Spin–orbital separation in the quasi- one-dimensional Mott insulator Sr2CuO3

Jeroen van den Brink

Motzensee 11.2.2014 –orbital separation in the quasi- one-dimensional Mott insulator Sr2CuO3

Jeroen van den Brink

Krzysztof Wohlfeld Liviu Hozoi Satoshi Nishimoto

Jean Sebastien Caux University of Amsterdam

Thorsten Schmitt Swiss Light Source, PSI Justine Schlappa

Nature, 485 82 (2012)

Motzensee 11.2.2014

charge in 1d systems charge fractionalization in 1d systems spin-charge separation in a spin-chain charge fractionalization in 1d systems

spin-charge separation in a spin-chain spin-orbital separation detected by RIXS charge fractionalization in 1d systems 1d systems: organic molecular polymers

Poly-alkane 1d systems: organic molecular polymers

Poly-alkane

Poly-acetalyne 1d systems: organic molecular polymers

Poly-alkane

Poly-acetalyne

What is the charge of charge carriers? E

k E

Conduction band

k Valence band E

Conduction band

k Valence band

... the charge of charge carriers? E

k –

remove

E

k – q, ω

remove electron

E

k – q, ω

remove electron

E –

q, ω hole propagating in valence band k – q, ω

remove electron

E –

q, ω hole propagating in valence band k charge e

1 extra electron/C 1 extra electron/C 1 extra electron/C dimerization opens gap 1 extra electron/C dimerization opens gap doubled unit cell 1 extra electron/C dimerization opens gap doubled unit cell

... the charge of charge carriers? Poly-acetalyne – Poly-acetalyne – Poly-acetalyne

– Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne Poly-acetalyne

2 domain walls propagating Poly-acetalyne

2 domain walls propagating each carries half the charge Poly-acetalyne

2 domain walls propagating each carries half the charge Poly-acetalyne

2 domain walls propagating – each carries half the q, ω charge Poly-acetalyne

2 domain walls propagating –

each carries half the q, ω charge dimerization causes charge fractionalization Poly-acetalyne

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

+

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

+

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne ––

+

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne –

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne –

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne –

+

spin

electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne –

+

with charge spin without spin electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne –

+

particle with charge spin without spin electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne –

+

particle particle with charge spin with spin without spin without charge holon electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne –

+

particle particle with charge spin with spin without spin without charge holon electron fractionalization

Su, Schriefer & Heeger, PRL 42, 1698 (1979) Poly-acetalyne –

+

particle particle with charge spin with spin without spin without charge holon electron fractionalization spinon spin-charge separation Su, Schriefer & Heeger, PRL 42, 1698 (1979) spin fractionalization in 1d systems Ising spin system

z z z z S =+ħ/2 S =-ħ/2 H = -J S i S i+1

excited state; E=J Ising spin system

z z z z S =+ħ/2 S =-ħ/2 H = -J S i S i+1

ground state; E=0

excited state; E=J Ising spin system

z z z z S =+ħ/2 S =-ħ/2 H = -J S i S i+1

ground state; E=0

excited state; E=J Ising spin system

z z z z S =+ħ/2 S =-ħ/2 H = -J S i S i+1

ground state; E=0

excited state; E=J Ising spin system

z z z z S =+ħ/2 S =-ħ/2 H = -J S i S i+1

ground state; E=0

excited state; E=J Ising spin system

z z z z S =+ħ/2 S =-ħ/2 H = -J S i S i+1

ground state; E=0

excited state; E=J Ising spin system

z z z z S =+ħ/2 S =-ħ/2 H = -J S i S i+1

ground state; E=0

excited state; E=J

2 propagating domain walls Ising spin system

z z z z S =+ħ/2 S =-ħ/2 H = -J S i S i+1

ground state; E=0 fractionalization of spin

excited state; E=J

2 propagating domain walls d dimensional system with linear extend N volume Nd d dimensional system with linear extend N

domain wall: surface separating 2 volume Nd differently ordered volumes d dimensional system with linear extend N

domain wall: surface separating 2 volume Nd differently ordered volumes

area Nd-1 d dimensional system with linear extend N

domain wall: surface separating 2 volume Nd differently ordered volumes

area Nd-1

domain wall carried by N d=2 atoms//spins d dimensional system with linear extend N

