Mass Spectrometry of Picolinyl Esters of Cyclopropene Fatty Acids*

Total Page:16

File Type:pdf, Size:1020Kb

Mass Spectrometry of Picolinyl Esters of Cyclopropene Fatty Acids* 980 Eur. J. Lipid Sci. Technol. 2011, 113, 980–984 Research Article Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids* Gerhard Knothe1, Umer Rashid2, Suzana Yusup2 and Farooq Anwar3,4 1 National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL, USA 2 Chemical Engineering Department, Universiti Technologi PETRONAS, Bandar Sari Iskandar, Tronoh, Perak, Malaysia 3 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, Pakistan 4 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Thespesia populnea belongs to the plant family of Malvaceae which contain cyclopropane and cyclopropene fatty acids. However, previous literature reports vary regarding the content of these compounds in Thespesia populnea seed oil. In this work, the content of malvalic acid (8,9-methylene- 9-heptadecenoic acid) in the fatty acid profile of Thespesia populnea seed oil was approximately 7% by GC. Two cyclopropane fatty acids were identified, including dihydrosterculic acid. The methyl and picolinyl esters of Thespesia populnea seed oil were also prepared. The mass spectrum of picolinyl malvalate was more closely investigated, especially an ion at m/e 279, which does not fit the typical series of ions observed in picolinyl esters. It is shown that this ion is caused by cleavage at the picolinyl moiety and contains the fatty acid chain without the picolinyl moiety. This type of cleavage has previously not been observed prominently in picolinyl esters and may therefore be diagnostic for picolinyl esters of cyclopropene fatty acids. The NMR spectra of Thespesia populnea methyl esters are also discussed. Practical applications: The work reports the fatty acid composition of Thespesia seed oil whose derivatives have not yet been extensively utilized for industrial purposes, for example, biodiesel. Knowing this composition is essential for understanding potential uses and, for example, in case of biodiesel the fuel properties. Besides this issue, some data (mass spectrometry and NMR) crucial for obtaining the composition information are analyzed in detail. The biodiesel properties of methyl esters of Thespesia populnea will be reported separately. Keywords: GC / MS / Nuclear magnetic resonance / Thespesia populnea Received: January 4, 2011 / Revised: March 24, 2011 / Accepted: April 12, 2011 DOI: 10.1002/ejlt.201100004 1 Introduction malvalic acid (8,9-methylene-8-heptadecenoic acid) in its seed oil [9]. Thespesia populnea belongs to the Malvaceae Several plant families whose oils contain cyclic fatty acids are family and, accordingly, its seed oil is known to contain known. Prominent representatives containing cyclopropene cyclopropane and cyclopropene fatty acids [5, 6, 10]. Both and/or cyclopropane fatty acids are Sterculaceae, malvalic acid and sterculic acid (9,10-methylene-9-octade- Bombacaceae, and Tiliceae, Sapindaceae besides Malvaceae cenoic acid) as well as dihydrosterculic acid (9,10-methylene and others as well as some bacteria [1–7]. Eight cyclopropyl octadecanoic acid) have been reported in Thespesia populnea fatty acids, including several novel compounds, were ident- [10], while an earlier report [11] does not mention the pres- ified by GC–MS in walnut oil [8]. One species, Gnetum ence of cyclic fatty acids and another gives them combined as gnemon, was even reported to contain approximately 39% sterculic acid [3]. Correspondence: Dr. Gerhard Knothe, USDA/ARS/NCAUR, 1815 N. à Disclaimer: Mention of trade names or commercial products in this University St., Peoria, IL 61604, USA publication is solely for the purpose of providing specific information and E-mail: [email protected] does not imply recommendation or endorsement by the US Department of Fax: þ1-309-681-6524 Agriculture. USDA is an equal opportunity provider and employer. ß 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ejlst.com Eur. J. Lipid Sci. Technol. 