Spin Charge Separation in the Quantum Spin Hall State

Total Page:16

File Type:pdf, Size:1020Kb

Spin Charge Separation in the Quantum Spin Hall State SLAC-PUB-13922 Spin Charge Separation in the Quantum Spin Hall State Xiao-Liang Qi and Shou-Cheng Zhang Department of Physics, McCullough Building, Stanford University, Stanford, CA 94305-4045 (Dated: February 2, 2008) The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a π flux. Our result is generally valid for any interacting system. We present a proposal to ex- perimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system. PACS numbers: 72.25.Dc, 73.43.-f, 05.30.Pr, 71.10.Pm Spin-charge separation is one of the deepest concepts tal missing links in the QSH systems. Needed is a general in condensed matter physics. In the Su-Schrieffer-Heeger classification of time reversal invariant (TRI) topological model of polyacetylene[1], a domain wall induces two insulators in two dimensions which is valid in the presence mid-gap states, one for each spin orientation of the elec- of arbitrary interactions. Such a general classification be- tron. If both states are unoccupied, or both states are yond the single particle band picture is especially called occupied, the domain wall soliton has charge ±e but no for since the concept of a topological Mott insulator has spin. If only one of the state is occupied, the domain recently been introduced[14]. More importantly, we need wall soliton has spin Sz = ±1/2 but no charge. In this to find experimentally measurable properties which di- remarkable way, the two fundamental degrees of free- rectly demonstrate the topological non-triviality of the dom of an electron is split apart. Since then, the con- QSH state. cept of spin-charge separation has become a corner stone In this paper, we solve both problems by providing a in condensed matter physics. This phenomenon occurs deep connection between the concept of spin-charge sep- generally in interacting quantum many-body systems in aration and the QSH effect. Following Laughlin’s argu- one dimension, and can be demonstrated convincingly ment for the QH effect, we consider the adiabatic inser- by the bosonization techniques. The concept has also tion of a pure gauge flux in the QSH state. We show been generalized to two dimensions. In particular, it is that there are four different ways of reaching the final conjectured that such a phenomenon occurs in the high flux of π, and that these four processes create the spin- temperature superconductors[2, 3]. However, this phe- charge separated holon, chargeon and two spinon states nomenon has not yet been convincingly observed in any which are exponentially localized near the flux. We then two dimensional systems. prove two general theorems providing a Z2 classification Recently, a new two dimensional quantum state of of TRI insulators in two dimensions. This new classifi- matter has been theoretically proposed[4, 5, 6]. The cation scheme is generally valid in the presence of many- quantum spin Hall (QSH) state is a topologically non- body interactions, and leads to spin-charge separation as trivial state of matter protected by the time reversal sym- its direct physical consequence. Finally, we propose an metry. It has a bulk insulating gap, but has helical edge experimental setting to observe the phenomenon of spin- states on the sample boundary, where electron states with charge separation in the recently discovered QSH system. opposite spins counter-propagate at a given edge. This We first present an argument which is physically intu- novel quantum state of matter has recently been theo- itive, but only valid when there is at least a Us(1) spin retically predicted[6] and experimentally observed[7] in rotation symmetry. In this case, the QSH effect is simply the HgT e quantum wells. The topological property of defined as two copies of QH, with opposite Hall conduc- the quantum Hall (QH) state is described by an inte- tances of ±e2/h for opposite spin orientations. Without ger Chern number[8], defined over the single particle mo- loss of generality, we first consider a disk geometry with mentum space, and this integer is directly related to the a gauge flux of φ↑ = φ↓ = hc/2e, or simply π in units experimentally observed quantum of Hall conductance. of ~ = c = e = 1, through a hole at the center, see This construction can also be generalized to an interact- Fig. 1. The gauge flux acts on both spin orientations, ing system, where the Chern number is defined over the and the π flux preserves time reversal symmetry. We space of