domain wall: surface separating 2 volume Nd differently ordered volumes

area Nd-1

domain wall carried by N d=2 atoms/electrons/spins

2 domain walls carried by 1 d=1 atom/electron/spin d dimensional system with linear extend N

domain wall: surface separating 2 volume Nd differently ordered volumes

area Nd-1

domain wall carried by N d=2 atoms/electrons/spins

2 domain walls carried by 1 d=1 atom/electron/spin d=1: elementary excitations are topological in nature d dimensional system with linear extend N

domain wall: surface separating 2 volume Nd differently ordered volumes

area Nd-1

domain wall carried by N d=2 atoms/electrons/spins

2 domain walls carried by 1 d=1 atom/electron/spin d=1: elementary excitations are topological in nature elementary excitations are fractionalized Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z H = J S i S i+1

Allow for spin-exchange Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z H = J S i S i+1

Allow for spin-exchange Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z H = J S i S i+1

Allow for spin-exchange Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z H = J S i S i+1

Allow for spin-exchange Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1

Allow for spin-exchange Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

ground state Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon

two domain walls, each with ∆Sz= ħ/2 spinon Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon

two domain walls, each with ∆Sz= ħ/2 spinon d=1: magnon fractionalizes into Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon

two domain walls, each with ∆Sz= ħ/2 spinon d=1: magnon fractionalizes into spinons

spinon k1,ω1 magnon q, ω spinon k2,ω2 Heisenberg antiferromagnet Sz=+ħ/2 Sz=-ħ/2

z z y y x x H = J S i S i+1 +J S i S i+1 +J S i S i+1 = J Si •Si+1

Allow for spin-exchange

spinground flip ∆ stateSz= ħ in d=3: magnon

two domain walls, each with ∆Sz= ħ/2 spinon d=1: magnon fractionalizes into spinons

spinon k1,ω1 magnon q, ω q=k1+k2, ω=ω1+ω2 spinon k2,ω2 Spinons in 1d Heisenberg antiferromagnet

spinon k1,ω1 magnon q, ω q=k1+k2, ω=ω1+ω2 spinon k2,ω2 Spinons in 1d Heisenberg antiferromagnet

spinon k1,ω1 magnon q, ω q=k1+k2, ω=ω1+ω2 spinon k2,ω2 relative momentum of spinons p=k2-k1 not yet determined Spinons in 1d Heisenberg antiferromagnet

spinon k1,ω1 magnon q, ω q=k1+k2, ω=ω1+ω2 spinon k2,ω2 excitation relative momentum of spinons continuum q, ω p=k2-k1 not yet determined Spinon excitations in 1d Heisenberg antiferromagnet excitation relative momentum of spinons continuum q, ω q=k2-k1 not yet determined neutron scattering magnetic excitations

Bethe-Ansatz exact solution

Klauser, Mossel, Caux, JvdB, PRL 106, 157205 (2011) spin-charge separation spin-charge separation

Remove electron from Heisenberg antiferromagnet

holon holon holon spinon holon spinon holon holon and spinon: moving freely & independently spinon holon holon and spinon: moving freely & independently holon = quasi-particle carrying charge (e) spinon = quasi-particle carrying spin (ħ/2) spinon holon holon and spinon: moving freely & independently holon = quasi-particle carrying charge (e) spinon = quasi-particle carrying spin (ħ/2) spin-charge separation: “e-ħ ➞ e + ħ” spinon holon

holon and spinon: moving freely & independently holon = quasi-particle carrying charge (e) spinon = quasi-particle carrying spin (ħ/2) spin-charge separation: “e-ħ ➞ e + ħ” detectable by angle resolved photoemission (ARPES) C. Kim et al, PRL 77, 4054 (1996) spin-charge separation by ARPES

B.J. Kim et al, Nature Physics (2006) spin-orbital separation spin-orbital separation

Excite electron from one orbital to another in Heisenberg chain spin-orbital separation

Excite electron from one orbital to another in Heisenberg chain

1. orbital degrees of freedom 2. resonant inelastic x-ray scattering Quasi 1D cuprate Sr2CuO3 spin chains Quasi 1D cuprate Sr2CuO3 spin chains Quasi 1D cuprate Sr2CuO3 spin chains