2011, 113, 980–984 Fatty acids of Thespesia populnea 981 During our ongoing investigation of potential feedstocks for equipped with a Agilent 5973 mass selective detector. biodiesel [12, 13], defined as the mono-alkyl esters of veg- Components were identified by comparison of retention etable oils or animal fats although other lipid feedstocks can times and mass spectra with authentic samples. also be used, we also became interested in Thespesia populnea. High-resolution MS was carried at the University of The fatty acid profile of a feedstock for biodiesel is generally Minnesota MS Facility (Minneapolis, MN) using a DB-5 identical with that of the biodiesel fuel and is largely respon- column on a Hewlett-Packard Series II 5890 gas chromato- sible for the fuel properties. Therefore, the fatty acid profile is graph and Finnigan MAT 95 double-focusing high-resol- essential when considering suitability of a feedstock for bio- ution mass spectrometer. diesel production. Here we report on the fatty acid profile of NMR spectra were acquired on a on a Bruker (Billerica, Thespesia populnea seed oil, also in light of the aforementioned MA) Avance 500 spectrometer operating at 500 MHz 1 13 inconsistent results. ( H-NMR) or 125 ( C-NMR) with CDCl3 as solvent. The mass spectra of picolinyl esters of cyclopropene fatty acids, namely malvalic and sterculic acids, have been dis- 3 Results and discussion cussed in the literature [14, 15]. However, there are discrep- ancies in this literature regarding some aspects of these Fatty acid profile: Previous literature on the fatty acid profile of spectra. In the course of identifying the various fatty acids Thespesia populnea seed oil shows some disagreements or in Thespesia populnea oil and its methyl esters, we analyzed the variations. While one report [11] does not even mention corresponding picolinyl esters by GC with a FID (GC) and cyclopropene or cyclopropane fatty acids, another report GC–MS. In light of the aforementioned discrepancies in the indicates 2.5% malvalic and 1.6% sterculic acid with 0.9% literature, we also report on the mass spectrum of picolinyl combined dihydrosterculic acid/C18:3v3 [12] while another malvalate. As a third aspect of this work, the essential features 1 13 [3] reports up to 8% cyclopropenoid acids (given as sterculic of the H- and C-NMR spectra of the methyl esters of acid). The fatty acid profile of Thespesia populnea oil as Thespesia populnea are briefly discussed. obtained here is given in Table 1 and shows malvalic acid at approximately 7% (6.8% as determined by GC). 2 Materials and methods Furthermore, two cyclopropane fatty acids were identified here which contrasts with another report [12] in which two The seeds from fully ripened Milo (Thespesia populnea L.) cyclopropene fatty acids (malvalic and sterculic) and one fruits were collected in the vicinity of the University of cyclopropane fatty acid (dihydrosterculic) were reported. Karachi, Karachi, Pakistan. The oil from the seeds was With the exception of a greater amount of palmitic acid found extracted with hexane in a Soxhlet extractor. The oil content here and malvalic acid as discussed above, the fatty acid of the seeds determined from this procedure is approximately profile determined in this work largely agrees with that dis- 20 wt%. cussed in the literature. Thespesia populnea methyl esters (TPME) were synthes- MS: Figure 1 shows the EI mass spectrum of picolinyl ized by a conventional transesterification procedure at 608C malvalate as obtained by GC–MS analysis. It largely agrees with a 6:1 molar ratio of alcohol/vegetable oil and 1% sodium methoxide as catalyst for 1 h. The product was purified by washing with water until the wash water showed a neutral pH, Table 1. Fatty acid profile of Thespesia populnea