Hurricane Danny

Total Page:16

File Type:pdf, Size:1020Kb

Hurricane Danny HURRICANE TRACKING ADVISORY eVENT™ Hurricane Danny Information from NHC Advisory 10, 5:00 PM EDT Thursday August 20, 2015 Danny is moving toward the west-northwest near 10 mph and this general motion is expected to continue into Saturday. Maximum sustained winds have increased to near 80 mph with higher gusts. Some additional strengthening is forecast during the next 24 hours, but a weakening trend is expected to begin after that. Intensity Measures Position & Heading U.S. Landfall (NHC) Max Sustained Wind 80 mph Position Relative to 1030 miles E of the Lesser Speed: (category 1) Land: Antilles Est. Time & Region: n/a Min Central Pressure: 990 mb Coordinates: 13.0 N, 45.7 W Trop. Storm Force Est. Max Sustained Wind 60 miles Bearing/Speed: WNW or 295 degrees at 10 mph n/a Winds Extent: Speed: Forecast Summary The current NHC forecast map (below left) shows Danny moving toward the Lesser Antilles over the next few days at hurricane strength and then weakening to a tropical storm on Sunday. The windfield map (below right) is based on the NHC’s forecast track and shows Danny maintaining category 1 hurricane strength through Sunday, with 74 – 95 mph winds, and then weakening to a tropical storm by Tuesday. To illustrate the uncertainty in Danny’s forecast track, forecast tracks for all current models are shown on the map in pale gray. Forecast Track for Hurricane Danny Forecast Windfield for Hurricane Danny (National Hurricane Center) (Based on NHC at 12:00 UTC) from Kinetic Analysis Corp. Pittsburgh Washington D.C. Cincinnati US ! D Trop Dep Ï TD TS !S Ï Trop Storm Cat 1 !1 Ï Cat 1 Nassau Havana TropicTropic ofof CancerCancer MX CU Santo Domingo DO Port-au-PrinceSan Juan Kingston 08-25 08-24 HN 08-23 Fort-De-France 08-22 NI Castries 08-21 Managua Willemstad Caracas 08-20 CR CR Maracaibo Port0 of Spain250 500 1,000 San Jose CO Miles PA VEVE PA Panama GY GY © Copyright 2015 Willis Limited / Willis Re Inc. All rights reserved: No part of this publication may be reproduced, disseminated, distributed, stored in a retrieval system, transmitted or otherwise transferred in any form or by any means, whether electronic, mechanical, photocopying, recording, or otherwise, without the permission of Willis Limited / Willis Re Inc. Some information contained in this document may be compiled Hazard and damage potential maps produced from third party sources and we do not guarantee and are not responsible for the accuracy of such. This document is for general guidance only and is not intended to be relied upon. Any action based on or in by Willis are based on numerical modeling connection with anything contained herein should be taken only after obtaining specific advice from independent professional advisors of your choice. The views expressed in this document are not necessarily those results from Kinetic Analysis Corporation. of Willis Limited / Willis Re Inc., its parent companies, sister companies, subsidiaries or affiliates (hereinafter “Willis”). Willis is not responsible for the accuracy or completeness of the contents herein and expressly disclaims any responsibility or liability for the reader's application of any of the contents herein to any analysis or other matter, or for any results or conclusions based upon, arising from or in connection with the contents herein, nor do the contents herein guarantee, and should not be construed to guarantee, any particular result or outcome. Willis accepts no responsibility for the content or quality of any third party websites to which we refer. The TAOS real-time hazard and impact forecast information is provided "as is" and without warranties as to performance or any other warranties whether expressed or implied. The user is strongly cautioned to recognize that natural hazards modeling and analysis are subject to many uncertainties. These uncertainties include, but are not limited to, the uncertainties inherent in weather and climate, incomplete or inaccurate weather data, changes to the natural and built environment, limited historical records, and limitations in the state of the art of modeling, as well as limits to the scientific understanding of storm weather phenomena. Anyone