Cu2+ d-orbital splitting: Cu2+

Cubic Crystal field splitting • eg orbitals – Cu2+ – –– –– ––

• t orbitals –– –– 2g Cu (2+) = 3d9

eg 5x

t2g d-orbital splitting: Cu2+

Cubic Crystal field splitting • eg orbitals – Cu2+ – –– –– ––

• t orbitals –– –– 2g Cu (2+) = 3d9

eg 5x

t2g d-orbital splitting: Cu2+

Cubic Crystal field splitting • eg orbitals – Cu2+ – –– –– ––

• t orbitals –– –– 2g Cu (2+) = 3d9

eg 5x

t2g d-orbital splitting: Cu2+

Cubic Crystal field splitting • eg orbitals – Cu2+ – –– –– ––

• t orbitals –– –– 2g Cu (2+) = 3d9

eg 5x

t2g RIXS on Sr2CuO3

Resonant What is Inelastic RIXS X-ray scattering RIXS on Sr2CuO3

Resonant What is Inelastic RIXS X-ray scattering

X-ray scattering: in solid  photon out

inelastic: ωout < ωin

resonant: tune ωin to an atomic absorption edge

Ament, Veenendaal, Devereaux, Hill, JvdB Rev. Mod. Phys. 83, 705 (2011) Cu L-edge

3 d Momentum transfer ~900 eV Energy loss

2 p Cu L-edge

3 d Momentum transfer ~900 eV Energy loss

2 p Cu L-edge

3 d Momentum transfer ~900 eV Energy loss

2 p Cu L-edge

3 d Momentum transfer ~900 eV Energy loss

2 p Cu L-edge

3 d Momentum transfer ~900 eV Energy loss

2 p s=1/2 l=1 Cu L-edge

3 d Momentum transfer ~900 eV Energy loss

2 p s=1/2 l=1 l•s Cu L-edge

3 d Momentum transfer ~900 eV Energy loss

2 p s=1/2 l=1 l•s dd excitation Cu spin flip L-edge

3 d Momentum transfer ~900 eV Energy loss

2 p RIXS at Cu L3 edge of Sr2CuO3

RIXS at Cu L3 edge in Sr2CuO3

Sr2CuO3

• 1D AF x FO ground state

• Famous 1D AF with very large J ~ 0.25 eV RIXS spectrum of Sr2CuO3

Schlappa, Wohlfeld, Zhou, Mourigal, Haverkort, Strocov, Hozoi, Monney, Nishimoto, Singh, Revcolevschi, Caux, Patthey, Ronnow, JvdB, Schmitt, Nature 485, 82 (2012) RIXS spectrum of Sr2CuO3

Orbital excitations

Schlappa, Wohlfeld, Zhou, Mourigal, Haverkort, Strocov, Hozoi, Monney, Nishimoto, Singh, Revcolevschi, Caux, Patthey, Ronnow, JvdB, Schmitt, Nature 485, 82 (2012) RIXS spectrum of Sr2CuO3

Orbital excitations

Spin excitations spinons

Schlappa, Wohlfeld, Zhou, Mourigal, Haverkort, Strocov, Hozoi, Monney, Nishimoto, Singh, Revcolevschi, Caux, Patthey, Ronnow, JvdB, Schmitt, Nature 485, 82 (2012) Spinons in Sr2CuO3

Bethe-Ansatz exact solution Spinons in Sr2CuO3

spinons of Heisenberg spin chain

Bethe-Ansatz exact solution Klauser, Mossel, Caux, JvdB, PRL 106, 157205 (2011) Orbital excitations in Sr2CuO3

• So far we have considered only local orbital excitations • But: an orbital excitation can disperse

The (mobile orbital excitation) appears in RIXS

E. Saitoh et al., Nature 410, 180 (2001) How to explain large orbital dispersion? How to explain large orbital dispersion?

“Standard” theoretical approaches fail

Single ion (left) and orbital wave (right)‏ Orbital excitations in Sr2CuO3

But we get perfect agreement with experiment... employing a new theoretical concept: spin-orbital separation

<-- Experiment Theory --> Spin - Orbital separation

Spin-orbital separation Spin-charge separation

[C. Kim et al. PRL 77, 4054 (1996)] Spin - Orbital separation

Spin-orbital separation Spin-charge separation

[C. Kim et al. PRL 77, 4054 (1996)] Spin - Orbital separation

Spin-orbital separation Spin-charge separation

[C. Kim et al. PRL 77, 4054 (1996)] Spin - Orbital separation in Sr2CuO3

Simplified theory: orbiton-spin separation Ansatz for xz orbital:

Spinon-orbiton continuum Orbiton (2 edges)‏

Exp. Exp. Theory Conclusions Conclusions

RIXS sensitive probe of orbital excitations and can directly probe their dispersions Conclusions

RIXS sensitive probe of orbital excitations and can directly probe their dispersions

Measures magnetic excitations and dispersions spinons splitting of spinon and orbiton

Schlappa, Wohlfeld, Zhou, Mourigal, Haverkort, Strocov, Hozoi, Monney, Nishimoto, Singh, Revcolevschi, Caux, Patthey, Ronnow, JvdB, Schmitt, Nature 485, 82 (2012) Conclusions

RIXS sensitive probe of orbital excitations and can directly probe their dispersions

Measures magnetic excitations and dispersions spinons orbitons splitting of spinon and orbiton

Schlappa, Wohlfeld, Zhou, Mourigal, Haverkort, Strocov, Hozoi, Monney, Nishimoto, Singh, Revcolevschi, Caux, Patthey, Ronnow, JvdB, Schmitt, Nature 485, 82 (2012) Promising new technique... experiments... Conclusions

RIXS sensitive probe of orbital excitations and can directly probe their dispersions

Measures magnetic excitations and dispersions spinons orbitons splitting of spinon and orbiton

Schlappa, Wohlfeld, Zhou, Mourigal, Haverkort, Strocov, Hozoi, Monney, Nishimoto, Singh, Revcolevschi, Caux, Patthey, Ronnow, JvdB, Schmitt, Nature 485, 82 (2012) Promising new technique... experiments... theory...

Detecting orbitons with RIXS

line spectra: Elementary Excitations in RIXS Elementary Excitations in RIXS

Resonant Inelastic X-ray Scattering Studies of Elementary Excitations Ament, Veenendaal, Devereaux, Hill, JvdB Rev. Mod. Phys. 83, 705 (2011) Elementary Excitations in RIXS

Resonant Inelastic X-ray Scattering Studies of Elementary Excitations Ament, Veenendaal, Devereaux, Hill, JvdB Rev. Mod. Phys. 83, 705 (2011) Atomic RIXS on Cu L-edge Atomic RIXS on Cu L-edge

Michel van Veenendaal no spin flip without orbital flip PRL 96, 117404 (2006) Atomic RIXS on Cu L-edge

ground state

Michel van Veenendaal no spin flip without orbital flip PRL 96, 117404 (2006) Atomic RIXS on Cu L-edge final states ground state

Michel van Veenendaal no spin flip without orbital flip PRL 96, 117404 (2006) Atomic RIXS on Cu L-edge final states ground state

orbital+spin flip

Michel van Veenendaal no spin flip without orbital flip PRL 96, 117404 (2006) Atomic RIXS on Cu L-edge final states ground state

orbital+spin flip spin // z

Michel van Veenendaal no spin flip without orbital flip PRL 96, 117404 (2006) Atomic RIXS on Cu L-edge final states ground state

orbital+spin flip spin // z

now: generalize this to arbitrary spin orientation Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009) Magnetic L-edge RIXS on La2CuO4 Magnetic L-edge RIXS on La2CuO4

In special cases direct spin-flip scattering is allowed at Cu L-edge CuO’s are such special cases! Magnetic L-edge RIXS on La2CuO4

In special cases direct spin-flip scattering is allowed at Cu L-edge CuO’s are such special cases!

Braicovich, JvdB et al., Ament, Ghiringhelli, Moretti, PRL 104, 077002 (2010) Braicovich & JvdB, PRL 103, 117003 (2009)

magnon dispersion Magnetic L-edge RIXS on La2CuO4

In special cases direct spin-flip scattering is allowed at Cu L-edge CuO’s are such special cases!

Braicovich, JvdB et al., Ament, Ghiringhelli, Moretti, PRL 104, 077002 (2010) Braicovich & JvdB, PRL 103, 117003 (2009)

magnon dispersion Magnetic L-edge RIXS on La2CuO4

In special cases direct spin-flip scattering is allowed at Cu L-edge CuO’s are such special cases!

