Supplemental Material for “Spin-Orbiton in Ca2ruo4 Revealed by Resonant Inelastic X-Ray Scattering”

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Material for “Spin-Orbiton in Ca2ruo4 Revealed by Resonant Inelastic X-Ray Scattering” Supplemental Material for \Spin-Orbiton in Ca2RuO4 Revealed by Resonant Inelastic X-ray Scattering" L. Das,1 F. Forte,2, 3 R. Fittipaldi,2, 3 C. G. Fatuzzo,4 V. Granata,2, 3 O. Ivashko,1 M. Horio,1 F. Schindler,1 M. Dantz,5 H. M. Rønnow,6 W. Wan,7 N. B. Christensen,7 J. Pelliciari,5, ∗ P. Olalde-Velasco,5, y N. Kikugawa,8, 9 T. Neupert,1 A. Vecchione,2, 3 T. Schmitt,5 M. Cuoco,2, 3 and J. Chang1 1Physik-Institut, Universit¨atZ¨urich,Winterthurerstrasse 190, CH-8057 Z¨urich,Switzerland 2CNR-SPIN, I-84084 Fisciano, Salerno, Italy 3Dipartimento di Fisica \E.R. Caianiello", Universit`adi Salerno, I-84084 Fisciano, Salerno, Italy 4Institute of Physics, Ecole´ Polytechnique Fed´erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 5Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland 6Institute for Condensed Matter Physics, Ecole´ Polytechnique Fed´erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 7Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark 8National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 Japan 9National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA We present the model Hamiltonian employed for the analysis of the RIXS cross section. In order to extract the character of the RIXS spectra, we follow their evolution in terms of the Hund's coupling JH and the Coulomb interaction U. We provide a detailed description of the electronic configurations at the ruthenium site and we determine the superexchange amplitude allowing for the propagation of local spin-orbiton excitations. I. MODEL HAMILTONIAN term. We assume that these parameters obey relations that follow from considering the Coulomb interaction in 0 The model Hamiltonian of the propagating electrons a rotationally symmetric system, namely, U = U + 2JH 0 within the ruthenium-oxygen plane for the bands close to and J = JH. 1 the Fermi level can be built by considering the interaction We denote by the 3-vector of 2 × 2 matrices s = 2 σ terms at the ruthenium and oxygen sites and the kinetic is the spin operator expressed through the vector of the term for the ruthenium-oxygen connectivity. Concerning three Pauli matrices σ. Furthermore the 3-vector of 3×3 1,2 the local ruthenium Hamiltonian Hloc, we consider the matrices l is the projection of the orbital angular momen- complete Coulomb interaction for the t2g electrons, the tum operator to the t2g subspace. It has components spin-orbit coupling, and the tetragonal crystal field po- (lk)αβ = ikαβ, with k = x; y; z, such that l × l = −i l. tential. The on-site Coulomb, spin-orbit and crystal field Explicitly, in the basis (dyz; dxz; dxy), the matrices for contributions are given by: the orbital operators are X X 0 1 0 1 0 1 Hel-el(i) = U niα"niα# − 2JH Siα · Siβ + 0 0 0 0 0 −i 0 −i 0 α<β lx = @0 0 iA ; ly = @0 0 0 A ; lz = @i 0 0A : 0 −i 0 i 0 0 0 0 0 0 JH X + U − niαniβ + (2) 2 α<β The local Hamiltonian at the oxygen site only includes X +J 0 dy dy d d ; the on-site energy term, which is introduced to take into iα" iα# iβ" iβ# account the energy difference between the occupied or- α<β bitals of oxygen and ruthenium. It reads X X y HSOC(i) = λ diασ(lαβ · sσσ0 )diβσ0 ; 0 O α,σ β,σ Hel (j) = "xnj;px + "ynj;py + "znj;pz ; (3) Hcf (i) = "xyni;dxy + "z ni;dxz + ni;dyz ; where j labels a given oxygen site and nj;p are the H (i) = H (i) + H (i) + H (i) ; k loc Hel-el SOC cf occupation number operators of the pk orbital, with where i labels the ruthenium site, α; β are indices run- k = x; y; z, at that site. ning over the three orbitals in the t sector, i.e., Lastly, we introduce the ruthenium-oxygen hopping 2g term, which we assume includes only the tetragonal sym- α; β 2 fd ; d ; d g, and dy is the creation opera- xy xz yz iασ metry allowed terms for a generic bond connecting a tor of an electron with spin σ at the site i in the or- y y ruthenium to an oxygen atom along the x-direction, for bital α. Furthermore ni,α ≡ di,α,"di,α," + di,α,#di,α,# example. This ruthenium-oxygen hopping along the x- y and ni,α,σ ≡ di,α,σdi,α,σ are the respective density op- direction then reads erators. The interaction is parametrized by the intra- y orbital Coulomb interaction U and the Hund's coupling HRu-O;a^x (i) = txz;z di;xz,σpi+^ax;z,σ + h:c: + J , while (U 0−J =2) sets the strength of the inter-orbital H H y 0 electron-electron interaction, and J is the pair hopping +txy;z di;xy,σpi+^ax;y,σ + h:c: ; 2 involved. The configurations are given by (ndxy ; ndxz ; ndyz ) 2 f(1; 1; 2); (1; 2; 1); (2; 1; 1)g (4) for nd = 1 and (ndxy ; ndxz ; ndyz ) 2 f(0; 2; 2); (2; 0; 2); (2; 2; 0)g (5) for nd = 2. It is worth pointing out that the presence of the ligand oxygens allows to have charge transfer between the 2p and d orbitals which makes configurations of the type d5-2p1 directly relevant for the processes involved in the RIXS probe and for the construction of a low FIG. 1. (color online). Energy spectrum of the S = 1 and 4 energy effective Hamiltonian. When considering a one-doublon jd ; nd = 1i block Hbloc;T of the Hamiltonian at ruthenium-oxygen-ruthenium bond, the configurations the ruthenium site, for a representative value of the tetragonal d5-2p2-d3 are the lowest-energy intermediate states that crystal field splitting δ = 0.3 eV. enter in the spin and orbital exchange processes. In contrast, configurations of the type d5-2p1 as well as d6-2p0 represent higher energy states, due to the energy where j = i+a ^ is the index of the oxygen site neighbor- x cost related to the charge transfer from p to d orbitals ing the ruthenium site i in the x-direction and py i+^ax;z,σ and the local Coulomb interactions at the ruthenium site. is the operator creating an electron in the oxygen pz or- bital at site i +a ^x with spin σ. The hopping terms along In this section, we will focus on the d4 electronic config- the ruthenium-oxygen bonds in y-direction are defined urations. As we will show later, they form the set of the similarly. lowest energy levels of the Hamiltonian at the Ru site. In the following, we aim to represent Hloc in the spin/orbital sectors of the d4 subspace. We characterize the basis II. ELECTRONIC STATES AT RUTHENIUM states by using the quantum numbers S of the total spin, SITE mS of the total spin projection in z direction and the orbital α 2 fdyz; dxz; dxyg that is doubly occupied. We Let us now concentrate on the eigenstates of the Hamil- thus denote the basis states by jS; mS; αi. In the nd = 2 tonian Hloc for the single ruthenium atom (in which subspace, only mS = 0 appears, as all the electrons in case we can drop the site index). It is useful to intro- the doubly occupied sites need to form spin singlet con- duce a notation for the local ruthenium configurations figurations. In the nd = 1 subspace, only mS = −1; 0; 1 that takes into account the number nd of doubly occu- appear, as the electrons in the doubly occupied site need pied orbitals (so-called doublons). We recall that we have to form a singlet. The remaining two electrons can then n = 4 electrons in the stochiometric Ru4+ state and that be in a spin-singlet or spin-triplet state. 