making use of the hazard and impact information provided by KAC, or the information contained within, assumes all liability deriving from such use, and agrees to "hold harmless" any and all agencies or individuals associated with its creation. The user agrees to provide any subsequent users of this data with this disclaimer. The publication of the material contained herein is not intended as a re presentation or warranty that this information is suitable for any general or particular use. 1 of 2 Coastal Watches and Warnings There are no coastal watches or warnings currently in effect for Danny. Summary of Atlantic Hurricane Activity to Date Benchmarking the 2015 Atlantic Season to Date 2015 Activity versus Average Activity for the years 1950 - 2011 Tropical Total Cat 3-5 12 Storms Hurricanes Hurricanes Tropical Storm avg '50‐'11 Tropical Storm 2015 Hurricane avg '50‐'11 Hurricane 2015 2015 year to date (1/1/15 – 8/20/15) 4 1 0 Major Hurricane avg '50‐'11 Major Hurricane 2015 2014 year to date (1/1/14 – 8/20/14) 2 2 0 8 1995-2011 season average 14.7 7.9 3.8 1950-2011 season average 10.7 6.2 2.7 2015 CSU season forecasts 4 TS Danny 8 2 1 TS Claudette (Colorado State University at August 4,‘15) TS Bill 2015 NOAA season forecasts HU Danny 6-10 1-4 0-1 STS Ana (August 6, 2015) 0 May Jun Jul Aug Sep Oct Nov Tropical Storm Activity to Date 2015 Tropical Storm Activity versus Average Activity Danny is the fourth named storm and first hurricane of the 2015 The graph above shows 2015 Atlantic Hurricane Season activity and Atlantic Hurricane Season. Last year saw only two named storms by average occurrence rates since 1950 by date, category and order. It August 19, but both were hurricanes. shows, for example, that Danny became the first hurricane of the season on August 20, which is about average for the season’s first hurricane. It also shows that the average season has 10.7 tropical storms, 6.2 hurricanes and 2.7 major hurricanes (categories 3-5). New Tropical Cyclone Potential and Average Remaining Risk NHC Estimates of New Atlantic Tropical Cyclone Formation Average Risk Remaining in the 2015 Atlantic Hurricane Season The map below illustrates the NHC’s estimate of tropical cyclone Atlantic hurricane activity and major hurricane activity (categories 3-5) formation potential over the next 48 hours in the Atlantic. There both peak in September, as the graph below illustrates. The average are two areas with tropical cyclone formation potential, both remaining percentage of days with Atlantic hurricane activity at Aug 20 indicated with a yellow X and both with less than 40% chance of is 85% for all hurricanes and 88% for major hurricanes. developing within the next 48 hours. National Hurricane Center Tropical Cyclone Formation Estimates on August 20, 2015 Percentage of Days with Active Hurricanes since 1900 60% 100% 48% 80% 36% 60% 24% 40% 12% 20% Average Daily Risk Daily Average Average RemainingRisk 0% 0% Jun Jul Aug Sep Oct Nov Dec All Hurricanes (1-5) Major Hurricanes (3-5) Contact us Roy Cloutier 7760 France Avenue South Minneapolis, MN 55435 [email protected] +1 (952) 841-6652 Page 2 of 2 .
Recommended publications
  • Historical Changes in the Mississippi-Alabama Barrier Islands and the Roles of Extreme Storms, Sea Level, and Human Activities
    HISTORICAL CHANGES IN THE MISSISSIPPI-ALABAMA BARRIER ISLANDS AND THE ROLES OF EXTREME STORMS, SEA LEVEL, AND HUMAN ACTIVITIES Robert A. Morton 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 30∞18'0"N 30∞18'0"N 30∞20'0"N Horn Island 30∞20'0"N Petit Bois Island 30∞16'0"N 30∞16'0"N 30∞18'0"N 30∞18'0"N 2005 2005 1996 Dauphin Island 1996 2005 1986 1986 30∞16'0"N Kilometers 30∞14'0"N 0 1 2 3 4 5 1966 30∞16'0"N 1950 30∞14'0"N 1950 Kilometers 1917 0 1 2 3 4 5 1917 1848 1849 30∞14'0"N 30∞14'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞10'0"N 30∞10'0"N 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W 30∞16'0"N Cat Island Ship Island 30∞16'0"N 2005 30∞14'0"N 1996 30∞14'0"N 1986 Kilometers 1966 0 1 2 3 30∞14'0"N 1950 30∞14'0"N 1917 1848 Fort 2005 Massachusetts 1995 1986 Kilometers 1966 0 1 2 3 30∞12'0"N 1950 30∞12'0"N 1917 30∞12'0"N 30∞12'0"N 1848 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W Open-File Report 2007-1161 U.S.