twisted boundary conditions[9]. The topological consider adiabatic processes of φ↑(t) and φ↓(t), where property of the QSH state is currently described by a Z2 φ↑(t) = φ↓(t) = 0 at t = 0, and φ↑(t) = φ↓(t) = ±π topological number[10, 11, 12, 13], which is also defined at t = 1. Since the flux of π is equivalent to the flux over the single particle momentum space. This Z2 clas- of −π, there are four different adiabatic processes all sification has provided an important insight on the topo- reaching the same final flux configuration. In process logical non-triviality of the QSH state. However, unlike (a), φ↑(t) = −φ↓(t) and φ↑(t = 1) = π. In process the situation in QH systems, there are several fundamen- (b), φ↑(t) = −φ↓(t) and φ↑(t = 1) = −π. In process SIMES, SLAC National Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94309 Work supported in part by US Department of Energy contract DE-AC02-76SF00515. 2 (c), φ↑(t) = φ↓(t) and φ↑(t = 1) = π. In process (d), and the charge quantum numbers are sharply defined φ↑(t) = φ↓(t) and φ↑(t = 1) = −π. These four pro- quantum numbers[15]. The insulating state has a bulk cesses are illustrated in Fig 1. Note that process (a) and gap ∆, and an associated coherence length ξ = ~vF /∆. (b) preserves time reversal symmetry at all intermediate As long as the radius of the Gaussian loop rG far ex- stages, while process (c) and (d) only preserves the time ceeds the coherence length, i.e., rG ≫ ξ, the spin and reversal symmetry at the final stage. the charge quantum numbers are sharply defined within We consider a Gaussian loop surrounding the flux. As exponential accuracy. Recently, similar proposals of frac- the flux φ↑(t) is turned on adiabatically, Faraday’s law tionalization phenomena in two-dimensions induced by induction states that a tangential electric field E↑ is in- topological defects have been studied in several other duced along the Gaussian loop. The quantized Hall con- systems.[16, 17, 18, 19] 2 e While the argument above is intuitive and generally ductance implies a radial current j↑ = h z×E↑, resulting in a net charge flow ∆Q↑ through the Gaussian loop: valid in the presence of both interaction and disorder, it has a serious shortcoming. It relies on the Us(1) spin ro- 1 e2 1 tation symmetry which is not generic in the presence of ∆Q↑ = − dt dn · j↑ = − dt dl · E↑ Z0 Z h Z0 Z spin-orbit interactions. Therefore, we first need a general e2 1 ∂φ e2 hc e definition of the concept of spin-charge separation rely- = − dt = − = − (1) ing only on the generic time-reversal symmetry. In the hc Z ∂t hc 2e 2 0 absence of spin rotational symmetry, we can still use the Identical argument applied to the down spin component generic time reversal symmetry and the Kramers theorem shows that ∆Q↓ = −e/2. Therefore, this adiabatic pro- to classify integer versus half-integer spin states. Denot- cess creates the holon state with ∆Q = ∆Q↑ +∆Q↓ = −e ing the time reversal operator as T , and the charge op- and ∆Sz = ∆Q↑ − ∆Q↓ = 0. erator as N, we give the following general definition of spin-charge separation: (a) (b) Definition I φ φ • : A generalized chargeon (or π π holon) state is a quantum state |ψci satisfying N (−1) |ψci = −|ψci, and T |ψci = |ψci. A gener- 0 t t 1 0 1 alized spinon state is a doublet of quantum states −π ∆ −π ∆ + − N ± ± Q=-e Q=e |ψs i and |ψs i, satisfying (−1) |ψs i = |ψs i, T |ψ+i = |ψ−i and T |ψ−i = −|ψ+i. (c) (d) s s s s φ φ π = π The Kramers degeneracy is generally lifted in the presence of a magnetic field, and the resulting energy 0 t t 1 0 1 splitting of the doublet is linear in magnetic field, ı.e. −π −π ∗ ∗ = ∆E = g µB|B|. The constant of proportionality g can ∆ S =-1/2 ∆ S =1/2 z z be defined as the effective g factor of the spinon. We now consider a TRI insulator without any additional spin ro- tational symmetry. We consider the generalizations of FIG. 1: Four different adiabatic processes from φ↑ = φ↓ = 0 processes (a) and (b), by replacing the hopping matrix iθ(t)Γ to φ↑ = φ↓ = π. The red (blue) curve stands for the flux elements tij with tij e [20, 21] on all links along a ± φ↑(↓)(t), respectively. The symbol “ ” (“ ”) represents in- string extending from the flux tube to infinity. Here Γ is ⊙ ⊗ creasing (decreasing) fluxes, and the arrows show the current a matrix in the spin space, and the intuitive discussion into and out of the Gaussian loop, induced by the changing given above corresponds to the choice of Γ = Sz. All the flux. Charge is pumped in the processes with φ↑(t)= φ↓(t), − following discussions are valid even if Γ is not conserved.