4 they fill only the t2g subspace. Then, we indicate with The spin-triplet sector of the d subspace 4 4 jd ; nd = 1i and jd ; nd = 2i the states with n = 4 is 9-dimensional. A basis for this subspace electrons in the d-shell and nd = 1 and nd = 2 dou- is given by j1; −1; dyzi; j1; 0; dyzi; j1; 1; dyzi; bly occupied configurations, respectively. In each of the j1; −1; dxzi; j1; 0; dxzi; j1; 1; dxzi; j1; −1; dxyi; j1; 0; dxyi; nd = 1 and nd = 2 sectors, three orbital configurations j1; 1; dxyi . In this basis, the Hamiltonian Hloc, pro- are possible, which are distinguished by the orbital occu- jected on the spin-triplet subspace, has the following pation numbers (ndxy ; ndxz ; ndyz ) of the three d-orbitals matrix representation 0 δ 0 0 −iλ 0 0 0 − pλ 0 1 2 B 0 δ 0 0 0 0 pλ 0 − pλ C B 2 2 C B 0 0 δ 0 0 iλ 0 pλ 0 C B 2 C B λ C B iλ 0 0 δ 0 0 0 i p 0 C B 2 C H = (E + u)11 + B 0 0 0 0 δ 0 i pλ 0 i pλ C (6) bloc;T 0 e 9 B 2 2 C B λ C B 0 0 −iλ 0 0 δ 0 i p 0 C B 2 C B 0 pλ 0 0 −i pλ 0 0 0 0 C B 2 2 C B− pλ 0 pλ −i pλ 0 −i pλ 0 0 0 C @ 2 2 2 2 A 0 − pλ 0 0 −i pλ 0 0 0 0 2 2 3 4 with 119 the identity matrix in the 9 × 9 block, E0 = arated in energy from the spin-triplet sector jd ; nd = 1i 0 0 2("xy + "z); ue = 6U − JH (assuming that U = U + 2JH) by a gap that is 2JH for the single doublon states and and δ = ("z − "xy).
Recommended publications
  • Orbiton-Phonon Coupling in Ir5+(5D4) Double Perovskite Ba2yiro6
    5+ 4 Orbiton-Phonon coupling in Ir (5d ) double perovskite Ba2YIrO6 Birender Singh1, G. A. Cansever2, T. Dey2, A. Maljuk2, S. Wurmehl2,3, B. Büchner2,3 and Pradeep Kumar1* 1School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175005, India 2Leibniz-Institute for Solid State and Materials Research, (IFW)-Dresden, D-01171 Dresden, Germany 3Institute of Solid State Physics, TU Dresden, 01069 Dresden, Germany ABSTRACT: 5+ 4 Ba2YIrO6, a Mott insulator, with four valence electrons in Ir d-shell (5d ) is supposed to be non-magnetic, with Jeff = 0, within the atomic physics picture. However, recent suggestions of non-zero magnetism have raised some fundamental questions about its origin. Focussing on the phonon dynamics, probed via Raman scattering, as a function of temperature and different incident photon energies, as an external perturbation. Our studies reveal strong renormalization of the phonon self-energy parameters and integrated intensity for first-order modes, especially redshift of the few first-order modes with decreasing temperature and anomalous softening of modes associated with IrO6 octahedra, as well as high energy Raman bands attributed to the strong anharmonic phonons and coupling with orbital excitations. The distinct renormalization of second-order Raman bands with respect to their first-order counterpart suggest that higher energy Raman bands have significant contribution from orbital excitations. Our observation indicates that strong anharmonic phonons coupled with electronic/orbital degrees of freedom provides a knob for tuning the conventional electronic levels for 5d-orbitals, and this may give rise to non-zero magnetism as postulated in recent theoretical calculations with rich magnetic phases.