    [Show full text]
  • Desoto's Seafood Kitchen
    beachin’August 2019 LIFE ON THE ALABAMA GULF COAST LET YOUR STYLE ROAR With Disney’s The Lion King Collection by Pandora © 2019 Pandora Jewelry, LLC • All rights reserved • The Lion King © 2019 Disney DIAMOND JEWELERS GULF SHORES 251-967-4141 DIAMONDJEWELERS.NET 10583120 2 Beachin’ ● August 2019 August 2019 ● Beachin’ 3 4 Beachin’ ● August 2019 August 2019 ● Beachin’ 5 6 Beachin’ ● August 2019 August 2019 ● Beachin’ 7 beachin’ A specialty publication of Gulf Coast Media about the cover contents publisher Parks Rogers Blue skies and the bright summer sun greets Too Close for Comfort [email protected] visitors to Alabama’s Gulf Coast. Kick back and enjoy the beautiful view. Hurricane Barry August 2019 2019 August August beachin’2019 August LIFE ON THE ALABAMA GULF COAST managing editor Photo by Jack Swindle Allison Marlow [email protected] 16 design and layout Paige Marmolejo [email protected] Sands of Time advertising Charter boat fishing begins LouAnn Love [email protected] 251.943.2151 Frank Kustura [email protected] 24 251.923.8129 feature Bethany Randall [email protected] Beach Happenings 251.266.9982 story August events and activities Beachin’ magazine is published Bushwackers at the beach monthly by Gulf Coast Media, 901 N. McKenzie Street, Foley, AL 36535 251.943.2151 Try one or try them all, just don’t Distributed free by The Alabama Gulf Coast Convention & Visitor’s Bureau and at other miss this “must do” summer drink 28 locations throughout Gulf Shores, Orange Beach and Fort Morgan. All rights reserved. Reproduction without permission is prohibited. 10 Nature Gulf Coast Media accepts no responsibility in the guarantee of goods Green Sea Turtles visit Alabama and services advertised herein.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Radar and Rain Gauge Analysis of the Extreme Rainfall During Hurricane Danny’S (1997) Landfall
    MAY 2007 M E D L I N E T A L . 1869 Radar and Rain Gauge Analysis of the Extreme Rainfall during Hurricane Danny’s (1997) Landfall JEFFREY M. MEDLIN National Weather Service Forecast Office, Mobile, Alabama SYTSKE K. KIMBALL AND KEITH G. BLACKWELL Department of Earth Sciences, University of South Alabama, Mobile, Alabama (Manuscript received 27 October 2005, in final form 20 June 2006) ABSTRACT As a minimal hurricane, Danny moved over Mobile Bay around 0900 UTC 19 July 1997 and became stationary by midmorning, while situated within a synoptic col. Danny then evolved into an asymmetric storm with an intensely convective rainband that produced torrential rainfall through 1200 UTC 20 July 1997. Danny’s center remained Ͻ100 km from the National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) in Mobile, Alabama, for over 48 h, allowing long-term surveillance of the storm’s inner core. This event marked the first time the tropical Z–R relationship was employed on an operational WSR-88D system during tropical cyclone landfall. A radar-estimated maximum rainfall accu- mulation of 1097 mm (43.2 in.) was analyzed over southwestern Mobile Bay. A NWS cooperative rain gauge located on Dauphin Island, Alabama, measured 896 mm (35.28 in.). An adjacent standard rain gauge measured the highest rainfall amount of 932 mm (36.71 in.). This paper investigates the spatial and temporal distribution and potential magnitude of Danny’s torrential rainfall episode over coastal Alabama. It is shown that both gauges and radar seriously underestimated event rainfall. An estimate is given for what could have been the true event rainfall amount.