Recommended publications
  • Spectroscopy of Spinons in Coulomb Quantum Spin Liquids
    MIT-CTP-5122 Spectroscopy of spinons in Coulomb quantum spin liquids Siddhardh C. Morampudi,1 Frank Wilczek,2, 3, 4, 5, 6 and Chris R. Laumann1 1Department of Physics, Boston University, Boston, MA 02215, USA 2Center for Theoretical Physics, MIT, Cambridge MA 02139, USA 3T. D. Lee Institute, Shanghai, China 4Wilczek Quantum Center, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 5Department of Physics, Stockholm University, Stockholm Sweden 6Department of Physics and Origins Project, Arizona State University, Tempe AZ 25287 USA We calculate the effect of the emergent photon on threshold production of spinons in U(1) Coulomb spin liquids such as quantum spin ice. The emergent Coulomb interaction modifies the threshold production cross- section dramatically, changing the weak turn-on expected from the density of states to an abrupt onset reflecting the basic coupling parameters. The slow photon typical in existing lattice models and materials suppresses the intensity at finite momentum and allows profuse Cerenkov radiation beyond a critical momentum. These features are broadly consistent with recent numerical and experimental results. Quantum spin liquids are low temperature phases of mag- The most dramatic consequence of the Coulomb interaction netic materials in which quantum fluctuations prevent the between the spinons is a universal non-perturbative enhance- establishment of long-range magnetic order. Theoretically, ment of the threshold cross section for spinon pair production these phases support exotic fractionalized spin excitations at small momentum q. In this regime, the dynamic structure (spinons) and emergent gauge fields [1–4]. One of the most factor in the spin-flip sector observed in neutron scattering ex- promising candidate class of these phases are U(1) Coulomb hibits a step discontinuity, quantum spin liquids such as quantum spin ice - these are ex- 1 q 2 q2 pected to realize an emergent quantum electrodynamics [5– S(q;!) ∼ S0 1 − θ(! − 2∆ − ) (1) 11].
    [Show full text]
  • The Pauli Exclusion Principle the Pauli Exclusion Principle Origin, Verifications, and Applications
    THE PAULI EXCLUSION PRINCIPLE THE PAULI EXCLUSION PRINCIPLE ORIGIN, VERIFICATIONS, AND APPLICATIONS Ilya G. Kaplan Materials Research Institute, National Autonomous University of Mexico, Mexico This edition first published 2017 © 2017 John Wiley & Sons, Ltd. Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Magnetic Field-Induced Intermediate Quantum Spin Liquid with a Spinon
    Magnetic field-induced intermediate quantum spin liquid with a spinon Fermi surface Niravkumar D. Patela and Nandini Trivedia,1 aDepartment of Physics, The Ohio State University, Columbus, OH 43210 Edited by Subir Sachdev, Harvard University, Cambridge, MA, and approved April 26, 2019 (received for review December 15, 2018) The Kitaev model with an applied magnetic field in the H k [111] In this article, we theoretically address the following question: direction shows two transitions: from a nonabelian gapped quan- what is the fate of the Kitaev QSL with increasing magnetic field tum spin liquid (QSL) to a gapless QSL at Hc1 ' 0:2K and a second (Eq. 1) beyond the perturbative limit? Previous studies, using a transition at a higher field Hc2 ' 0:35K to a gapped partially variety of numerical methods (30–33), have pushed the Kitaev polarized phase, where K is the strength of the Kitaev exchange model solution to larger magnetic fields outside the perturbative interaction. We identify the intermediate phase to be a gap- regime. At high magnetic fields, one would expect a polarized less U(1) QSL and determine the spin structure function S(k) and phase. What is surprising is the discovery of an intermediate S the Fermi surface F (k) of the gapless spinons using the density phase sandwiched between the gapped QSL at low fields and the matrix renormalization group (DMRG) method for large honey- polarized phase at high fields when a uniform magnetic field is comb clusters. Further calculations of static spin-spin correlations, applied along the [111] direction (Fig. 1C).
