb breakage: Low little_skolmen.html Edible: No Special considerations: Binalo is www.en.wikipedia.org sometimes considered messy as it www.herbpathy.com drops leaves and dry seed capsules www.nativeplants.hawaii.edu Growing Your Own year-round.
    [Show full text]
  • Performance of Mesophytic Species Planted in the Coast of Char Kashem, Patuakhali, Bangladesh
    Bangladesh J. Bot. 39(2): 245-247, 2010 (December) - Short communication PERFORMANCE OF MESOPHYTIC SPECIES PLANTED IN THE COAST OF CHAR KASHEM, PATUAKHALI, BANGLADESH MD GOLAM MOULA Bangladesh Forest Research Institute, Post Box No. 273, Chittagong 4000, Bangladesh Key words: Mesophytes, Coastal afforestation, Growth performance, Bangladesh Abstract Mesophytic species such as Acacia nilotica, Albizia labeck, Albizia procera, Casuarina equisetifolia, Pithocellobium dulche, Samanea saman and Thespesia populnea were raised in the western coast of Char Kashem under Patuakhali district of Bangladesh. After seven years of planting highest survivability was found in A. labeck followed by P. dulche, C. equisetifolia, S. saman, A. procera, A. nilotica and T. populnea. The mean maximum diameter at breast height was found in S. saman followed by C. equisetifolia, A. procera, A. labeck, P. dulche, A. nilotica and T. populnea. The maximum plant height was found in C. equisetifolia followed by S. saman, A. procera, T. populnea, A. nilotica, A. labeck and P. dulche indicating suitability of all the seven species for plantation at Char Kashem. Coastal afforestation in 1966 was primarily initiated to save lives and properties of the coastal dwellers from the devastating cyclones and tidal surges (Das and Siddiqi 1985) and secondarily to (i) reclamation and stabilization of newly accreted land and acceleration of further accretion, (ii) production of timber and fuel wood and (iii) creation of employment opportunity in the coastal areas (Saenger 1987). The coastal afforestation programme gained a momentum with the involvement of World Bank in 1975 (Imam 1982). Up to 2001 a total of 1,48,526 hectares of mangrove plantation has been established under different projects.
    [Show full text]
  • Malubago Malubago Wilding (Taken a Young Malubago Tree (Perspective)
    ASSISTED REGENERATION OF BEACH FORESTS AND MANGROVES Environmental Science for Social Change (ESSC) Manila Observatory Bldg. Ateneo de Manila University Campus Loyola Heights, Katipunan Road, Quezon City Dried fruit of Malubago Malubago wilding (taken A Young Malubago tree (perspective). from Camarines Sur). growing in a sandy beach portion away from the shoreline (Inland Beach Forest) Sagnay, Camarines Sur. TREE SPECIE PROFILE: Name/s: MALUBAGO (Tagalog) • COTTON-WOOD (English) • HIBISCUS TILIACEUS, TALIPARITI TILIACEUM (Scientific) GENERAL DESCRIPTION: A small tree reaching 8-10 meters with heart-shaped leaves and large yellow gumamela-like flowers. When planted in rows, can be pruned into a tall hedge or when solitary develops a full round crown. PLANTING ZONE: Inland beach forest. Sandy portions of the beach, but away from the water and not directly exposed to strong winds. Can take extreme sun and salt spray. IDEAL SUBSTRATE: Sand or sandy soil. WATER REQUIREMENT: Plant in the rainy season and water only occasionally during the summers until well established. SEED / WILDING AVAILABILITY: September to December. PLANTING RECOMMENDATIONS: Gather wildings (1-6 inch seedlings will be found to grow underneath mature trees in the said months) and nurse in small- medium seedling bags until 2-3 feet high, before planting into the ground. Select a sandy portion with full sun, but protected from harsh winds. Ideal for landscaping. NOTES: When in bloom, flowers are numerous and can be collected to make for exotic table pieces. RELATED LINKS: http://www.hibiscus.org/species/htiliaceus.php AREAS IN LUZON WHERE SEEN IN ABUNDANCE: Bicol region PHOTO GALLERY: Malubago Tree, Sagnay, Malubago flower buds.