as determined by removing the methanol by rotary evaporation and drying with GC. Components are given in order of elution. The order of elution is magnesium sulfate. the same for picolinyl esters when using the same GC conditions Picolinyl esters of Thespesia populnea and standard fatty (however, analysis time extended) acids (palmitic, stearic, oleic, linoleic) were synthesized by a procedure available at the Lipid Library [16]. The picolinyl Fatty acid Amount (%) esters of the standard fatty acids were used to verify identity Tetradecanoic (Myristic) 0.5 and retention times of the components of picolinyl esters of Hexadecanoic (Palmitic) 26.8 Thespesia populnea. 9(Z)-Hexadecenoic (Palmitoleic) 0.7 GC for fatty acid profile analysis was carried out with an 9,10-Methylenehexadecanoic 0.9 Agilent 6890 gas chromatograph equipped and a Supelco Octadecanoic (Stearic) 4.1 (Bellefonte, PA) SP–2380 capillary column (30 m  8,9-Methylene-8-heptadecenoic (Malvalic) 6.8 0.25 mm inner diameter  0.2 mm film thickness). The oven 9(Z)-Octadecenoic (Oleic) 15.7 temperature ramp program was 1508C for 15 min, 150– 11(Z)-Octadecenoic (Asclepic) 1.8 2108Cat28C/min, and then ballistic heating to 2208C with 9(Z),12(Z)-Octadecadienoic (Linoleic) 39.2 9.10-Methyleneoctadecanoic (Dihydrosterculic) 1.5 a 5 min hold with He flow rate of 0.8 mL/min and 15 psi Eicosanoic (Arachidic) 0.5 (217.6 bar) pressure. For mass spectrometric analysis by Tetracosanoic (Lignoceric) 0.5 electron ionization (EI) of the picolinyl esters, analysis was Other 1.2 carried out using the same column in an Agilent 6890 GC ß 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ejlst.com 982 G. Knothe et al. Eur. J. Lipid Sci. Technol. 2011, 113, 980–984 92 have been virtually no reports on such a fragment being observed prominently in the mass spectra of the picolinyl esters of fatty compounds. Therefore, the question arises if m/z 279 corresponds to C H NO (cleavage between the Abundance 17 29 2 cyclopropenyl moiety and the terminal CH3)orC18H31O2 108 (cleavage of the picolinyl moiety; in case of picolinyl malva- 164 þ 55 67 81 late 279 ¼ 371 (M ) – 92). To clarify this issue, high-resol- 272 279 ution MS was carried out on a sample of picolinyl esters of 370 121 151 206 286 328 Thespesia populnea oil.
Recommended publications
  • Calophyllum Inophyllum (Kamani) Clusiaceae (Syn
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Calophyllum inophyllum (kamani) Clusiaceae (syn. Guttiferae) (mangosteen family) Alexandrian laurel, beach mahogany, beauty leaf, poon, oil nut tree (English); beach calophyllum (Papua New Guinea), biyuch (Yap); btaches (Palau); daog, daok (Guam, N. Marianas); dilo (Fiji); eet (Kosrae); feta‘u (Tonga); fetau (Samoa); isou (Pohnpei); kamani, kamanu (Hawai‘i); lueg (Marshalls); rakich (Chuuk); tamanu (Cook Islands, Society Islands, Marquesas); te itai (Kiribati) J. B. Friday and Dana Okano photo: J. B. Friday B. J. photo: Kamani trees are most commonly seen along the shoreline (Hilo, Hawai‘i). IN BRIEF Growth rate May initially grow up to 1 m (3.3 ft) in height Distribution Widely dispersed throughout the tropics, in- per year on good sites, although usually much more slowly. cluding the Hawaiian and other Pacific islands. Main agroforestry uses Mixed-species woodlot, wind- break, homegarden. Size Typically 8–20 m (25–65 ft) tall at maturity. Main products Timber, seed oil. Habitat Strand or low-elevation riverine, 0–200 m (660 ft) Yields No timber yield data available; 100 kg (220 lb) in Hawai‘i, up to 800 m (2000 ft) at the equator; mean an- nuts/tree/yr yielding 5 kg (11 lb) oil. nual temperatures 18–33°C (64–91°F); annual rainfall 1000– Intercropping Casts a heavy shade, so not suitable as an 5000 mm (40–200 in). overstory tree; has been grown successfully in mixed-species Vegetation Occurs on beach and in coastal forests. timber stands. Soils Grows best in sandy, well drained soils.