    [Show full text]
  • Phys. Rev. Lett. (1982) Balents - Nature (2010) Savary Et Al.- Rep
    Spectroscopy of spinons in Coulomb quantum spin liquids Quantum spin ice Chris R. Laumann (Boston University) Josephson junction arrays Interacting dipoles Work with: Primary Reference: Siddhardh Morampudi Morampudi, Wilzcek, CRL arXiv:1906.01628 Frank Wilzcek Les Houches School: Topology Something Something September 5, 2019 Collaborators Siddhardh Morampudi Frank Wilczek Summary Emergent photon in the Coulomb spin liquid leads to characteristic signatures in neutron scattering Outline 1. Introduction A. Emergent QED in quantum spin ice B. Spectroscopy 2. Results A. Universal enhancement B. Cerenkov radiation C. Comparison to numerics and experiments 3. Summary New phases beyond broken symmetry paradigm Fractional Quantum Hall Effect Quantum Spin Liquids D.C. Tsui; H.L. Stormer; A.C. Gossard - Phys. Rev. Lett. (1982) Balents - Nature (2010) Savary et al.- Rep. Prog. Phys (2017) Knolle et al. - Ann. Rev. Cond. Mat. (2019) Theoretically describing quantum spin liquids • Lack of local order parameters • Topological ground state degeneracy • Fractionalized excitations Interplay in this talk • Emergent gauge fields How do we get a quantum spin liquid? (Emergent gauge theory) Local constraints + quantum fluctuations + Luck Rare earth pyrochlores Classical spin ice 4f rare-earth Non-magnetic Quantum spin ice Gingras and McClarty - Rep. Prog. Phys. (2014) Rau and Gingras (2019) Pseudo-spins in rare-earth pyrochlores Free ion Pseudo-spins in rare-earth pyrochlores Free ion + Spin-orbit ~ eV Pseudo-spins in rare-earth pyrochlores Free ion + Spin-orbit + Crystal field Single-ion anisotropy ~ eV ~ meV Rau and Gingras (2019) Allowed NN microscopic Hamiltonian Doublet = spin-1/2 like Kramers pair Ising + Heisenberg + Dipolar + Dzyaloshinskii-Moriya Ross et al - Phys.
    [Show full text]
  • Observing Spinons and Holons in 1D Antiferromagnets Using Resonant
    Summary on “Observing spinons and holons in 1D antiferromagnets using resonant inelastic x-ray scattering.” Umesh Kumar1,2 1 Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, USA 2 Joint Institute for Advanced Materials, The University of Tennessee, Knoxville, TN 37996, USA (Dated Jan 30, 2018) We propose a method to observe spinon and anti-holon excitations at the oxygen K-edge of Sr2CuO3 using resonant inelastic x-ray scattering (RIXS). The evaluated RIXS spectra are rich, containing distinct two- and four-spinon excitations, dispersive antiholon excitations, and combinations thereof. Our results further highlight how RIXS complements inelastic neutron scattering experiments by accessing charge and spin components of fractionalized quasiparticles Introduction:- One-dimensional (1D) magnetic systems are an important playground to study the effects of quasiparticle fractionalization [1], defined below. Hamiltonians of 1D models can be solved with high accuracy using analytical and numerical techniques, which is a good starting point to study strongly correlated systems. The fractionalization in 1D is an exotic phenomenon, in which electronic quasiparticle excitation breaks into charge (“(anti)holon”), spin (“spinon”) and orbit (“orbiton”) degree of freedom, and are observed at different characteristic energy scales. Spin-charge and spin-orbit separation have been observed using angle-resolved photoemission spectroscopy (ARPES) [2] and resonant inelastic x-ray spectroscopy (RIXS) [1], respectively. RIXS is a spectroscopy technique that couples to spin, orbit and charge degree of freedom of the materials under study. Unlike spin-orbit, spin-charge separation has not been observed using RIXS to date. In our work, we propose a RIXS experiment that can observe spin-charge separation at the oxygen K-edge of doped Sr2CuO3, a prototype 1D material.
