Arxiv:1905.13638V1 [Cond-Mat.Quant-Gas] 31 May 2019
Time-Resolved Observation of Spin-Charge Deconfinement in Fermionic Hubbard Chains Jayadev Vijayan1;2;∗;y, Pimonpan Sompet1;2;∗, Guillaume Salomon1;2, Joannis Koepsell1;2, Sarah Hirthe1;2, Annabelle Bohrdt2;3, Fabian Grusdt2;3, Immanuel Bloch1;2;4, and Christian Gross1;2 1Max-Planck-Institut f¨urQuantenoptik, 85748 Garching, Germany 2Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 M¨unchen,Germany 3Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and 4Fakult¨atf¨urPhysik, Ludwig-Maximilians-Universit¨at,80799 M¨unchen,Germany (Dated: June 3, 2019) Elementary particles such as the electron carry several quantum numbers, for example, charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. Paradigmatic examples of this phenomenon are one-dimensional systems described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here we report on the dynamical deconfinement of spin and charge excitations in real space following the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we track the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multi-point correlators, we quantify the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures. Introduction far. Here we demonstrate dynamical spin-charge separation Strongly correlated quantum systems are known to directly by performing a local quench in a 1D gas of ul- show peculiar behaviour, which often cannot be at- tracold fermionic atoms and subsequently monitoring the tributed microscopically to the properties of weakly evolution of the system with spin- and density-resolved dressed individual electrons such as in ordinary metals.
[Show full text]