    [Show full text]
  • Cyrtandra and Other Supertramps
    Cyrtandra and other supertramps Quentin Cronk University of British Columbia Canada PSI 2009 Acknowledgements • Jean-Yves Meyer, Pacific Cyrtandra • B.L. “Bill” Burtt, Asian Cyrtandra • Students: Hannah Atkins, Gemma Bramley, Jill Preston • Jim Smith, Boise, Idaho • The organizers, PSI Supertramp Diamond (1974) coined the term ‘supertramp’ for species (birds) of high dispersability that are mainly found on small or isolated islands— evidence that, in these cases, high dispersability compensates for ecological specialization/ poor competitive ability . DIAMOND, J. M. 1974. Colonization of exploded volcanic islands by birds: the supertramp strategy. Science 184: 803– 806. Indo-pacific strand flora - supertramps? • Native - Thespesia populnea, Ipomoea pes- caprae, Vigna marina, Cordia subcordata, Scaevola taccada, Pisonia grandis • Palaeosynanthropic - Hibiscus tiliaceus, Calophyllum inophyllum • Neosynanthropic - Terminalia catappa, Casuarina equisetifolia Types of supertramp • those in which little speciation has occured (e.g. Thespesia ) • those characterized by at least some island radiations ( Bidens , Metrosideros ). Question 1: Patterns of invasion in the Pacific • species widespread among many islands - Pandanus tectorius (Pandanaceae; Wagner et al., 1990) • multiple radiations on many islands - Psychotria (Rubiaceae; Nepokroeff et al., 2003 • combination of a few widespread species and endemic island species - Scaevola (Goodeniaceae; Howarth et al., 2003); Metrosideros (Myrtaceae: Percy et al., 2008) • single island lineages - Hillebrandia
    [Show full text]
  • Thespesia Populnea (Milo) Left: Newly Opened Flower
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Thespesia populnea (milo) Malvaceae (mallow family) badrirt (Palau); banalo (Northern Marianas); bang-beng (Yap); kilulo (Guam); mi‘o (Marquesas); milo (Hawai‘i, Mar- shall Islands, Samoa, Tonga); miro (Pitcairn Island); miro, ‘amae (Rarotonga, Society Islands); mulomulo (Fiji); panu (Kosrae); polo (Chuuk); pone (Pohnpei); purau (Tahiti); portia tree, seaside mahoe, Pacific rosewood, Indian tulip tree, cork tree, umbrella tree (English) J. B. Friday and Dana Okano photo: J. B. Friday B. J. photo: Milo tree on a beach in Lahaina, Maui, Hawai‘i. IN BRIEF Growth rate Moderate, 0.6–1 m/yr (2–3 ft/yr) for the first Distribution Coastal areas of the Indian and Pacific few years. Oceans; throughout Oceania. Main agroforestry uses Soil stabilization, windbreak. Size Small tree typically 6–10 m (20–33 ft) at maturity. Main uses Craftwood, ornamental. Habitat Tropical and warm subtropical, usually found at Yields Heartwood in 30+ years. sea level to 150 m (500 ft). Intercropping Compatible with many coastal species, al- Vegetation Associated with a wide range of coastal spe- though it requires full sun. cies. Invasive potential Has potential to become an invasive Soils Thrives on sandy coastal soils as well as volcanic, weed—should not be introduced into new areas. limestone, and rocky soils. INTRODUCTION Current distribution Milo (Thespesia populnea) is one of the most important trees Milo has been planted throughout the tropics and is natu- to Pacific Island peoples. The rich, dark wood is carved into ralized in tropical climates throughout the world from the beautiful bowls, tools, small canoes, and figures.