    [Show full text]
  • Scientific Name Species Common Name Abies Lasiocarpa FIR Subalpine Acacia Macracantha ACACIA Long-Spine
    Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek Alnus iridis ssp. sinuata ALDER Sitka Alnus maritima ALDER Seaside Alvaradoa amorphoides ALVARADOA Mexican Amelanchier laevis SERVICEBERRY Allegheny Amyris balsamifera TORCHWOOD Balsam Annona squamosa SUGAR-APPLE NA Araucaria cunninghamii ARAUCARIA Cunningham Arctostaphylos glauca MANZANITA Bigberry Asimina obovata PAWPAW Bigflower Bourreria radula STRONGBACK Rough Brasiliopuntia brasiliensis PRICKLY-PEAR Brazilian Bursera simaruba GUMBO-LIMBO NA Caesalpinia pulcherrima FLOWERFENCE NA Capparis flexuosa CAPERTREE Limber CRUCIFIXION- Castela emoryi THORN NA Casuarina equisetifolia CASUARINA Horsetail Ceanothus arboreus CEANOTHUS Feltleaf Ceanothus spinosus CEANOTHUS Greenbark Celtis lindheimeri HACKBERRY Lindheimer Celtis occidentalis HACKBERRY Common Cephalanthus occidentalis BUTTONBUSH Common Cercis canadensis REDBUD Eastern Cercocarpus traskiae CERCOCARPUS Catalina Chrysophyllum oliviforme SATINLEAF NA Citharexylum berlandieri FIDDLEWOOD Berlandier Citrus aurantifolia LIME NA Citrus sinensis ORANGE Orange Coccoloba uvifera SEAGRAPE NA Colubrina arborescens COLUBRINA Coffee Colubrina cubensis COLUBRINA Cuba Condalia globosa
    [Show full text]
  • Aflatoxin Contamination of Non-Cultivated Fruits in Zambia
    fmicb-10-01840 August 9, 2019 Time: 11:48 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Arizona ORIGINAL RESEARCH published: 09 August 2019 doi: 10.3389/fmicb.2019.01840 Aflatoxin Contamination of Non-cultivated Fruits in Zambia Paul W. Kachapulula1,2*, Ranajit Bandyopadhyay3 and Peter J. Cotty1* 1 USDA-ARS Aflatoxin Laboratory, School of Plant Sciences, The University of Arizona, Tucson, AZ, United States, 2 Plant Pathology Laboratory, School of Agricultural Sciences, Department of Plant Science, University of Zambia, Lusaka, Zambia, 3 International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria Wild fruits are an important food and income source for many households in Zambia. Non-cultivated plants may be as susceptible as crops to aflatoxin contamination. Concentrations of aflatoxins in commonly consumed wild fruits from markets and characteristics of associated aflatoxin-producers need to be determined to assess the aflatoxin risk posed by handling, processing, storage, and consumption. Samples of Schinziophyton rautanenii (n = 22), Vangueriopsis lanciflora (n = 7), Thespesia garckeana (n = 17), Parinari curatellifolia (n = 17), Ziziphus spp. (n = 10), Adansonia digitata (n = 9), and Tamarindus indica (n = 23) were assayed for aflatoxin using lateral-flow immunochromatography from 2016 to 2017. Aflatoxins were above Zambia’s regulatory Edited by: limit (10 mg/kg) in S. rautanenii (average = 57 mg/kg), V. lanciflora (average = 12 mg/kg), Mehdi Razzaghi-Abyaneh, Pasteur Institute of Iran (PII), Iran and T. garckeana (average = 11 mg/kg). The L strain morphotype of Aspergillus flavus Reviewed by: was the most frequent member of Aspergillus section Flavi in market samples, although Kanniah Rajasekaran, Aspergillus parasiticus and fungi with S morphology were also found.
    [Show full text]
  • FL0107:Layout 1.Qxd
    S. M. El Naggar & N. Sawady Pollen Morphology of Malvaceae and its taxonomic significance in Yemen Abstract El Naggar, S. M. & Sawady N.: Pollen Morphology of Malvaceae and its taxonomic signifi- cance in Yemen. — Fl. Medit. 18: 431-439. 2008. — ISSN 1120-4052. The pollen morphology of 20 species of Malvaceae growing in Yemen was investigated by light (LM) and scanning electron microscope (SEM). The studied taxa belong to 9 genera and three different tribes. These taxa are: Abelmoschus esculentus, Hibiscus trionum, H. micranthus, H. deflersii, H. palmatus, H. vitifolius, H. rosa-sinensis, H. ovalifolius, Gossypium hirsutum, Thespesia populnea (L.) Solander ex Correa and Senra incana (Cav.) DC. (Hibiscieae); Malva parviflora and Alcea rosea (Malveae); Abutilon fruticosum, A. figarianum, A. bidentatum, A. pannosum, Sida acuta, S. alba and S. ovata (Abutileae). Pollen shape, size, aperture, exine structure and sculpturing as well as the spine characters proved that they are of high taxonom- ic value. Pollen characters with some other morphological characters are discussed in the light of the recent classification of the family in Yemen. Key words: Malvaceae, Morphology, Yemen. Introduction Malvaceae Juss. (s. str.) is a large family of herbs, shrubs and trees; comprising about 110 genera and 2000 species. It is a globally distributed family with primary concentrations of genera in the tropical and subtropical regions (Hutchinson 1967; Fryxell 1975, 1988 & 1998; Heywood 1993; La Duke & Doeby 1995; Mabberley 1997). Due to the high economic value of many taxa of Malvaceae (Gossypium, Hibiscus, Abelmoschus and Malva), several studies of different perspective have been carried out, such as those are: Edlin (1935), Bates and Blanchard (1970), Krebs (1994a, 1994b), Ray (1995 & 1998), Hosni and Araffa (1999), El Naggar (1996, 2001 & 2004), Pefell & al.