    [Show full text]
  • A Classification Scheme for Landfalling Tropical Cyclones
    A CLASSIFICATION SCHEME FOR LANDFALLING TROPICAL CYCLONES BASED ON PRECIPITATION VARIABLES DERIVED FROM GIS AND GROUND RADAR ANALYSIS by IAN J. COMSTOCK JASON C. SENKBEIL, COMMITTEE CHAIR DAVID M. BROMMER JOE WEBER P. GRADY DIXON A THESIS Submitted in partial fulfillment of the requirements for the degree Master of Science in the Department of Geography in the graduate school of The University of Alabama TUSCALOOSA, ALABAMA 2011 Copyright Ian J. Comstock 2011 ALL RIGHTS RESERVED ABSTRACT Landfalling tropical cyclones present a multitude of hazards that threaten life and property to coastal and inland communities. These hazards are most commonly categorized by the Saffir-Simpson Hurricane Potential Disaster Scale. Currently, there is not a system or scale that categorizes tropical cyclones by precipitation and flooding, which is the primary cause of fatalities and property damage from landfalling tropical cyclones. This research compiles ground based radar data (Nexrad Level-III) in the U.S. and analyzes tropical cyclone precipitation data in a GIS platform. Twenty-six landfalling tropical cyclones from 1995 to 2008 are included in this research where they were classified using Cluster Analysis. Precipitation and storm variables used in classification include: rain shield area, convective precipitation area, rain shield decay, and storm forward speed. Results indicate six distinct groups of tropical cyclones based on these variables. ii ACKNOWLEDGEMENTS I would like to thank the faculty members I have been working with over the last year and a half on this project. I was able to present different aspects of this thesis at various conferences and for this I would like to thank Jason Senkbeil for keeping me ambitious and for his patience through the many hours spent deliberating over the enormous amounts of data generated from this research.
    [Show full text]
  • Atlantic Hurricane Season of 1997
    2012 MONTHLY WEATHER REVIEW VOLUME 127 Atlantic Hurricane Season of 1997 EDWARD N. RAPPAPORT Tropical Prediction Center, National Hurricane Center, NOAA/NWS, Miami, Florida (Manuscript received 12 June 1998, in ®nal form 5 October 1998) ABSTRACT The 1997 Atlantic hurricane season is summarized and the year's tropical storms, hurricanes, and one sub- tropical storm are described. The tropical cyclones were relatively few in number, short lived, and weak compared to long-term climatology. Most systems originated outside the deep Tropics. Hurricane Danny was the only system to make landfall. It produced rainfall totals to near 1 m in southern Alabama and is blamed for ®ve deaths. Hurricane Erika was responsible for the season's two other fatalities, in the coastal waters of Puerto Rico. 1. Introduction This is one of the smallest contributions (by percentage) on record by tropical waves. On average, about 60% of A sharp drop in tropical cyclone activity occurred in tropical cyclones originate from tropical waves (Pasch the Atlantic hurricane basin from 1995±96 to 1997 (Ta- et al. 1998). ble 1). Only seven tropical storms formed in 1997, and Historically, many of the strongest Atlantic tropical just three of those reached hurricane strength (Table 2). cyclones develop from tropical waves between the coast This also represents a considerable reduction from the of Africa and the Lesser Antilles in the August±Sep- long-term averages of ten tropical storms and six hur- tember period. Such tropical cyclone formation appears ricanes. The months of August and September were par- to be related to 1) the wave's ``intrinsic'' potential for ticularly quiet.
    [Show full text]
  • Doppler-Observed Eyewall Replacement, Vortex Contraction/Intensi®Cation, and Low-Level Wind Maxima
    4002 MONTHLY WEATHER REVIEW VOLUME 128 The Evolution of Hurricane Danny (1997) at Landfall: Doppler-Observed Eyewall Replacement, Vortex Contraction/Intensi®cation, and Low-Level Wind Maxima KEITH G. BLACKWELL Department of Geology, Geography, and Meteorology, University of South Alabama, Mobile, Alabama (Manuscript received 26 April 1999, in ®nal form 9 March 2000) ABSTRACT Danny made landfall as a minimal hurricane on the Alabama coast on 19 July 1997 after drifting over Mobile Bay for over 10 h. Danny's unusually close proximity to the Doppler radar (WSR-88D) in Mobile provided an unprecedented view of the storm's complex and dramatic evolution during a prolonged landfall event over a 1-day period. Base re¯ectivity and velocity products were combined with aircraft reconnaissance information to detail the formation of concentric eyewalls and complete evolution of an eyewall replacement cycle. This highly symmetric hurricane then underwent a rapid asymmetric transition in Mobile Bay during which a small eyewall mesovortex developed adjacent to intense convection in the western eyewall. Radar-estimated rainfall increased dramatically during the asymmetric phase. Rates exceeded 100 mm h21 for nine consecutive hours west of the center while precipitation nearly vanished to the east. Changes in the distribution of precipitation corresponded with changes in the low-level wind velocity structure. A 25-h temporal composite of WSR-88D base velocities displayed axisymmetric intensi®cation and contraction of Danny's core during the eyewall replacement cycle. Later, the asymmetric phase was dominated by further contraction and intensi®cation on the west side only. In the western eyewall, a persistent boundary layer wind maximum evolved and contracted to a radius of only 10±13 km from the center.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2003