    [Show full text]
  • Multiple Spin-Orbit Excitons and the Electronic Structure of Α-Rucl3
    PHYSICAL REVIEW RESEARCH 2, 042007(R) (2020) Rapid Communications Multiple spin-orbit excitons and the electronic structure of α-RuCl3 P. Warzanowski,1 N. Borgwardt,1 K. Hopfer ,1 J. Attig,2 T. C. Koethe ,1 P. Becker,3 V. Tsurkan ,4,5 A. Loidl,4 M. Hermanns ,6,7 P. H. M. van Loosdrecht,1 and M. Grüninger 1 1Institute of Physics II, University of Cologne, D-50937 Cologne, Germany 2Institute for Theoretical Physics, University of Cologne, D-50937 Cologne, Germany 3Section Crystallography, Institute of Geology and Mineralogy, University of Cologne, D-50674 Cologne, Germany 4Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, D-86135 Augsburg, Germany 5Institute of Applied Physics, MD-2028 Chisinau, Moldova 6Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden 7Nordita, KTH Royal Institute of Technology and Stockholm University, SE-106 91 Stockholm, Sweden (Received 20 November 2019; accepted 21 September 2020; published 13 October 2020) The honeycomb compound α-RuCl3 is widely discussed as a proximate Kitaev spin-liquid material. This = / 5 scenario builds on spin-orbit entangled j 1 2 moments arising for a t2g electron configuration with strong spin-orbit coupling λ and a large cubic crystal field. The actual low-energy electronic structure of α-RuCl3, however, is still puzzling. In particular, infrared absorption features at 0.30, 0.53, and 0.75 eV seem to be at odds with a j = 1/2 scenario. Also the energy of the spin-orbit exciton, the excitation from j = 1/2to3/2, and thus the value of λ, are controversial.
    [Show full text]
  • Observing Spinons and Holons in 1D Antiferromagnets Using Resonant
    Summary on “Observing spinons and holons in 1D antiferromagnets using resonant inelastic x-ray scattering.” Umesh Kumar1,2 1 Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, USA 2 Joint Institute for Advanced Materials, The University of Tennessee, Knoxville, TN 37996, USA (Dated Jan 30, 2018) We propose a method to observe spinon and anti-holon excitations at the oxygen K-edge of Sr2CuO3 using resonant inelastic x-ray scattering (RIXS). The evaluated RIXS spectra are rich, containing distinct two- and four-spinon excitations, dispersive antiholon excitations, and combinations thereof. Our results further highlight how RIXS complements inelastic neutron scattering experiments by accessing charge and spin components of fractionalized quasiparticles Introduction:- One-dimensional (1D) magnetic systems are an important playground to study the effects of quasiparticle fractionalization [1], defined below. Hamiltonians of 1D models can be solved with high accuracy using analytical and numerical techniques, which is a good starting point to study strongly correlated systems. The fractionalization in 1D is an exotic phenomenon, in which electronic quasiparticle excitation breaks into charge (“(anti)holon”), spin (“spinon”) and orbit (“orbiton”) degree of freedom, and are observed at different characteristic energy scales. Spin-charge and spin-orbit separation have been observed using angle-resolved photoemission spectroscopy (ARPES) [2] and resonant inelastic x-ray spectroscopy (RIXS) [1], respectively. RIXS is a spectroscopy technique that couples to spin, orbit and charge degree of freedom of the materials under study. Unlike spin-orbit, spin-charge separation has not been observed using RIXS to date. In our work, we propose a RIXS experiment that can observe spin-charge separation at the oxygen K-edge of doped Sr2CuO3, a prototype 1D material.
    [Show full text]
  • The New Boson N
    The New Boson N Luca Nascimbene1, 1Institute technology A.Maserati, street mussini nr.22,[email protected] Abstract The elementary particles that make up the universe can distinguish in particle-matter, of a fermionic type (quark, neutrino and neutrino, mass-equipped) and force-particles, bosonic type, carrying the fundamental forces in nature (photons and gluons, , And the W and Z bosons, endowed with mass). The Standard Model contemplates several other unstable particles that exist under certain conditions for a variable time, but still very short, before decaying into other particles. Among them there is at least one Higgs boson, which plays a very special role. The bosonic N, is an elementary discovery discovery thanks to various electronic devices and sensors. All this is a physical-electronic theoretical study. This particle seen on the oscilloscope has a different shape from the other, in particular it moves by looking at the oscilloscope and has a round shape. Keywords Boson;particles; 1. Introduction In particle physics, an elementary particle or fundamental particle is a particle whose substructure is unknown; thus, it is unknown whether it is composed of other particles. Known elementary particles include the fundamental fermions (quarks, leptons, antiquarks, and antileptons), which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons (gauge bosons and the Higgs boson), which generally are "force particles" that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle. Everyday matter is composed of atoms, once presumed to be matter's elementary particles—atom meaning "unable to cut" in Greek— although the atom's existence remained controversial until about 1910, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy.