    [Show full text]
  • Binalo Thespesia Populnea
    Binalo March 2017 Thespesia populnea Native Plants of Guam inalo is a medium-sized tree that can be found throughout tropical Bareas of the Pacific. It may grow up to 50 ft. tall and is common on beaches, rivers, river mouths and limestone terraces not far from the coast. Other Common Names: Aden apple, Amae, Badrirt, Banalo, Bang-beng, Indian tulip tree, Kilulo, Malapuso, Milo, Mio, Miro, Mulomulo, Pacific rosewood, Panu, Polo, Pone, Portia tree, Seaside mahoe, Surina Synonyms: Hibiscus populneus, Thespesia macrophylla Family Name: Malvaceae Plant Appearance Distinctive feature: The Hibiscus-like a flowers are yellow when they open in Binalo flower . the morning and darken during the day. They fade to a rose purple color before dropping off the tree in the evening. Leaf Shape: Heart-shape Arrangement: Alternate Type: Simple Flower Size: 2-3 in. with five petals Color: Pale yellow with reddish centers Binalo leavesa. Binalo fruita. in the morning, darkening during the day and turning purple before falling off. Shape: Bell-shaped Arrangement: Solitary axillary flower Flowering period: Year-round Habit Typical height: 25-40 ft. Ave. crown radius: 20-35 ft. Fruit Type: Dehiscent fruit (the pods open Binalo seedsa. Binalo seedlingsa. when mature to release the seeds) College of Natural & Applied Sciences USDA is an equal University of Guam | Unibetsedåt Guahan opportunity employer and provider. Size: 1-2 in. in diameter, rounded but https://archive.org/stream/ flattened Risks emergencyfoodpla00merr/ Color: Green to brown/grayish emergencyfoodpla00merr_djvu.txt (mature) Near surface roots: None www.ctahr.hawaii.edu/forestry/trees/ Number of seeds: 4-10 seeds per pod Limb breakage: Low little_skolmen.html Edible: No Special considerations: Binalo is www.en.wikipedia.org sometimes considered messy as it www.herbpathy.com drops leaves and dry seed capsules www.nativeplants.hawaii.edu Growing Your Own year-round.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Performance of Mesophytic Species Planted in the Coast of Char Kashem, Patuakhali, Bangladesh
    Bangladesh J. Bot. 39(2): 245-247, 2010 (December) - Short communication PERFORMANCE OF MESOPHYTIC SPECIES PLANTED IN THE COAST OF CHAR KASHEM, PATUAKHALI, BANGLADESH MD GOLAM MOULA Bangladesh Forest Research Institute, Post Box No. 273, Chittagong 4000, Bangladesh Key words: Mesophytes, Coastal afforestation, Growth performance, Bangladesh Abstract Mesophytic species such as Acacia nilotica, Albizia labeck, Albizia procera, Casuarina equisetifolia, Pithocellobium dulche, Samanea saman and Thespesia populnea were raised in the western coast of Char Kashem under Patuakhali district of Bangladesh. After seven years of planting highest survivability was found in A. labeck followed by P. dulche, C. equisetifolia, S. saman, A. procera, A. nilotica and T. populnea. The mean maximum diameter at breast height was found in S. saman followed by C. equisetifolia, A. procera, A. labeck, P. dulche, A. nilotica and T. populnea. The maximum plant height was found in C. equisetifolia followed by S. saman, A. procera, T. populnea, A. nilotica, A. labeck and P. dulche indicating suitability of all the seven species for plantation at Char Kashem. Coastal afforestation in 1966 was primarily initiated to save lives and properties of the coastal dwellers from the devastating cyclones and tidal surges (Das and Siddiqi 1985) and secondarily to (i) reclamation and stabilization of newly accreted land and acceleration of further accretion, (ii) production of timber and fuel wood and (iii) creation of employment opportunity in the coastal areas (Saenger 1987). The coastal afforestation programme gained a momentum with the involvement of World Bank in 1975 (Imam 1982). Up to 2001 a total of 1,48,526 hectares of mangrove plantation has been established under different projects.