    [Show full text]
  • Imaging Spinon Density Modulations in a 2D Quantum Spin Liquid Wei
    Imaging spinon density modulations in a 2D quantum spin liquid Wei Ruan1,2,†, Yi Chen1,2,†, Shujie Tang3,4,5,6,7, Jinwoong Hwang5,8, Hsin-Zon Tsai1,10, Ryan Lee1, Meng Wu1,2, Hyejin Ryu5,9, Salman Kahn1, Franklin Liou1, Caihong Jia1,2,11, Andrew Aikawa1, Choongyu Hwang8, Feng Wang1,2,12, Yongseong Choi13, Steven G. Louie1,2, Patrick A. Lee14, Zhi-Xun Shen3,4, Sung-Kwan Mo5, Michael F. Crommie1,2,12,* 1Department of Physics, University of California, Berkeley, California 94720, USA 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 3Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California 94025, USA 4Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA 5Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 6CAS Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 7School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China 8Department of Physics, Pusan National University, Busan 46241, Korea 9Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea 10International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for
    [Show full text]
  • Nature Physics News and Views, January 2008
    NEWS & VIEWS SupeRCONducTIVITY Beyond convention For high-temperature superconductors, results from more refined experiments on better-quality samples are issuing fresh challenges to theorists. It could be that a new state of matter is at play, with unconventional excitations. Didier Poilblanc antiferromagnetic insulator changes to as a function of an applied magnetic is in the Laboratoire de Physique Théorique, a superconductor — two very distinct field) in the magnetic-field-induced CNRS and Université Paul Sabatier, F-31062 states of matter. Their theory aims, in normal phase5, a fingerprint of small Toulouse, France. particular, to reconcile two seemingly closed Fermi surfaces named ‘pockets’. e-mail: [email protected] conflicting experimental observations. A valid theoretical description should Angular-resolved photoemission then account simultaneously for the lthough copper-oxide spectroscopy (ARPES) provides a unique destruction of the Fermi surface seen superconductors share with experimental set-up to map the locus in ARPES and for the SdH quantum A conventional superconductors of the zero-energy quasiparticles in oscillations. It should also explain the the remarkable property of offering no momentum space. Instead of showing a apparent violation of the Luttinger resistance to the flow of electricity, their large Fermi surface as most metals would, sum rule, the observed area of the SdH characteristic critical temperatures (Tc) above Tc low-carrier-density cuprates pockets being significantly smaller than below which this happens can be as show enigmatic ‘Fermi arcs’ — small the doping level (in appropriate units). high as 135 K. In fact, these materials disconnected segments in momentum A key feature of Kaul and colleagues’ belong to the emerging class of so-called space that continuously evolve into nodal theory1 is the emergence of a fractional strongly correlated systems — a class of points at Tc (ref.
    [Show full text]
  • On the Orbiton a Close Reading of the Nature Letter
    return to updates More on the Orbiton a close reading of the Nature letter by Miles Mathis In the May 3, 2012 volume of Nature (485, p. 82), Schlappa et al. present a claim of confirmation of the orbiton. I will analyze that claim here. The authors begin like this: When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. As a reader, you should be concerned that they would start off this important paper with a falsehood. I remind you that according to current theory, the electron does not have real spin and real charge. As with angular momentum, it has spin and charge quantum numbers. But all these quantum numbers are physically unassigned. They are mathematical only. The top physicists and journals and books have been telling us for decades that the electron spin is not to be understood as an actual spin, because they can't make that work in their equations. The spin is either understood to be a virtual spin, or it is understood to be nothing more than a place-filler in the equations. We can say the same of charge, which has never been defined physically to this day. What does a charged particle have that an uncharged particle does not, beyond different math and a different sign? The current theory has no answer. Rather than charge and spin and orbit, we could call these quantum numbers red and blue and green, and nothing would change in the theory.
    [Show full text]
  • Competition of Spinon Fermi Surface and Heavy Fermi Liquid States from the Periodic Anderson to the Hubbard Model
    PHYSICAL REVIEW B 103, 085128 (2021) Competition of spinon Fermi surface and heavy Fermi liquid states from the periodic Anderson to the Hubbard model Chuan Chen,1 Inti Sodemann ,1,* and Patrick A. Lee2,† 1Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany 2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 14 October 2020; revised 4 February 2021; accepted 5 February 2021; published 19 February 2021) We study a model of correlated electrons coupled by tunneling to a layer of itinerant metallic electrons, which allows us to interpolate from a frustrated limit favorable to spin liquid states to a Kondo-lattice limit favorable to interlayer coherent heavy metallic states. We study the competition of the spinon Fermi-surface state and the interlayer coherent heavy Kondo metal that appears with increasing tunneling. Employing a slave rotor mean-field approach, we obtain a phase diagram and describe two regimes where the spin liquid state is destroyed by weak interlayer tunneling: (i) the Kondo limit in which the correlated electrons can be viewed as localized spin moments and (ii) near the Mott metal-insulator transition where the spinon Fermi surface transitions continuously into a Fermi liquid. We study the shape of local density of states (LDOS) spectra of the putative spin liquid layer in the heavy Fermi-liquid phase and describe the temperature dependence of its width arising from quasiparticle interactions and disorder effects throughout this phase diagram, in an effort to understand recent scanning tunneling microscopy experiments of the candidate spin liquid 1T-TaSe2 residing on metallic 1H-TaSe2.