    [Show full text]
  • On the Orbiton a Close Reading of the Nature Letter
    return to updates More on the Orbiton a close reading of the Nature letter by Miles Mathis In the May 3, 2012 volume of Nature (485, p. 82), Schlappa et al. present a claim of confirmation of the orbiton. I will analyze that claim here. The authors begin like this: When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. As a reader, you should be concerned that they would start off this important paper with a falsehood. I remind you that according to current theory, the electron does not have real spin and real charge. As with angular momentum, it has spin and charge quantum numbers. But all these quantum numbers are physically unassigned. They are mathematical only. The top physicists and journals and books have been telling us for decades that the electron spin is not to be understood as an actual spin, because they can't make that work in their equations. The spin is either understood to be a virtual spin, or it is understood to be nothing more than a place-filler in the equations. We can say the same of charge, which has never been defined physically to this day. What does a charged particle have that an uncharged particle does not, beyond different math and a different sign? The current theory has no answer. Rather than charge and spin and orbit, we could call these quantum numbers red and blue and green, and nothing would change in the theory.
    [Show full text]
  • Two Models for New Cooper Pairs Gudrun Kalmbach H
    Scholars International Journal of Chemistry and Material Sciences Abbreviated Key Title: Sch Int J Chem Mater Sci ISSN 2616-8669 (Print) |ISSN 2617-6556 (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: http://saudijournals.com Review Article Two Models for New Cooper Pairs Gudrun Kalmbach H. E* MINT PF 1533, D-86818 Bad Woerishofen, Germany DOI: 10.36348/sijcms.2020.v03i10.003 | Received: 24.11.2020 | Accepted: 23.12.2020 | Published: 29.12.2020 *Corresponding author: Gudrun Kalmbach H. E Abstract The author has recommended that for pairs of physical systems or qualities the method of energy exchange is studied, especially when the Cooper pairing can be applied. Keywords: Cooper pair, MINT-Wigris tool. Copyright © 2020 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited. INRODUCTION Wigris project is new. The usual way to consider them There are many publications for combined as a pair of electrons is extended to the pairing of a spins in physics. The author refers in this article not to deuterons two nucleons and to the condensor plate them. The proposal for Cooper pairings in the MINT- pairing of two Hopf leptons in Figure-1 [1-4]. Fig-1: At left a proton and a neutron of deuteron are shown as two tetrahedrons having a common center in the middle; for the pairing of two condensor plates the four diagonals in the middle figure have a center B which is in the right figure split into four tips Bj of orthogonal vector pairs connecting the twisted condensor plates vertices 1,2,3,4 The new Cooper pairs are called fusion states For deuteron fusion a proton decays its u- for the deuteron since a twist arises where the lower quark which has another u-quark as partner in the tetrahedron is rotated by 180 degrees such that the twisted figure.
    [Show full text]
  • Spin–Orbital Separation in the Quasi-One-Dimensional Mott Insulator Sr2cuo3 K
    12 Highlights 2012 Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3 K. Wohlfeld, L. Hozoi, S. Nishimoto, J. van den Brink It was suggested decades ago and then experimentally verified in the 90s that the elec- tron’s spin and charge degree of freedom can separate provided the electrons strongly interact and their motion is confined to one dimension. Here we discuss the case when also the orbital degree of freedom of an electron in the Mott insulator can separate as recently theoretically investigated and experimentally observed in the resonant inelasti c x-ray scattering on Sr2CuO3. The strong Coulomb repulsion between the ∼1023 electrons in transition metal oxide crystal s leads to peculiar collective behaviours of electrons and hence various, at first sight counterintuitive, phenomena. One of them is the apparent separation of the two quantum numbers of an electron - the spin spin ប/2 and charge e - which happens when the strongly interacting many body electron system is confined into one dimen- sion (1D) [1]. This spin-charge separation phenomenon, as observed in e.g. quasi-1D spin chain of Sr2CuO3 [cf. Fig. 1(d)], can be explained as follows: Firstly, the repulsion between electron s in the last valence orbital of the Cu ion in Sr2CuO3 crystal is so strong that the electrons almost ‘freeze’, i.e. become localized on the Cu ions, and there is only a very ‘small shuttle’ motion of electrons which lowers the energy of the system but which is allowed when the spins of the neighbouring localized electrons form a particular anti- parallel (called antiferromagnetic) alignment, cf.