    1744 MONTHLY WEATHER REVIEW VOLUME 133 ANNUAL SUMMARY Atlantic Hurricane Season of 2003 MILES B. LAWRENCE,LIXION A. AVILA,JOHN L. BEVEN,JAMES L. FRANKLIN,RICHARD J. PASCH, AND STACY R. STEWART Tropical Prediction Center, National Hurricane Center, NOAA/NWS, Miami, Florida (Manuscript received 30 April 2004, in final form 8 November 2004) ABSTRACT The 2003 Atlantic hurricane season is described. The season was very active, with 16 tropical storms, 7 of which became hurricanes. There were 49 deaths directly attributed to this year’s tropical cyclones. 1. Introduction hurricane, and Isabel’s category-2 landfall on the Outer There were 16 named tropical cyclones of at least Banks of North Carolina brought hurricane conditions tropical storm strength in the Atlantic basin during to portions of North Carolina and Virginia and record 2003, 7 of which became hurricanes. Table 1 lists these flood levels to the upper Chesapeake Bay. Elsewhere, tropical storms and hurricanes, along with their dates, Erika made landfall on the northeastern Mexico’s Gulf maximum 1-min wind speeds, minimum central sea Coast as a category-1 hurricane, Fabian was the most level pressures, deaths, and U.S. damage. Figure 1 destructive hurricane to hit Bermuda in over 75 yr, and shows the “best tracks” of this season’s storms. Juan was the worst hurricane to hit Halifax, Nova The numbers of tropical storms and hurricanes dur- Scotia, in over 100 yr. ing 2003 are above the long-term (1944–2003) averages This season’s tropical cyclones took 49 lives in the of 10 named storms, of which 6 become hurricanes.
    [Show full text]
  • Skill of Synthetic Superensemble Hurricane Forecasts for the Canadian Maritime Provinces Heather Lynn Szymczak
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Skill of Synthetic Superensemble Hurricane Forecasts for the Canadian Maritime Provinces Heather Lynn Szymczak Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES SKILL OF SYNTHETIC SUPERENSEMBLE HURRICANE FORECASTS FOR THE CANADIAN MARITIME PROVINCES By HEATHER LYNN SZYMCZAK A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2004 The members of the Committee approve the Thesis of Heather Szymczak defended on 26 October 2004. _________________________________ T.N. Krishnamurti Professor Directing Thesis _________________________________ Philip Cunningham Committee Member _________________________________ Robert Hart Committee Member Approved: ____________________________________________ Robert Ellingson, Chair, Department of Meteorology ____________________________________________ Donald Foss, Dean, College of Arts and Science The Office of Graduate Studies has verified and approved the above named committee members. ii I would like to dedicate my work to my parents, Tom and Linda Szymczak, for their unending love and support throughout my long academic career. iii ACKNOWLEDGEMENTS First and foremost, I would like to extend my deepest gratitude to my major professor, Dr. T.N. Krishnamurti, for all his ideas, support, and guidance during my time here at Florida State. I would like to thank my committee members, Drs. Philip Cunningham and Robert Hart for all of their valuable help and suggestions. I would also like to extend my gratitude to Peter Bowyer at the Canadian Hurricane Centre for his help with the Canadian Hurricane Climatology.
    [Show full text]
  • Caribbean Meteorological Organization (CMO)
    C A R I B B E A N M E T E O R O L O G I C A L O R G A N I Z A T I O N REPORT OF THE ANNUAL MEETING OF DIRECTORS OF METEOROLOGICAL SERVICES Tortola, BRITISH VIRGIN ISLANDS 7 NOVEMBER 2009 DMS2009, page 1 INTRODUCTION 1.1 At the kind invitation of the Government of the British Virgin Islands, the 2009 Meeting of Directors of Meteorological Services was held at the Brumant Fellowship Hall, Tortola, British Virgin Islands, on Saturday 7th November 2009 under the Chairmanship of Mr Tyrone Sutherland, Coordinating Director of the Caribbean Meteorological Organization (CMO). 1.2 The Meeting fixed its hours of work and determined the order in which it would conduct its business. 1.3 A list of participants and observers attending the Meeting is attached as ANNEX I and the Agenda adopted by the Meeting is attached as ANNEX II to this Report. THE 2009 HURRICANE SEASON (Agenda Item 2) 2.1 The 2009 Hurricane Season was below normal season with eight (8) named storms and two (2) tropical depressions. Two of the named storms became hurricanes and they both strengthened into intense hurricanes. As had been traditional, the Meeting discussed the impact of the season on the individual Member States and the overall effectiveness of the region’s warning system for hurricanes and other severe weather. 2.2 To initiate discussions, a general summary of the 2009 hurricane season was presented. The summary below focuses on the main systems to affect the CMO Member States.