    [Show full text]
  • Spin Density Wave Order, Topological Order, and Fermi Surface Reconstruction
    Spin density wave order, topological order, and Fermi surface reconstruction The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sachdev, Subir, Erez Berg, Shubhayu Chatterjee, and Yoni Schattner. 2016. “Spin Density Wave Order, Topological Order, and Fermi Surface Reconstruction.” Physical Review B 94 (11) (September 21). doi:10.1103/physrevb.94.115147. Published Version doi:10.1103/PhysRevB.94.115147 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33973828 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP arXiv:1606.07813 Spin density wave order, topological order, and Fermi surface reconstruction Subir Sachdev,1, 2 Erez Berg,3 Shubhayu Chatterjee,1 and Yoni Schattner3 1Department of Physics, Harvard University, Cambridge MA 02138, USA 2Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5 3Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel (Dated: September 22, 2016) Abstract In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small ‘pockets’. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian.
    [Show full text]
  • Fractional Excitations in the Luttinger Liquid
    Fractional Excitations in the Luttinger Liquid. K.-V. Pham, M. Gabay and P. Lederer Laboratoire de Physique des Solides, associ´eau CNRS Universit´eParis–Sud 91405 Orsay, France (September 18, 2018) We reconsider the spectrum of the Luttinger liquid (LL) usually understood in terms of phonons (density fluctuations), and within the context of bosonization we give an alternative representation in terms of fractional states. This allows to make contact with Bethe Ansatz which predicts similar fractional states. As an example we study the spinon operator in the absence of spin rotational invariance and derive it from first principles: we find that it is not a semion in general; a trial Jastrow wavefunction is also given for that spinon state. Our construction of the new spectroscopy based on fractional states leads to several new physical insights: in the low-energy limit, we find that the Sz = 0 continuum of gapless spin chains is due to pairs of fractional quasiparticle-quasihole states which are the 1D counterpart of the Laughlin FQHE quasiparticles. The holon operator for the Luttinger liquid with spin is also derived. In the presence of a magnetic field, spin-charge separation is not realized any longer in a LL: the holon and the spinon are then replaced by new fractional states which we are able to describe. PACS Numbers: 71.10 Pm , 71.27+a I. INTRODUCTION. the latter model is a fixed point of the renormalization group (RG)13. In 1D, bosonization allows to transform A. Motivations of this work. the Tomonaga-Luttinger model into a gaussian acoustic hamiltonian describing free phonons14; the considerable success and popularity of bosonization stems from the One of the most striking property of some strongly correlated systems is fractionalization, that is the exis- fact that all the computations are straightforward be- tence of elementary excitations carrying only part of the cause the effective hamiltonian is that of a free bosonic quantum numbers of the constituent particles of the sys- field.
    [Show full text]
  • Slave Particle Studies of the Electron Momentum Distribution in the Low
    Slave Particle Studies of the Electron Momentum Distribution in the Low Dimensional t − J Model Shiping Feng∗,1 J. B. Wu,2 Z. B. Su,1,2 and L. Yu1,2 1International Centre for Theoretical Physics, P. O. Box 586, 34100 Trieste, Italy 2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China The electron momentum distribution function in the t − J model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as constraints without further approximations. Our result indicates that the arXiv:cond-mat/9304011v1 8 Apr 1993 electron Fermi surface observed in the high-resolution angle-resolved photoemission and inverse photoemission experiments cannot be explained within this framework, and the sum rule for the physical electron is not obeyed. A correct scaling behavior of the electron momentum distribution function near k ∼ kF and k ∼ 3kF in one dimension can be reproduced by considering the nonlocal string fields [Z. Y. Weng et al., Phys. Rev. B45, 7850 (1992)], but the overall momentum distribution is still not correct, at least at the mean field level. PACS numbers: 71.45. -d, 75.10. Jm 1 I. INTRODUCTION The t−J model is one of the simplest models containing the essence of strong correlations and its implications for oxide superconductivity [1,2] still remain an outstanding problem. The t − J model was originally introduced as an effective Hamiltonian of the Hubbard model in the strong coupling regime, where the on-site Coulomb repulsion U is very large as compared with the electron hopping energy t, and therefore the electrons become strongly correlated to avoid the double occupancy.
    [Show full text]