    [Show full text]
  • Observation of Spin-Orbital Separation in Sr2cuo3 Pin Chains
    Observation of Spin-Orbital Separation in Sr 2CuO 3 pin Chains with Resonant Inelastic X-ray Scattering Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe of excitations from the electronic ground state of correlated materials involving lattice, charge, orbital and spin degrees of freedom [1]. In this talk we present high-resolution RIXS studies of magnetic and electronic excitations in the low dimensional spin chain system Sr 2CuO 3 performed at the ADvanced RESonant Spectroscopies (ADRESS) beamline of the Swiss Light Source with the SAXES spectrometer [2]. In general, quantum effects become important when the space symmetry is lowered. In the extreme case of one-dimensional-materials the electron can break up into separate quasi- particles, i.e., spinons, holons and orbitons that carry their respective spin, charge and orbital degrees of freedom [3]. Sr 2CuO 3 is an ideal realization of the one-dimensional Heisenberg spin-1/2 chain. When an electron is removed from this spin-chain one can for instance observe how spin and charge degrees of freedom are splitting in the so called spin-charge separation mechanism [4]. Our Cu L3-RIXS measurements on Sr 2CuO 3 reveal the fractionalization of magnons into two- spinons and higher order excitations as previously reported from neutron scattering [5]. Furthermore, we observe the splitting of an orbital excitation into the independently propagating spinon and orbiton quasi-particles [6]. This newly observed spin-orbital separation phenomenon gives thereby rise to strongly dispersive orbital excitations (orbitons) [6,7]. REFERENCES 1. J. Schlappa, T. Schmitt et al ., Phys. Rev. Lett.
    [Show full text]
  • Arxiv:1308.3997V1 [Cond-Mat.Str-El] 19 Aug 2013 Ings Nw Stejh-Elr(T Feti Igemolecule
    Vibronic Excitation Dynamics in Orbitally Degenerate Correlated Electron System Joji Nasu∗ and Sumio Ishihara Department of Physics, Tohoku University, Sendai 980-8578, Japan (Dated: August 12, 2018) Orbital-lattice coupled excitation dynamics in orbitally degenerate correlated systems are examined. We present a theoretical framework, where both local vibronic excitations and superexchange-type inter-site in- teractions are dealt with on an equal footing. We generalize the spin-wave approximation so as to take local vibronic states into account. Present method is valid from weak to strong Jahn-Teller coupling magnitudes. Two characteristic excitation modes coexist; a low-energy dispersive mode and high-energy multi-peak mode. These are identified as a collective vibronic mode, and Flanck-Condon excitations in a single Jahn-Teller cen- ter modified by the inter-site interactions, respectively. Present formalism covers vibronic dynamics in several orbital-lattice coupled systems. PACS numbers: 75.25.Dk, 75.30.Et,75.47.Lx I. INTRODUCTION multi-peak vibrational excitations with a broad envelop appear due to the Franck-Condon transitions. Orbital degree of freedom of an electron represents a di- Purpose in this paper is to present a theoretical framework rectional aspect of electronic wave function. It is widely rec- of vibronic excitations in orbitally degenerate correlated elec- ognized that the orbital degree of freedom influences signif- tron system; both the local vibronic excitations and the su- icantly magnetic, optical, and structural properties in corre- perexchange (SE)-type inter-site interaction between orbitals lated electron materials.1,2 A macroscopic symmetry breaking are taken into account on an equal footing.