Braicovich, JvdB et al., Ament, Ghiringhelli, Moretti, PRL 104, 077002 (2010) Braicovich & JvdB, PRL 103, 117003 (2009)

magnon dispersion Braicovich, JvdB et al., PRB 81, 174533 (2010) RIXS magnon dispersion of Sr2CuO2Cl2

—> transferred momentum q Guarise et al., PRL 105, 157006 (2010) RIXS magnon dispersion of Sr2CuO2Cl2

deviation from simple Heisenberg

—> transferred momentum q Guarise et al., PRL 105, 157006 (2010) Magnetic L-edge RIXS on 8% doped La2-xSrxCuO4 Tc = 21K Magnetic L-edge RIXS on 8% doped La2-xSrxCuO4 Tc = 21K

d-d excitation Magnetic L-edge RIXS on 8% doped La2-xSrxCuO4 Tc = 21K

d-d excitation

Braicovich, JvdB et al. paramagnon PRL 104, 077002 (2010) magnon magnon para- magnon Magnetic RIXS vs. Inelastic Neutron Scattering

RIXS Neutrons amount of material needed magnon energy accessible

materials Magnetic RIXS vs. Inelastic Neutron Scattering

RIXS Neutrons amount of small large material needed magnon energy accessible

materials Magnetic RIXS vs. Inelastic Neutron Scattering

RIXS Neutrons amount of small large material needed magnon energy high (>25 meV) low (<25 meV) accessible

materials Magnetic RIXS vs. Inelastic Neutron Scattering

RIXS Neutrons amount of small large material needed magnon energy high (>25 meV) low (<25 meV) accessible

materials Cu, Ni, ... non-absorbers

Double spin-flip scattering in spin 1/2 chain

Bethe Ansatz (exact)

Neutron scattering

Klauser, Mossel, Caux, JvdB, PRL 106, 157205 (2011)

Forte, Cuoco, Noce, JvdB, PRB 83, 245133 (2011) Double spin-flip scattering in spin 1/2 chain

Bethe Ansatz (exact)

Neutron scattering

magnon → 2 spinons Klauser, Mossel, Caux, JvdB, PRL 106, 157205 (2011) Forte, Cuoco, Noce, JvdB, PRB 83, 245133 (2011) Double spin-flip scattering in spin 1/2 chain

Bethe Ansatz (exact)

Neutron scattering

2 spinon continuum

magnon → 2 spinons Klauser, Mossel, Caux, JvdB, PRL 106, 157205 (2011) Forte, Cuoco, Noce, JvdB, PRB 83, 245133 (2011) Double spin-flip scattering in spin 1/2 chain

Bethe Ansatz (exact)

Neutron scattering RIXS

2 spinon continuum

magnon → 2 spinons Klauser, Mossel, Caux, JvdB, PRL 106, 157205 (2011) Forte, Cuoco, Noce, JvdB, PRB 83, 245133 (2011) Double spin-flip scattering in spin 1/2 chain

Bethe Ansatz (exact)

Neutron scattering RIXS

2 spinon continuum

magnon → 2 spinons Klauser, Mossel, Caux, JvdB, PRL 106, 157205 (2011) Forte, Cuoco, Noce, JvdB, PRB 83, 245133 (2011) Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins? Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?

Hopping amplitude t Coulomb repulsion U Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?

Hopping amplitude t Coulomb repulsion U Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?

Hopping amplitude t Coulomb repulsion U with core hole: Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?

Hopping amplitude t Coulomb repulsion U with core hole: Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?

Hopping amplitude t Coulomb repulsion U with core hole:

intermediate state at U - Uc Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?

Hopping amplitude t Coulomb repulsion U Core-hole locally modifies superexchange J ! with core hole:

intermediate state at U - Uc Spin-photon coupling for Cu K-edge RIXS

How does intermediate state core-hole couple to spins?

Hopping amplitude t Coulomb repulsion U Core-hole locally modifies superexchange J ! with core hole:

create double spin-flipintermediate / bi-magnon state excitations at U - Uc Magnetic RIXS on Cu L-edge ⇓ hole in spin // z spin ⊥ z x2-y2 orbital

Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009) Magnetic RIXS on Cu L-edge ⇓ hole in spin // z spin ⊥ z x2-y2 orbital

ground state

Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009) Magnetic RIXS on Cu L-edge ⇓ hole in spin // z spin ⊥ z x2-y2 orbital orbital+spin flip

ground state

Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009) Magnetic RIXS on Cu L-edge ⇓ hole in spin // z spin ⊥ z x2-y2 orbital orbital+spin flip

ground state spin flip only

Ament, Ghiringhelli, Moretti, Braicovich & JvdB, PRL 103, 117003 (2009)