    [Show full text]
  • Thespesia Populnea (Milo) Left: Newly Opened Flower
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Thespesia populnea (milo) Malvaceae (mallow family) badrirt (Palau); banalo (Northern Marianas); bang-beng (Yap); kilulo (Guam); mi‘o (Marquesas); milo (Hawai‘i, Mar- shall Islands, Samoa, Tonga); miro (Pitcairn Island); miro, ‘amae (Rarotonga, Society Islands); mulomulo (Fiji); panu (Kosrae); polo (Chuuk); pone (Pohnpei); purau (Tahiti); portia tree, seaside mahoe, Pacific rosewood, Indian tulip tree, cork tree, umbrella tree (English) J. B. Friday and Dana Okano photo: J. B. Friday B. J. photo: Milo tree on a beach in Lahaina, Maui, Hawai‘i. IN BRIEF Growth rate Moderate, 0.6–1 m/yr (2–3 ft/yr) for the first Distribution Coastal areas of the Indian and Pacific few years. Oceans; throughout Oceania. Main agroforestry uses Soil stabilization, windbreak. Size Small tree typically 6–10 m (20–33 ft) at maturity. Main uses Craftwood, ornamental. Habitat Tropical and warm subtropical, usually found at Yields Heartwood in 30+ years. sea level to 150 m (500 ft). Intercropping Compatible with many coastal species, al- Vegetation Associated with a wide range of coastal spe- though it requires full sun. cies. Invasive potential Has potential to become an invasive Soils Thrives on sandy coastal soils as well as volcanic, weed—should not be introduced into new areas. limestone, and rocky soils. INTRODUCTION Current distribution Milo (Thespesia populnea) is one of the most important trees Milo has been planted throughout the tropics and is natu- to Pacific Island peoples. The rich, dark wood is carved into ralized in tropical climates throughout the world from the beautiful bowls, tools, small canoes, and figures.
    [Show full text]
  • CHEMISTRY and HISTOLOGY of the GLANDS of the COTTON PLANT, with NOTES on the OCCURRENCE of SIMILAR GLANDS in RELATED Plantsl
    CHEMISTRY AND HISTOLOGY OF THE GLANDS OF THE COTTON PLANT, WITH NOTES ON THE OCCURRENCE OF SIMILAR GLANDS IN RELATED PLANTSl By ERNEST E. STANFORD, Scientific Assistant, and ARNO VIEHOEVER, Pharmacog- nosist in Charge, Pharmacognosy Laboratory, Bureau of Chemistry, United States Department of Agriculture INTRODUCTION The work herein reported forms a portion of a chemical and biological investigation of the cotton plant (Gossypium spp.), the purpose of which is to isolate and determine the substance or substances which attract the boll weevil. A previous paper (77)2 discusses the isolation of certain glucosids and the products of their hydrolysis, as well as preliminary studies of an ethereal oil which manifested some attraction for the boll weevil. Both the glucosids and this oil, as well as several other sub- stances, are largely localized in prominent internal glands which are very numerous in nearly all parts of the cotton plant. The main purpose of this paper is to discuss the occurrence, formation, structure, and con- tents of these glands. Glands of another type, more properly referred to as "nectaries/' also occur in the cotton plant. These are superficial in position and definitely localized. The internal glands have nothing in common with these nectaries save the function of secretion. In certain taxonomic and other literature, however, either or both types are referred to indis- criminately simply as "glands." Therefore, it seems advisable also to discuss briefly in this paper the nature and occurrence of the nectaries, in order to distinguish them clearly from the internal secretory organs, which form the main subject of the present study.