    [Show full text]
  • Quasiparticle
    CORE CONCEPTS CORE CONCEPTS Core Concepts: Quasiparticle Stephen Ornes Science Writer the material due to the long-range nature of the electromagnetic force, which adds up to one sprawling headache of a math prob- lem for condensed matter physicists who Physicists have identified dozens of differ- a lot of those: solids and liquids contain ent subatomic species in the particle zoo, on the order of 1024 particles per cubic want to study the properties of matter on but most physical and chemical interac- centimeter. the subatomic scale. The problem is partic- tions arise from only three: the proton, Each of those quantum mechanical par- ularly vexing for condensed matter phys- the neutron, and the electron. There are ticles may interact with all of the others in icists who study crystalline lattices or superconductors. Enter the quasiparticle, a mathematical con- struct that makes near-impossible calculations not only possible, but also straightforward. Decades ago, researchers realized that they don’t have to tackle the many-body problem that arises from the messy interactions of real quantum particles. Instead, a crystal solid can just as accurately be studied and analyzed as an averaged bulk object along with a collec- tion of quasiparticles: disturbances in the solid that act just like well-behaved, nonrel- ativistic particles that barely interact at all. They’re fictitious and easier to work with, and their collective behavior matches that of the real subatomic particles. An electron quasiparticle, for example, includes both the real electron and the nearby particles it affects—and may there- fore have a different mass.
    [Show full text]
  • Spin-Orbiton and Quantum Criticality in Fesc2s4
    Spin-orbiton and quantum criticality in FeSc2S4 L. Mittelstädt,1 M. Schmidt,1 Zhe Wang,1 F. Mayr,1 V. Tsurkan,1,2 P. Lunkenheimer,1,* D. Ish,4 L. Balents,3 J. Deisenhofer,1 and A. Loidl1 1Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany 2Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Chisinau, Republic of Moldova 3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California, 93106-4030, USA 4Physics Department, University of California, Santa Barbara, California, 93106-4030, USA In FeSc2S4 spin-orbital exchange competes with strong spin-orbit coupling, suppressing long-range spin and orbital order and, hence, this material represents one of the rare examples of a spin-orbital liquid ground state. Moreover, it is close to a quantum-critical point separating the ordered and disordered regimes. Using THz and FIR spectroscopy we study low-lying excitations in FeSc2S4 and provide clear evidence for a spin-orbiton, an excitation of strongly entangled spins and orbitals. It becomes particularly well pronounced upon cooling, when advancing deep into the quantum-critical regime. Moreover, indications of an underlying structureless excitation continuum are found, a possible signature of quantum criticality. PACS numbers: 71.70.Ej, 78.30.Hv, 75.40.Gb I. INTRODUCTION where a low-temperature orbital glass state has been identified. In FeSc2S4 orbital and spin order are suppressed In frustrated magnets, conventional long-range spin almost down to zero temperature and hence, it represents one order is suppressed via competing interactions or geometrical of the rare examples of a spin-orbital liquid (SOL).7,10,11,12,13 frustration.
    [Show full text]
  • Unraveling the Orbital Physics in a Canonical Orbital System Kcuf3
    PHYSICAL REVIEW LETTERS 126, 106401 (2021) Unraveling the Orbital Physics in a Canonical Orbital System KCuF3 † ‡ Jiemin Li ,1,2, Lei Xu ,3, Mirian Garcia-Fernandez,1 Abhishek Nag,1 H. C. Robarts,1,4 A. C. Walters ,1 X. Liu,5 Jianshi Zhou,6 Krzysztof Wohlfeld ,7 Jeroen van den Brink,3,8 Hong Ding,2 and Ke-Jin Zhou 1,* 1Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom 2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany 4H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom 5School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 6The Materials Science and Engineering Program, Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712, USA 7Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093 Warsaw, Poland 8Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01069 Dresden, Germany (Received 8 September 2020; revised 16 December 2020; accepted 21 January 2021; published 9 March 2021) We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF3 using the Cu L3-edge resonant inelastic x-ray scattering. We show that the nondispersive high- energy peaks result from the Cu2þ dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion.
    [Show full text]