    [Show full text]
  • Florida Exotic Pest Plant Councils 2017 List Of
    CATEGORY II (continued) Gov. The 2017 list was prepared by the Scientific Name** Common Name List Zone FLEPPC List Definitions: Exotic – a species FLEPPC Plant List Committee Florida Exotic Pest Plant Tradescantia spathacea oyster plant C, S introduced to Florida, purposefully or accidentally, from a (Rhoeo spathacea, Rhoeo discolor) natural range outside of Florida. Native – a species Patricia L. Howell, Chair 2012-2017, Broward Tribulus cistoides puncture vine, burr-nut N, C, S Council’s 2017 List of whose natural range includes Florida. Naturalized County Parks, Natural Resources and Land Vitex trifolia simple-leaf chaste tree C, S Management Section, [email protected] Washingtonia robusta Washington fan palm C, S exotic – an exotic that sustains itself outside cultivation Invasive Plant Species Wisteria sinensis Chinese wisteria N, C (it is still exotic; it has not “become” native). Invasive Stephen H. Brown, UF / IFAS Lee County Xanthosoma sagittifolium malanga, elephant ear N, C, S exotic – an exotic that not only has naturalized, Extension, Parks and Recreation Division, The mission of the Florida Exotic Pest Plant but is expanding on its own in Florida native plant [email protected] Council is to support the management of invasive Recent changes to plant names exotic plants in Florida’s natural areas by communities. Janice Duquesnel, Florida Park Service, Florida providing a forum for the exchange of scientific, Department of Environmental Protection, educational and technical information. Old Name New Name Abbreviations: Government List (Gov. List): [email protected] www.fleppc.org Possession, propagation, sale, and/or transport of Aleurites fordii Vernicia fordii David W.
    [Show full text]
  • Wake Island Grasses Gra Sse S
    Wake Island Grasses Gra sse s Common Name Scientific Name Family Status Sandbur Cenchrus echinatus Poaceae Naturalized Swollen Fingergrass Chloris inflata Poaceae Naturalized Bermuda Grass Cynodon dactylon Poaceae Naturalized Beach Wiregrass Dactyloctenium aegyptium Poaceae Naturalized Goosegrass Eleusine indica Poaceae Naturalized Eustachys petraea Poaceae Naturalized Fimbristylis cymosa Poaceae Indigenous Dactyloenium Aegyptium Lepturus repens Poaceae Indigenous Manila grass Zoysia matrella Poaceae Cultivated Cenchrus echinatus Chloris inlfata Fimbristylis cymosa Lepturus repens Zoysia matrella Eustachys petraea Wake Island Weeds Weeds Common Name Scientific Name Family Status Spanish Needle Bidens Alba Asteraceae Naturalized Hairy Spurge Chamaesyce hirta Euphorbiaceae Naturalized Wild Spider Flower Cleome gynandra Capparidaceae Naturalized Purslane Portulaca oleracea Portulaceaceae Naturalized Puncture Vine Tribulus cistoides Zygophyllaceae Indigenous Coat Buttons Tridax procumbens Asteraceae Naturalized Tridax procumbens Uhaloa Waltheria Indica Sterculiacae Indigenous Bidens alba Chamaesyce hirta Cleome gynandra Portulaca oleracea Tribulus cistoides Waltheria indica Wake Island Vines Vines Common Name Scientific Name Family Status Beach Morning Glory Ipomoea pes-caprae Convolvulaceae Indigenous Beach Moonflower Ipomoea violacea Convolvulaceae Indigenous Passion fruit Passiflora foetida Passifloraceae Naturalized Ipomoea violacea Ipomoea pes-caprae Passiflora foetida Wake Island Trees Trees Common Name Scientific Name Family Status
    [Show full text]
  • The Biology and Geology of Tuvalu: an Annotated Bibliography
    ISSN 1031-8062 ISBN 0 7305 5592 5 The Biology and Geology of Tuvalu: an Annotated Bibliography K. A. Rodgers and Carol' Cant.-11 Technical Reports of the Australian Museu~ Number-t TECHNICAL REPORTS OF THE AUSTRALIAN MUSEUM Director: Technical Reports of the Australian Museum is D.J.G . Griffin a series of occasional papers which publishes Editor: bibliographies, catalogues, surveys, and data bases in J.K. Lowry the fields of anthropology, geology and zoology. The journal is an adjunct to Records of the Australian Assistant Editor: J.E. Hanley Museum and the Supplement series which publish original research in natural history. It is designed for Associate Editors: the quick dissemination of information at a moderate Anthropology: cost. The information is relevant to Australia, the R.J. Lampert South-west Pacific and the Indian Ocean area. Invertebrates: Submitted manuscripts are reviewed by external W.B. Rudman referees. A reasonable number of copies are distributed to scholarly institutions in Australia and Geology: around the world. F.L. Sutherland Submitted manuscripts should be addressed to the Vertebrates: Editor, Australian Museum, P.O. Box A285, Sydney A.E . Greer South, N.S.W. 2000, Australia. Manuscripts should preferably be on 51;4 inch diskettes in DOS format and ©Copyright Australian Museum, 1988 should include an original and two copies. No part of this publication may be reproduced without permission of the Editor. Technical Reports are not available through subscription. New issues will be announced in the Produced by the Australian Museum Records. Orders should be addressed to the Assistant 15 September 1988 Editor (Community Relations), Australian Museum, $16.00 bought at the Australian Museum P.O.