    [Show full text]
  • Scanned Document
    MAY 1987 US Army Corps of Engineers New Orleans District 4r----------------- . / TC 423 .N46 1987 EC FOREWORD The coastline of Louisiana is highly susceptible to hurricane strength storms which enter the area from the Gulf of Mexico. During a normal hurricane season, which extends from June 1st to November 30th, the Louisiana coast will experience on an average about one hurricane per year. However, during the 1985 hurricane season, Louisiana was struck by three hurricanes: DANNY in August, ELENA in September, and JUAN in October. While the first hurricane (DANNY) was not intense, the second (ELENA) and third (JUAN) were stronger and, more importantly, erratic and dilatory in making landfall. Waves generated by JUAN battered the Louisiana coast for at least 3 days. It is difficult to relate the severity of these events to a design storm, but it appears reasonable to conclude that the combined impact of the season's storms well exceeded that which would be associated with the passage of a design hurricane, which would occur once in 100 years. i TABLE OF CONTENTS PAGE FOREWARD ••.•••..•••••.. e.s ..................................... i STORNS DURING THE 1985 HURRICANE SEASON. • . v INTRODUCTION ....... e •••••• * •••• "'- .............................. vii HURRICANE JUAN NARRATIVE . .........•.•. o • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 METEOROLOGICAL & HYDROLOGICAL DATA .......................... 3 HIGHLIGHTS OF STORM DAMAGES ...............•................. 16 THE INCIDENT PERIOD - Daily log of events . • . 18 DAMAGES & EMERGENCY ACTIVITIES ...........•.................. 28 CORPS ASSISTANCE TO FEMA (Recovery efforts under PL93-288) ... 54 HURRICANE DANNY DESCRIPTION & DAMAGES...... • . 60 HURRICANE ELENA DESCRIPTION & DANAGES....... 66 PHOT'O SEC'TION ......... "f) •••• II .............................. I!J •• 72 TABLES 1 MAXIMUM STAGES FROM GAGE READINGS ...................... 7 2 FLOODED AHEAS BY PARISH...............................
    [Show full text]
  • ANNUAL SUMMARY Atlantic Tropical
    OCTOBER 2000 ANNUAL SUMMARY 3695 ANNUAL SUMMARY Atlantic Tropical Systems of 1996 and 1997: Years of Contrasts LIXION A. AVILA,RICHARD J. PASCH, AND JIANN-GWO JIING NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 13 August 1999, in ®nal form 14 January 2000) ABSTRACT A total of 62 and 63 tropical waves were counted in the Atlantic from May to November during 1996 and 1997, respectively. These waves led to the formation of 12 of the 13 total number of tropical cyclones in 1996 and only 3 of 7 tropical cyclones in 1997. All of the tropical depressions became tropical storms in 1996 and only one failed to become a named storm in 1997. On average, 62% of the Atlantic tropical depressions develop from tropical waves. These waves contributed to the formation of 92% of the eastern Paci®c tropical cyclones in 1996 and 83% in 1997. Tropical waves and their environment during the 1996 and 1997 seasons are discussed. 1. Introduction satellites and surface reports including 24-h pressure changes from ground stations, ships, and buoys. Radio- Tropical waves not only play a dominant role as pre- sonde data are used to construct time series of vertical cursors to tropical cyclone formation over the Atlantic wind pro®les (vertical time sections) from the sounding and eastern Paci®c Oceans but are also responsible for stations. the modulation of rainfall in the Caribbean Basin (Riehl In general, the analysis of tropical waves begins with 1954). The importance of tropical waves has been em- the examination of satellite animation of cloudiness over phasized in previous updates of this yearly article.
    [Show full text]