    [Show full text]
  • Wake Island Grasses Gra Sse S
    Wake Island Grasses Gra sse s Common Name Scientific Name Family Status Sandbur Cenchrus echinatus Poaceae Naturalized Swollen Fingergrass Chloris inflata Poaceae Naturalized Bermuda Grass Cynodon dactylon Poaceae Naturalized Beach Wiregrass Dactyloctenium aegyptium Poaceae Naturalized Goosegrass Eleusine indica Poaceae Naturalized Eustachys petraea Poaceae Naturalized Fimbristylis cymosa Poaceae Indigenous Dactyloenium Aegyptium Lepturus repens Poaceae Indigenous Manila grass Zoysia matrella Poaceae Cultivated Cenchrus echinatus Chloris inlfata Fimbristylis cymosa Lepturus repens Zoysia matrella Eustachys petraea Wake Island Weeds Weeds Common Name Scientific Name Family Status Spanish Needle Bidens Alba Asteraceae Naturalized Hairy Spurge Chamaesyce hirta Euphorbiaceae Naturalized Wild Spider Flower Cleome gynandra Capparidaceae Naturalized Purslane Portulaca oleracea Portulaceaceae Naturalized Puncture Vine Tribulus cistoides Zygophyllaceae Indigenous Coat Buttons Tridax procumbens Asteraceae Naturalized Tridax procumbens Uhaloa Waltheria Indica Sterculiacae Indigenous Bidens alba Chamaesyce hirta Cleome gynandra Portulaca oleracea Tribulus cistoides Waltheria indica Wake Island Vines Vines Common Name Scientific Name Family Status Beach Morning Glory Ipomoea pes-caprae Convolvulaceae Indigenous Beach Moonflower Ipomoea violacea Convolvulaceae Indigenous Passion fruit Passiflora foetida Passifloraceae Naturalized Ipomoea violacea Ipomoea pes-caprae Passiflora foetida Wake Island Trees Trees Common Name Scientific Name Family Status
    [Show full text]
  • The Biology and Geology of Tuvalu: an Annotated Bibliography
    ISSN 1031-8062 ISBN 0 7305 5592 5 The Biology and Geology of Tuvalu: an Annotated Bibliography K. A. Rodgers and Carol' Cant.-11 Technical Reports of the Australian Museu~ Number-t TECHNICAL REPORTS OF THE AUSTRALIAN MUSEUM Director: Technical Reports of the Australian Museum is D.J.G . Griffin a series of occasional papers which publishes Editor: bibliographies, catalogues, surveys, and data bases in J.K. Lowry the fields of anthropology, geology and zoology. The journal is an adjunct to Records of the Australian Assistant Editor: J.E. Hanley Museum and the Supplement series which publish original research in natural history. It is designed for Associate Editors: the quick dissemination of information at a moderate Anthropology: cost. The information is relevant to Australia, the R.J. Lampert South-west Pacific and the Indian Ocean area. Invertebrates: Submitted manuscripts are reviewed by external W.B. Rudman referees. A reasonable number of copies are distributed to scholarly institutions in Australia and Geology: around the world. F.L. Sutherland Submitted manuscripts should be addressed to the Vertebrates: Editor, Australian Museum, P.O. Box A285, Sydney A.E . Greer South, N.S.W. 2000, Australia. Manuscripts should preferably be on 51;4 inch diskettes in DOS format and ©Copyright Australian Museum, 1988 should include an original and two copies. No part of this publication may be reproduced without permission of the Editor. Technical Reports are not available through subscription. New issues will be announced in the Produced by the Australian Museum Records. Orders should be addressed to the Assistant 15 September 1988 Editor (Community Relations), Australian Museum, $16.00 bought at the Australian Museum P.O.
    [Show full text]
  • Thespesia Populnea (L
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 7 F. R. Fosberg Thespesia Populnea (L. ) and M.-H. Sachet Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1972 ABSTRACT Fosberg, F. R. and M.-H. Sachet. Thespesia populnea (L.) Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) . Smithsonian Con- tributions to Botany, number 7, 13 pages, 6 figures. 1972.-The pantropical Thespesia populnea (Malvaceae) is shown to be clearly separable into two species : T. popul- nea, which is pantropical on seashores, and T. populneoides of the Indian Ocean area, extending to Hainan Island, usually, but not always, somewhat inland. Hybrids between the two species occur where their ranges touch, and in Ceylon some of these hybrids have been widely propagated vegetatively as ornamentals and “living fence-posts.” Library of Congress Cataloging in Publication Data Fosberg, Francis Raymond, 1908- Thespesia populnea (L.) Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) (Smithsonian contributions to Botany, no. 7) Bibliography: p. 1. Thespesia populnea. 2. Thespesia populneoides. I. Sachet, Marie-HCkne, joint author. 11. Title. 111. Series: Smithsonian Institution. Smithsonian contributions to Botany, no. 7. QKlS2747 no. 7 [QK495.M27] 581’ .08s 1583’ ,171 70-39683 Oficial publication date is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. For sale by the
    [Show full text]