    [Show full text]
  • Common Trees of Virgin Islands National Park
    Seashore Trees Fruit Trees Mangrove National Park Service Sugar Apple Rhizophora mangle U.S. Department of the Interior Black, white and red Annona squamosa mangroves are common A small deciduous tree attaining 10-20 ft. in Virgin Islands National Park species along our tropi­ height with irregular cal shores. The red spreading branches. Well shown here, extends shorelines or creates is­ known for its sweet edi­ Common Trees of lands with it's arching ble fruit, resembling hand Virgin Islands National Park stilt roots. grenades in appearance. Ginger Thomas* Seagrape Tecoma stans Cocoloba uvifera Mango* This familiar shoreline Mangifera indica tree is easy to identify by An excellent hardy its large round leathery shade tree with lance leaves. It bears clusters shaped leaves and bear­ of green, ripening to ing one of the finest purple, fruits that are tropical fruits. One of edible. many introduced spe­ cies. Its sap may cause dermatitis. Maho* Thespesia populnea This coastal tree, for Genip* which Maho Bay was Melicoccus bijugatus named, is characterized This large deciduous by large bell-shaped tree has gray blotchy flowers that turn from bark and dark green pale yellow to purple. It leaves . The clustered has heart shaped leaves edible fruits are quarter and green seed pods that sized with green leath­ Ginger Thomas (also yellow cedar or turn brown. ery skin, a single large yellow elder) is a nonnative tree or seed and tart pulpy Manchineel fruit. shrub, that produces the official Hippomane mancine/la flower of the US Virgin Islands. It is This is a very poisonous found along roadsides with bright tree with shiny , small Some common trees within the Park are non­ yellow, trumpet shaped flowers, and oval leaves.
    [Show full text]
  • Morphological and Chemical Differences Among Populations of Hibiscus Tiliaceus Along an Elevational Gradient in Moorea, French Polynesia
    UC Berkeley Student Research Papers, Fall 2006 Title Morphological and Chemical Differences Among Populations of Hibiscus Tiliaceus Along an Elevational Gradient in Moorea, French Polynesia Permalink https://escholarship.org/uc/item/67j9641r Author Bell, Thomas W. Publication Date 2006-12-01 eScholarship.org Powered by the California Digital Library University of California MORPHOLOGICAL AND CHEMICAL DIFFERENCES AMONG POPULATIONS OF HIBISCUS TILIACEUS ALONG AN ELEVATIONAL GRADIENT IN MOOREA, FRENCH POLYNESIA THOMAS W. BELL Department of Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. Environmental variables change over elevational gradients and can isolate plant populations. Three varieties of Hibiscus tiliaceus L. exist on an elevational gradient in Moorea, French Polynesia. These variety’s morphological and chemical characteristics are associated with the differences between their environments. Leaf and flower morphological data were collected and analyzed and found significant differences in petal width and length, anther count, burgundy center color, and leaf width and length between the varieties, particularly between the coastal and mountain types. The increased rainfall and lower temperatures of the high mountains lowered net primary production for the mountain variety as compared to the coastal and mid-mountain varieties. The mid-mountain variety was found to have greater competition for light than the other varieties. These can be linked to the significant size differences in leaves and inflorescence. Chemical differences were analyzed using anti-microbial and anti-cancer bioscreens. Significant differences were found in the anti-microbial bioscreen between the mid-mountain variety, which showed little activity, and both the coastal and mountain varieties. The anti-cancer screen showed increased activity from the coastal and mountain leaves.
    [Show full text]